1
|
Gamulin E, Mateljak Lukačević S, Halassy B, Kurtović T. Snake Antivenoms-Toward Better Understanding of the Administration Route. Toxins (Basel) 2023; 15:398. [PMID: 37368699 DOI: 10.3390/toxins15060398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Envenomations induced by animal bites and stings constitute a significant public health burden. Even though a standardized protocol does not exist, parenterally administered polyclonal antivenoms remain the mainstay in snakebite therapy. There is a prevailing opinion that their application by the i.m. route has poor efficacy and that i.v. administration should preferentially be chosen in order to achieve better accomplishment of the antivenom therapeutic activity. Recently, it has been demonstrated that neutralization not only in the systemic circulation but also in the lymphatic system might be of great importance for the clinical outcome since it represents another relevant body compartment through which the absorption of the venom components occurs. In this review, the present-day and summarized knowledge of the laboratory and clinical findings on the i.v. and i.m. routes of antivenom administration is provided, with a special emphasis on the contribution of the lymphatic system to the process of venom elimination. Until now, antivenom-mediated neutralization has not yet been discussed in the context of the synergistic action of both blood and lymph. A current viewpoint might help to improve the comprehension of the venom/antivenom pharmacokinetics and the optimal approach for drug application. There is a great need for additional dependable, practical, well-designed studies, as well as more practice-related experience reports. As a result, opportunities for resolving long-standing disputes over choosing one therapeutic principle over another might be created, improving the safety and effectiveness of snakebite management.
Collapse
Affiliation(s)
- Erika Gamulin
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia
| | - Sanja Mateljak Lukačević
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia
| | - Beata Halassy
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia
| | - Tihana Kurtović
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Cañas CA, Castaño-Valencia S, Castro-Herrera F. The Colombian bushmasters Lachesis acrochorda (García, 1896) and Lachesis muta (Linnaeus, 1766): Snake species, venoms, envenomation, and its management. Toxicon 2023; 230:107152. [PMID: 37178796 DOI: 10.1016/j.toxicon.2023.107152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
In Colombia, there are two species of bushmaster snakes, Lachesis acrochorda, which is distributed mainly in the west of the country (in the Choco region), and Lachesis muta in the southeast (in the Amazon and Orinoquia region), whose presence has been reduced due to the destruction of their habitats. Captive maintenance is challenging, making it difficult to obtain their venom for study and antivenom manufacturing. They are the largest vipers in the world. The occurrence of human envenomation is quite rare, but when it occurs, it is associated with high mortality. Bushmaster venom is necrotizing, hemorrhagic, myotoxic, hemolytic, and cardiovascular depressant. Due to the presence of bradycardia, hypotension, emesis, and diarrhea in some patients (Lachesis syndrome), the possibility of a vagal or cholinergic effect is raised. The treatment of envenomation is hindered by the scarcity of antivenom and the need to use high doses. A review of the most relevant biological and medical aspects of bushmaster snakes is presented, mainly for those occurring in Colombia, to facilitate their recognition and raise awareness about the need for special attention to improve their conservation and advance scientific knowledge, in particular, about their venom.
Collapse
Affiliation(s)
- Carlos A Cañas
- Universidad Icesi, CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Cali, 760031, Colombia; Fundación Valle del Lili, Departamento de Reumatología, Cali, 760026, Colombia.
| | - Santiago Castaño-Valencia
- Department of Physiological Sciences, Department of Health Sciences, Universidad del Valle. Cali 760042, Colombia; Laboratorio de Herpetología y Toxinología, Universidad del Valle. Cali 760042, Colombia
| | | |
Collapse
|
3
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|
4
|
Mateljak Lukačević S, Kurtović T, Borić J, Halassy B. Roughness of Production Conditions: Does It Really Affect Stability of IgG-Based Antivenoms? Toxins (Basel) 2022; 14:toxins14070483. [PMID: 35878221 PMCID: PMC9325249 DOI: 10.3390/toxins14070483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Antivenoms contain either pure animal IgGs or their fragments as an active substance, and are the only specific therapeutics against envenomation arising from snakebites. Although they are highly needed, the low sustainability of such preparations’ manufacture causes constant global shortages. One reason for this is the stability of the product, which contributes not only to the manufacture sustainability, but the product safety as well. It has been hypothesized that the roughness of conditions to which IgGs are exposed during downstream purification disturbs their conformation, making them prone to aggregation, particularly after exposure to secondary stress. The aim of this research was to investigate how the roughness of the downstream purification conditions influences the stability properties of purified IgGs. For this purpose, equine IgGs were extracted from unique hyperimmune plasma by two mild condition-based operational procedures (anion-exchange chromatography and caprylic acid precipitation) and three rougher ones (ammonium sulphate precipitation, cation-exchange chromatography and protein A affinity chromatography). The stability of the refined preparations was studied under non-optimal storage conditions (37 °C, 42 °C, and a transiently lower pH) by monitoring changes in the aggregate content and thermal stability of the pure IgGs. Mild purification protocols generated IgG samples with a lower aggregate share in comparison to the rougher ones. Their tendency for further aggregation was significantly associated with the initial aggregate share. The thermal stability of IgG molecules and the aggregate content in refined samples were inversely correlated. Since the initial proportion of aggregates in the samples was influenced by the operating conditions, we have shown a strong indication that each of them also indirectly affected the stability of the final preparations. This suggests that mild condition-based refinement protocols indeed generate more stable IgGs.
Collapse
Affiliation(s)
- Sanja Mateljak Lukačević
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, HR-10000 Zagreb, Croatia; (T.K.); (J.B.)
- Center of Excellence for Virus Immunology and Vaccines, CERVirVac, Rockefellerova 10, HR-10000 Zagreb, Croatia
- Correspondence: (S.M.L.); (B.H.)
| | - Tihana Kurtović
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, HR-10000 Zagreb, Croatia; (T.K.); (J.B.)
- Center of Excellence for Virus Immunology and Vaccines, CERVirVac, Rockefellerova 10, HR-10000 Zagreb, Croatia
| | - Juraj Borić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, HR-10000 Zagreb, Croatia; (T.K.); (J.B.)
- Center of Excellence for Virus Immunology and Vaccines, CERVirVac, Rockefellerova 10, HR-10000 Zagreb, Croatia
| | - Beata Halassy
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, HR-10000 Zagreb, Croatia; (T.K.); (J.B.)
- Center of Excellence for Virus Immunology and Vaccines, CERVirVac, Rockefellerova 10, HR-10000 Zagreb, Croatia
- Correspondence: (S.M.L.); (B.H.)
| |
Collapse
|
5
|
Patra A, Herrera M, Gutiérrez JM, Mukherjee AK. The application of laboratory-based analytical tools and techniques for the quality assessment and improvement of commercial antivenoms used in the treatment of snakebite envenomation. Drug Test Anal 2021; 13:1471-1489. [PMID: 34089574 DOI: 10.1002/dta.3108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Snakebite envenomation is a public health problem of high impact, particularly for the developing world. Antivenom, which contains whole or protease-digested immunoglobulin G, purified from the plasma of hyper-immunized animals (mainly horses), is the mainstay for the treatment of snakebite envenomation. The success of antivenom therapy depends upon its ability to abrogate or reduce the local and systemic toxicity of envenomation. In addition, antivenom administration must be safe for the patients. Therefore, antivenom manufacturers must ensure that these products are effective and safe in the treatment of envenomations. Antivenom efficacy and safety are determined by the physicochemical characteristics of formulations, purity of the immunoglobulin fragments and antibodies, presence of protein aggregates, endotoxin burden, preservative load, and batch to batch variation, as well as on the ability to neutralize the most important toxins of the venoms against which the antivenom is designed. In this context, recent studies have shown that laboratory-based simple analytical techniques, for example, size exclusion chromatography, sodium dodecyl sulphate polyacrylamide gel electrophoresis, mass spectrometry, immunological profiling including immuno-turbidimetry and enzyme-linked immunosorbent assays, Western blotting, immune-chromatographic technique coupled to mass spectrometry analysis, reverse-phase high performance liquid chromatography, spectrofluorometric analysis, in vitro neutralization of venom enzymatic activities, and other methodologies, can be applied for the assessment of antivenom quality, safety, stability, and efficacy. This article reviews the usefulness of different analytical techniques for the quality assessment of commercial antivenoms. It is suggested that these tests should be applied for screening the quality of commercial antivenoms before their preclinical and clinical assessment.
Collapse
Affiliation(s)
- Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India.,Life Science Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati, 781035, India
| |
Collapse
|
6
|
Williams HF, Layfield HJ, Vallance T, Patel K, Bicknell AB, Trim SA, Vaiyapuri S. The Urgent Need to Develop Novel Strategies for the Diagnosis and Treatment of Snakebites. Toxins (Basel) 2019; 11:E363. [PMID: 31226842 PMCID: PMC6628419 DOI: 10.3390/toxins11060363] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Snakebite envenoming (SBE) is a priority neglected tropical disease, which kills in excess of 100,000 people per year. Additionally, many millions of survivors also suffer through disabilities and long-term health consequences. The only treatment for SBE, antivenom, has a number of major associated problems, not least, adverse reactions and limited availability. This emphasises the necessity for urgent improvements to the management of this disease. Administration of antivenom is too frequently based on symptomatology, which results in wasting crucial time. The majority of SBE-affected regions rely on broad-spectrum polyvalent antivenoms that have a low content of case-specific efficacious immunoglobulins. Research into small molecular therapeutics such as varespladib/methyl-varespladib (PLA2 inhibitors) and batimastat/marimastat (metalloprotease inhibitors) suggest that such adjunctive treatments could be hugely beneficial to victims. Progress into toxin-specific monoclonal antibodies as well as alternative binding scaffolds such as aptamers hold much promise for future treatment strategies. SBE is not implicit during snakebite, due to venom metering. Thus, the delay between bite and symptom presentation is critical and when symptoms appear it may often already be too late to effectively treat SBE. The development of reliable diagnostical tools could therefore initiate a paradigm shift in the treatment of SBE. While the complete eradication of SBE is an impossibility, mitigation is in the pipeline, with new treatments and diagnostics rapidly emerging. Here we critically review the urgent necessity for the development of diagnostic tools and improved therapeutics to mitigate the deaths and disabilities caused by SBE.
Collapse
Affiliation(s)
| | | | - Thomas Vallance
- School of Pharmacy, University of Reading, Reading RG6 6AH, UK.
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK.
| | - Andrew B Bicknell
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK.
| | | | | |
Collapse
|
7
|
Oliveira ISD, Pucca MB, Sampaio SV, Arantes EC. Antivenomic approach of different Crotalus durissus collilineatus venoms. J Venom Anim Toxins Incl Trop Dis 2018; 24:34. [PMID: 30534148 PMCID: PMC6260869 DOI: 10.1186/s40409-018-0169-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/01/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Our group has previously performed a proteomic study verifying that individual variations can occur among Crotalus durissus collilineatus venoms. These variations may lead to differences in venom toxicity and may result in lack of neutralization of some components by antivenom. In this way, this study aimed to evaluate the Brazilian anticrotalic serum capacity in recognizing twenty-two Crotalus durissus collilineatus venoms, as well as their fractions. METHODS The indirect enzyme-linked immunosorbent assay (ELISA) was chosen to evaluate the efficacy of heterologous anticrotalic serum produced by Instituto Butantan (Brazil) in recognizing the twenty-two Crotalus durissus collilineatus venoms and the pool of them. Moreover, the venom pool was fractionated using reversed-phase fast protein liquid chromatography (RP-FPLC) and the obtained fractions were analyzed concerning antivenom recognition. RESULTS Evaluation of venom variability by ELISA showed that all venom samples were recognized by the Brazilian anticrotalic antivenom. However, some particular venom fractions were poorly recognized. CONCLUSION This study demonstrated that the Brazilian anticrotalic serum recognizes all the different twenty-two venoms of C. d. collilineatus and their fractions, although in a quantitatively different way, which may impact the effectiveness of the antivenom therapy. These results confirm the need to use a pool of venoms with the greatest possible variability in the preparation of antivenoms, in order to improve their effectiveness.
Collapse
Affiliation(s)
- Isadora Sousa de Oliveira
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | | | - Suely Vilela Sampaio
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| |
Collapse
|
8
|
|
9
|
Dowall SD, Jacquot F, Landon J, Rayner E, Hall G, Carbonnelle C, Raoul H, Pannetier D, Cameron I, Coxon R, Al Abdulla I, Hewson R, Carroll MW. Post-exposure treatment of non-human primates lethally infected with Ebola virus with EBOTAb, a purified ovine IgG product. Sci Rep 2017. [PMID: 28642489 PMCID: PMC5481440 DOI: 10.1038/s41598-017-03910-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Despite sporadic outbreaks of Ebola virus (EBOV) over the last 4 decades and the recent public health emergency in West Africa, there are still no approved vaccines or therapeutics for the treatment of acute EBOV disease (EVD). In response to the 2014 outbreak, an ovine immunoglobulin therapy was developed, termed EBOTAb. After promising results in the guinea pig model of EBOV infection, EBOTAb was tested in the cynomolgus macaque non-human primate model of lethal EBOV infection. To ensure stringent therapeutic testing conditions to replicate likely clinical usage, EBOTAb was first delivered 1, 2 or 3 days post-challenge with a lethal dose of EBOV. Results showed a protective effect of EBOTAb given post-exposurally, with survival rates decreasing with increasing time after challenge. Viremia results demonstrated that EBOTAb resulted in a decreased circulation of EBOV in the bloodstream. Additionally, assay of liver enzymes and histology analysis of local tissues identified differences between EBOTAb-treated and untreated groups. The results presented demonstrate that EBOTAb conferred protection against EBOV when given post-exposure and should be explored and developed further as a potential intervention strategy for future outbreaks, which are likely to occur.
Collapse
Affiliation(s)
- Stuart D Dowall
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Frédéric Jacquot
- Laboratoire P4, INSERM Jean Merieux, 21 Avenue Tony Garnier, Lyon, France
| | - John Landon
- MicroPharm Ltd, Station Road, Newcastle Emlyn, Dyfed, SA38 9BY, UK
| | - Emma Rayner
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Graham Hall
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | | | - Hervé Raoul
- Laboratoire P4, INSERM Jean Merieux, 21 Avenue Tony Garnier, Lyon, France
| | - Delphine Pannetier
- Laboratoire P4, INSERM Jean Merieux, 21 Avenue Tony Garnier, Lyon, France
| | - Ian Cameron
- MicroPharm Ltd, Station Road, Newcastle Emlyn, Dyfed, SA38 9BY, UK
| | - Ruth Coxon
- MicroPharm Ltd, Station Road, Newcastle Emlyn, Dyfed, SA38 9BY, UK
| | | | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Miles W Carroll
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| |
Collapse
|
10
|
Expanding the neutralization scope of the EchiTAb-plus-ICP antivenom to include venoms of elapids from Southern Africa. Toxicon 2017; 125:59-64. [DOI: 10.1016/j.toxicon.2016.11.259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/28/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
|
11
|
Al-Abdulla I, Casewell NR, Landon J. Single-reagent one-step procedures for the purification of ovine IgG, F(ab′)2 and Fab antivenoms by caprylic acid. J Immunol Methods 2014; 402:15-22. [DOI: 10.1016/j.jim.2013.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 11/17/2022]
|
12
|
Wang T, Kumru OS, Yi L, Wang YJ, Zhang J, Kim JH, Joshi SB, Middaugh CR, Volkin DB. Effect of ionic strength and pH on the physical and chemical stability of a monoclonal antibody antigen-binding fragment. J Pharm Sci 2013; 102:2520-37. [PMID: 23824562 DOI: 10.1002/jps.23645] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/29/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022]
Abstract
Monoclonal antibody (mAb) fragments are emerging as promising alternatives to full-length mAbs as protein therapeutic candidates. Antigen-binding fragments (Fabs) are the most advanced with three Fab-based drug products currently approved. This work presents preformulation characterization data on the effect of pH, NaCl concentration, and various cationic excipients on the physical and chemical stability of a Fab molecule with multiple negatively charged Asp residues in the complementarity-determining region. Conformational stability was evaluated using an empirical phase diagram approach based on circular dichroism, intrinsic Trp and extrinsic 8-anilino-1-naphthalene sulfonate (ANS) fluorescence, and static light scattering measurements. The effect of NaCl concentration, various cationic excipients and pH on the Fab molecule's conformational stability, aggregation propensity, and chemical stability (Asp isomerization) was determined by differential scanning calorimetry, optical density measurements at 350 nm (OD350 ), and ion-exchange chromatography, respectively. Increasing NaCl concentration increased the overall conformational stability, decreased aggregation rates, and lowered the rates of Asp isomerization. No such trends were noted for pH or cationic excipients. The potential interrelationships between protein conformational and chemical stability are discussed in the context of designing stable protein formulations.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Al-Abdulla I, Casewell NR, Landon J. Long-term physicochemical and immunological stability of a liquid formulated intact ovine immunoglobulin-based antivenom. Toxicon 2013; 64:38-42. [DOI: 10.1016/j.toxicon.2012.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
|
14
|
Cherry CLA, Millward H, Cooper R, Landon J. A novel approach to sterile pharmaceutical freeze-drying. Pharm Dev Technol 2013; 19:73-81. [PMID: 23323966 DOI: 10.3109/10837450.2012.752388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A novel approach has been developed that enables sterile pharmaceutical products to be freeze-dried in the open laboratory without specialist facilities. The product is filled into vials, semi-stoppered and sealed inside one, followed by a second, sterilization pouch under class 100 conditions. The product is then freeze-dried in the laboratory where the vials are shelf-stoppered before being returned to class 100, unwrapped and crimped. The sterilization pouches increased the resistance to water vapor movement during sublimation, thereby increasing the sublimation time and product temperature. Ovine immunoglobulins were double wrapped and lyophilized (as above) adjusting the primary drying time and shelf temperature for increased product temperature and, therefore, prevention of collapse. Ovine immunoglobulin G formulations freeze-dried to ≤ 1.1% residual moisture with no effect on protein aggregation or biological activity. The process was simulated with tryptone soya broth and no growth of contaminating microbial cells was observed after incubation at 35 °C for 2 weeks. Although increasing lyophilization time, this approach offers significant plant and validation cost savings when sterile freeze-drying small numbers of vials thereby making the manufacture of treatments for neglected and orphan diseases more viable economically.
Collapse
|
15
|
Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals 2011; 39:129-42. [DOI: 10.1016/j.biologicals.2011.02.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/22/2011] [Indexed: 11/18/2022] Open
|
16
|
Stability of equine IgG antivenoms obtained by caprylic acid precipitation: Towards a liquid formulation stable at tropical room temperature. Toxicon 2009; 53:609-15. [DOI: 10.1016/j.toxicon.2009.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Gutiérrez JM, Lomonte B, León G, Alape-Girón A, Flores-Díaz M, Sanz L, Angulo Y, Calvete JJ. Snake venomics and antivenomics: Proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. J Proteomics 2009; 72:165-82. [DOI: 10.1016/j.jprot.2009.01.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 01/01/2009] [Accepted: 01/07/2009] [Indexed: 12/14/2022]
|
18
|
Daugherty AL, Mrsny RJ. Formulation and delivery issues for monoclonal antibody therapeutics. Adv Drug Deliv Rev 2006; 58:686-706. [PMID: 16839640 DOI: 10.1016/j.addr.2006.03.011] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 05/06/2006] [Indexed: 11/30/2022]
Abstract
Antibodies can have exquisite specificity of target recognition and thus generate highly selective outcomes following their systemic administration. While antibodies can have high specificity, the doses required to treat patients, particularly for a chronic condition, are typically large. Fortunately, advances in production and purification capacities have allowed for the exceptionally large amounts of highly purified monoclonal antibodies to be produced. Additionally, genetic engineering of antibodies has provided a stable of antibody-like proteins that can be easier to prepare. Together, these advances have made antibody-based therapies one of the most commonly pursued pharmaceuticals in biotechnology pipelines. With this success, however, has come a series of technical challenges in the formulation of antibody-based materials to maintain sufficient stability in a variety of configurations and sometimes at particularly high concentrations. This review focuses on issues related to identifying and verifying stable antibody-based formulations.
Collapse
Affiliation(s)
- Ann L Daugherty
- Genentech, Inc., 1 DNA Way South San Francisco, CA 94080, USA.
| | | |
Collapse
|
19
|
Burnouf T, Griffiths E, Padilla A, Seddik S, Stephano MA, Gutiérrez JM. Assessment of the viral safety of antivenoms fractionated from equine plasma. Biologicals 2005; 32:115-28. [PMID: 15536042 PMCID: PMC7128792 DOI: 10.1016/j.biologicals.2004.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 07/09/2004] [Indexed: 11/27/2022] Open
Abstract
Antivenoms are preparations of intact or fragmented (F(ab′)2 or Fab) immunoglobulin G (IgG) used in human medicine to treat the severe envenomings resulting from the bites and stings of various animals, such as snakes, spiders, scorpions, or marine animals, or from the contact with poisonous plants. They are obtained by fractionating plasma collected from immunized horses or, less frequently, sheep. Manufacturing processes usually include pepsin digestion at acid pH, papain digestion, ammonium sulphate precipitation, caprylic acid precipitation, heat coagulation and/or chromatography. Most production processes do not have deliberately introduced viral inactivation or removal treatments, but antivenoms have never been found to transmit viruses to humans. Nevertheless, the recent examples of zoonotic diseases highlight the need to perform a careful assessment of the viral safety of antivenoms. This paper reviews the characteristics of equine viruses of antivenoms and discusses the potential of some manufacturing steps to avoid risks of viral contamination. Analysis of production parameters indicate that acid pH treatments and caprylic acid precipitations, which have been validated for the manufacture of some human IgG products, appear to provide the best potential for viral inactivation of antivenoms. As many manufacturers of antivenoms located in developing countries lack the resources to conduct formal viral validation studies, it is hoped that this review will help in the scientific understanding of the viral safety factors of antivenoms, in the controlled implementation of the manufacturing steps with expected impact on viral safety, and in the overall reinforcement of good manufacturing practices of these essential therapeutic products.
Collapse
Affiliation(s)
- Thierry Burnouf
- Human Plasma Product Services, 18 rue Saint-Jacques, F-59000 Lille, France.
| | | | | | | | | | | |
Collapse
|