1
|
Abstract
The primary visual cortex signals the onset of light and dark stimuli with ON and OFF cortical pathways. Here, we demonstrate that both pathways generate similar response increments to large homogeneous surfaces and their response average increases with surface brightness. We show that, in cat visual cortex, response dominance from ON or OFF pathways is bimodally distributed when stimuli are smaller than one receptive field center but unimodally distributed when they are larger. Moreover, whereas small bright stimuli drive opposite responses from ON and OFF pathways (increased versus suppressed activity), large bright surfaces drive similar response increments. We show that this size-brightness relation emerges because strong illumination increases the size of light surfaces in nature and both ON and OFF cortical neurons receive input from ON thalamic pathways. We conclude that visual scenes are perceived as brighter when the average response increments from ON and OFF cortical pathways become stronger. Mazade et al. find that the visual cortex encodes brightness differently for small than large stimuli. Bright small stimuli drive cortical pathways signaling lights and suppress cortical pathways signaling darks. Conversely, large surfaces drive response increments from both pathways and appear brightest when the response average is strongest.
Collapse
|
2
|
Image luminance changes contrast sensitivity in visual cortex. Cell Rep 2021; 34:108692. [PMID: 33535047 PMCID: PMC7886026 DOI: 10.1016/j.celrep.2021.108692] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Accurate measures of contrast sensitivity are important for evaluating visual disease progression and for navigation safety. Previous measures suggested that cortical contrast sensitivity was constant across widely different luminance ranges experienced indoors and outdoors. Against this notion, here, we show that luminance range changes contrast sensitivity in both cat and human cortex, and the changes are different for dark and light stimuli. As luminance range increases, contrast sensitivity increases more within cortical pathways signaling lights than those signaling darks. Conversely, when the luminance range is constant, light-dark differences in contrast sensitivity remain relatively constant even if background luminance changes. We show that a Naka-Rushton function modified to include luminance range and light-dark polarity accurately replicates both the statistics of light-dark features in natural scenes and the cortical responses to multiple combinations of contrast and luminance. We conclude that differences in light-dark contrast increase with luminance range and are largest in bright environments.
Collapse
|
3
|
Abstract
Spatial averaging of luminances over a variegated region has been assumed in visual processes such as light adaptation, texture segmentation, and lightness scaling. Despite the importance of these processes, how mean brightness can be computed remains largely unknown. We investigated how accurately and precisely mean brightness can be compared for two briefly presented heterogeneous luminance arrays composed of different numbers of disks. The results demonstrated that mean brightness judgments can be made in a task-dependent and flexible fashion. Mean brightness judgments measured via the point of subjective equality (PSE) exhibited a consistent bias, suggesting that observers relied strongly on a subset of the disks (e.g., the highest- or lowest-luminance disks) in making their judgments. Moreover, the direction of the bias flexibly changed with the task requirements, even when the stimuli were completely the same. When asked to choose the brighter array, observers relied more on the highest-luminance disks. However, when asked to choose the darker array, observers relied more on the lowest-luminance disks. In contrast, when the task was the same, observers' judgments were almost immune to substantial changes in apparent contrast caused by changing the background luminance. Despite the bias in PSE, the mean brightness judgments were precise. The just-noticeable differences measured for multiple disks were similar to or even smaller than those for single disks, which suggested a benefit of averaging. These findings implicated flexible weighted averaging; that is, mean brightness can be judged efficiently by flexibly relying more on a few items that are relevant to the task.
Collapse
|
4
|
Jansen M, Jin J, Li X, Lashgari R, Kremkow J, Bereshpolova Y, Swadlow HA, Zaidi Q, Alonso JM. Cortical Balance Between ON and OFF Visual Responses Is Modulated by the Spatial Properties of the Visual Stimulus. Cereb Cortex 2020; 29:336-355. [PMID: 30321290 PMCID: PMC6294412 DOI: 10.1093/cercor/bhy221] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 11/12/2022] Open
Abstract
The primary visual cortex of carnivores and primates is dominated by the OFF visual pathway and responds more strongly to dark than light stimuli. Here, we demonstrate that this cortical OFF dominance is modulated by the size and spatial frequency of the stimulus in awake primates and we uncover a main neuronal mechanism underlying this modulation. We show that large grating patterns with low spatial frequencies drive five times more OFF-dominated than ON-dominated neurons, but this pronounced cortical OFF dominance is strongly reduced when the grating size decreases and the spatial frequency increases, as when the stimulus moves away from the observer. We demonstrate that the reduction in cortical OFF dominance is not caused by a selective reduction of visual responses in OFF-dominated neurons but by a change in the ON/OFF response balance of neurons with diverse receptive field properties that can be ON or OFF dominated, simple, or complex. We conclude that cortical OFF dominance is continuously adjusted by a neuronal mechanism that modulates ON/OFF response balance in multiple cortical neurons when the spatial properties of the visual stimulus change with viewing distance and/or optical blur.
Collapse
Affiliation(s)
- Michael Jansen
- Department of Biological and Vision Sciences, Biol. Sci., SUNY College of Optometry, New York, NY, USA
| | - Jianzhong Jin
- Department of Biological and Vision Sciences, Biol. Sci., SUNY College of Optometry, New York, NY, USA
| | - Xiaobing Li
- Department of Biological and Vision Sciences, Biol. Sci., SUNY College of Optometry, New York, NY, USA
| | - Reza Lashgari
- Department of Biological and Vision Sciences, Biol. Sci., SUNY College of Optometry, New York, NY, USA.,Brain Engineering Research Center, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Jens Kremkow
- Department of Biological and Vision Sciences, Biol. Sci., SUNY College of Optometry, New York, NY, USA.,Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Harvey A Swadlow
- Department of Biological and Vision Sciences, Biol. Sci., SUNY College of Optometry, New York, NY, USA.,Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Qasim Zaidi
- Department of Biological and Vision Sciences, Biol. Sci., SUNY College of Optometry, New York, NY, USA
| | - Jose-Manuel Alonso
- Department of Biological and Vision Sciences, Biol. Sci., SUNY College of Optometry, New York, NY, USA.,Department of Psychology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
5
|
The neural signature of numerosity by separating numerical and continuous magnitude extraction in visual cortex with frequency-tagged EEG. Proc Natl Acad Sci U S A 2020; 117:5726-5732. [PMID: 32123113 PMCID: PMC7084102 DOI: 10.1073/pnas.1917849117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The ability to handle approximate quantities, or number sense, has been recurrently linked to mathematical skills, although the nature of the mechanism allowing to extract numerical information (i.e., numerosity) from environmental stimuli is still debated. A set of objects is indeed not only characterized by its numerosity but also by other features, such as the summed area occupied by the elements, which often covary with numerosity. These intrinsic relations between numerosity and nonnumerical magnitudes led some authors to argue that numerosity is not independently processed but extracted through a weighting of continuous magnitudes. This view cannot be properly tested through classic behavioral and neuroimaging approaches due to these intrinsic correlations. The current study used a frequency-tagging EEG approach to separately measure responses to numerosity as well as to continuous magnitudes. We recorded occipital responses to numerosity, total area, and convex hull changes but not to density and dot size. We additionally applied a model predicting primary visual cortex responses to the set of stimuli. The model output was closely aligned with our electrophysiological data, since it predicted discrimination only for numerosity, total area, and convex hull. Our findings thus demonstrate that numerosity can be independently processed at an early stage in the visual cortex, even when completely isolated from other magnitude changes. The similar implicit discrimination for numerosity as for some continuous magnitudes, which correspond to basic visual percepts, shows that both can be extracted independently, hence substantiating the nature of numerosity as a primary feature of the visual scene.
Collapse
|
6
|
Motion changes response balance between ON and OFF visual pathways. Commun Biol 2018; 1:60. [PMID: 30271942 PMCID: PMC6123681 DOI: 10.1038/s42003-018-0066-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/03/2018] [Indexed: 11/09/2022] Open
Abstract
Humans are faster at detecting dark than light stationary stimuli, a temporal difference that originates early in the visual pathway. Here we show that this difference reverses when stimuli move, making detection faster for moving lights than darks. Human subjects judged the direction of moving edges and bars, and made faster and more accurate responses for light than for dark stimuli. This light/dark asymmetry is greatest at low speeds and disappears at high speeds. In parallel experiments, we recorded responses in the cat visual cortex for moving bars and again find that responses are faster for light bars than for dark bars moving at low speeds. We show that differences in the luminance-response function between ON and OFF pathways can reproduce these findings, and may explain why ON pathways are used for slow-motion image stabilization in many species.
Collapse
|
7
|
Abstract
Visual textures are a class of stimuli with properties that make them well suited for addressing general questions about visual function at the levels of behavior and neural mechanism. They have structure across multiple spatial scales, they put the focus on the inferential nature of visual processing, and they help bridge the gap between stimuli that are analytically convenient and the complex, naturalistic stimuli that have the greatest biological relevance. Key questions that are well suited for analysis via visual textures include the nature and structure of perceptual spaces, modulation of early visual processing by task, and the transformation of sensory stimuli into patterns of population activity that are relevant to perception.
Collapse
Affiliation(s)
- Jonathan D Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065;
| | - Mary M Conte
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065;
| | - Charles F Chubb
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, California 92697
| |
Collapse
|
8
|
The centroid paradigm: Quantifying feature-based attention in terms of attention filters. Atten Percept Psychophys 2015; 78:474-515. [DOI: 10.3758/s13414-015-0978-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Silva AE, Chubb C. The 3-dimensional, 4-channel model of human visual sensitivity to grayscale scrambles. Vision Res 2014; 101:94-107. [PMID: 24932891 DOI: 10.1016/j.visres.2014.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/12/2014] [Accepted: 06/02/2014] [Indexed: 11/18/2022]
Abstract
Previous research supports the claim that human vision has three dimensions of sensitivity to grayscale scrambles (textures composed of randomly scrambled mixtures of different grayscales). However, the preattentive mechanisms (called here "field-capture channels") that confer this sensitivity remain obscure. The current experiments sought to characterize the specific field-capture channels that confer this sensitivity using a task in which the participant is required to detect the location of a small patch of one type of grayscale scramble in an extended background of another type. Analysis of the results supports the existence of four field-capture channels: (1) the (previously characterized) "blackshot" channel, sharply tuned to the blackest grayscales; (2) a (previously unknown) "gray-tuned" field-capture channel whose sensitivity is zero for black rising sharply to maximum sensitivity for grayscales slightly darker than mid-gray then decreasing to half-height for brighter grayscales; (3) an "up-ramped" channel whose sensitivity is zero for black, increases linearly with increasing grayscale reaching a maximum near white; (4) a (complementary) "down-ramped" channel whose sensitivity is maximal for black, decreases linearly reaching a minimum near white. The sensitivity functions of field-capture channels (3) and (4) are linearly dependent; thus, these four field-capture channels collectively confer sensitivity to a 3-dimensional space of histogram variations.
Collapse
Affiliation(s)
| | - Charles Chubb
- Department of Cognitive Sciences, UC Irvine, Irvine, CA 92697-5100, United States.
| |
Collapse
|
10
|
Komban SJ, Alonso JM, Zaidi Q. Darks are processed faster than lights. J Neurosci 2011; 31:8654-8. [PMID: 21653869 PMCID: PMC3263349 DOI: 10.1523/jneurosci.0504-11.2011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/15/2011] [Accepted: 05/08/2011] [Indexed: 11/21/2022] Open
Abstract
Recent physiological studies claim that dark stimuli have access to greater neuronal resources than light stimuli in early visual pathway. We used two sets of novel stimuli to examine the functional consequences of this dark dominance in human observers. We show that increment and decrement thresholds are equal when controlled for adaptation and eye movements. However, measurements for salience differences at high contrasts show that darks are detected pronouncedly faster and more accurately than lights when presented against uniform binary noise. In addition, the salience advantage for darks is abolished when the background distribution is adjusted to control for the irradiation illusion. The threshold equality suggests that the highest sensitivities of neurons in the ON and OFF channels are similar, whereas the salience difference is consistent with a population advantage for the OFF system.
Collapse
Affiliation(s)
- Stanley Jose Komban
- Graduate Center for Vision Research, College of Optometry, State University of New York, New York, New York 10036
| | - Jose-Manuel Alonso
- Graduate Center for Vision Research, College of Optometry, State University of New York, New York, New York 10036
| | - Qasim Zaidi
- Graduate Center for Vision Research, College of Optometry, State University of New York, New York, New York 10036
| |
Collapse
|
11
|
Abstract
How do humans interpret visual input to estimate the properties of a surface? In the case of estimation of gloss and lightness, it seems that neural discrimination of simple image statistics plays a large part.
Collapse
Affiliation(s)
- Michael S. Landy
- Department of Psychology and Center for Neural Science, New York University, 6 Washington Place, New York, New York 10003, USA
| |
Collapse
|
12
|
Salmela VR, Laurinen PI. Spatial frequency difference between textures interferes with brightness perception. Vision Res 2007; 47:452-9. [PMID: 17239917 DOI: 10.1016/j.visres.2006.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 11/24/2006] [Accepted: 11/30/2006] [Indexed: 11/30/2022]
Abstract
Abrupt changes in luminance trigger and restrict brightness filling-in. If brightness was actively filled-in and mediated by cells signaling both luminance borders and surface brightness, then brightness spreading could also get disrupted by changes in texture. We measured psychophysically the brightness of a uniform luminance disk, which was segmented into two parts by different textures. The brightness of the central part of the disk was substantially reduced, and the reduction depended on spatial frequency, but not on the orientation difference between the textures. The results show that texture borders are able to block brightness filling-in. The bandwidth of brightness spreading was estimated to be approximately 1.5 octaves. This suggests that brightness information spreads only between neurons of similar spatial frequency characteristics.
Collapse
Affiliation(s)
- Viljami R Salmela
- Department of Psychology, PO Box 9 (Siltavuorenpenger 20 D), University of Helsinki, Helsinki 00014, Finland.
| | | |
Collapse
|
13
|
Chubb C, Landy MS, Econopouly J. A visual mechanism tuned to black. Vision Res 2004; 44:3223-32. [PMID: 15482808 DOI: 10.1016/j.visres.2004.07.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 07/09/2004] [Indexed: 11/28/2022]
Abstract
Chubb et al. [Journal of the Optical Society of America A 11 (1994) 2350] investigated preattentive discrimination of achromatic textures comprising random mixtures of 17 Weber contrasts ranging linearly from -1 to 1. They showed that only a single mechanism B is used to discriminate between textures whose histograms are equated in mean and in variance. Although they provided a partial characterization of B, their methods did not allow them to measure the sensitivity of B to texture mean and variance. Here, additional measurements are performed to complete the functional characterization of B. The results reveal that B (i) is strongly activated by texture elements of the lowest contrast (near -1), (ii) is slightly activated by texture elements of contrast -0.875, and (iii) barely distinguishes the 15 contrasts ranging from -0.75 all the way up to 1. To reflect the sharpness of its tuning to very dark, sparse elements in a predominantly bright scene, we call B the blackshot mechanism.
Collapse
Affiliation(s)
- Charles Chubb
- Department of Cognitive Sciences & Institute for Mathematical Behavioral Sciences, University of California at Irvine, USA
| | | | | |
Collapse
|
14
|
Abstract
A rectifying transformation is required to sense variations in texture contrast. Various theoretical and practical considerations have inclined researchers to suppose that this rectification is full-wave, rather than half-wave. In the studies reported here, observers are asked to judge which of two texture patches has higher texture variance. Textures are composed of small squares, with each square being painted with one of nine different luminances. Different texture variances are achieved by manipulating the histograms of the texture patches to be compared. When the nine luminances range linearly from 0 to 160 cd/m(2), the transformation mediating judgments of texture variance takes the form of a negative half-wave rectifier: texture variance judgments are determined exclusively by the frequencies of luminances below mean luminance in the textures being compared. However, when the nine luminances range linearly from 60 to 100 cd/m(2), two of three observers use a full-wave rectifying transformation in making texture variance judgments; the third observer continued to use a negative half-wave rectifier. The unexpectedly asymmetric roles played by low versus high luminances in texture variance judgments suggest that the off-center system may play a dominant role in human perception of texture contrast.
Collapse
Affiliation(s)
- C Chubb
- Department of Cognitive Sciences, Institute for Mathematical Behavioral Sciences, University of California at Irvine, Irvine, CA 92697-5100, USA.
| | | |
Collapse
|