1
|
Hathibelagal AR, Bharadwaj SR, Yadav AR, Subramanian A, Sadler JRE, Barbur JL. Age-related change in flicker thresholds with rod- and cone-enhanced stimuli. PLoS One 2020; 15:e0232784. [PMID: 32639956 PMCID: PMC7343165 DOI: 10.1371/journal.pone.0232784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/21/2020] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Rod and cone photoreceptor-specific tests can be time-consuming. A new non-invasive test is described. The test is based on the measurement of flicker modulation thresholds with rod- and cone-enhanced visual stimuli, which requires only minimum adaptation time. Here, we investigated how the rod-and cone-mediated flicker thresholds vary with age. METHODS Monocular thresholds with rod and cone-enhanced stimuli were measured in 140 healthy adults, (age range: 18-75 years), foveally (0°) and at four parafoveal locations, at an eccentricity of 5° in each of the four quadrants using five, adaptive, interleaved staircases. Temporal frequencies, stimulus sizes, background luminance and spectral composition, were adjusted appropriately to achieve approximately 1 log unit separation in sensitivity between the rod- and cone-enhanced stimuli. Spectrally calibrated, 'neutral density' filters were used to enable adequate control of display luminance for rod enhanced stimuli. RESULTS The magnitude of central and parafoveal rod thresholds was significantly higher than the central and parafoveal cone thresholds, respectively (p < 0.001) in both the age groups. However, the rate of increase in central rod thresholds (y = 0.45x-12.79; linear regression equation) was not significantly steeper than the rate of increase in central (y = 0.29x-8.53) cone thresholds (p = 0.15). Centrally, cone thresholds showed a better correlation with rod central thresholds for the age > 45 years (Spearman correlation, ρ = 0.74, p < 0.001) compared to age ≤ 45 years (ρ = 0.41, p < 0.001). CONCLUSIONS Thresholds with rod- and cone-enhanced stimuli are largely invariant below 45 years of age and increase rapidly above this age. This age-wise normative database can be used as an effective functional-marker to assess photoreceptor sensitivities in retinal diseases.
Collapse
Affiliation(s)
- Amithavikram R. Hathibelagal
- Brien Holden Institute of Optometry and Vision Science, L V Prasad Eye Institute, Hyderabad, India
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Shrikant R. Bharadwaj
- Brien Holden Institute of Optometry and Vision Science, L V Prasad Eye Institute, Hyderabad, India
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Anil R. Yadav
- Brien Holden Institute of Optometry and Vision Science, L V Prasad Eye Institute, Hyderabad, India
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Ahalya Subramanian
- Centre for Applied Vision Research, School of Health Sciences, City, University of London, London, England, United Kingdom
| | - James R. E. Sadler
- Centre for Applied Vision Research, School of Health Sciences, City, University of London, London, England, United Kingdom
- Human Performance, QinetiQ, Hampshire, England, United Kingdom
| | - John L. Barbur
- Centre for Applied Vision Research, School of Health Sciences, City, University of London, London, England, United Kingdom
| |
Collapse
|
2
|
McKendrick AM, Badcock DR. An Analysis of the Factors Associated with Visual Field Deficits Measured with Flickering Stimuli in-between Migraine. Cephalalgia 2016; 24:389-97. [PMID: 15096228 DOI: 10.1111/j.1468-2982.2004.00682.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously demonstrated that perimetric performance measured with flickering stimuli is not normal in some individuals who experience migraine with aura in the period between their attacks. In this study, flicker perimetric performance is measured in a broad group of migraineurs to determine whether the existence of such visual field deficits is dependent on the presence of visual aura, is correlated with the duration of migraine history, or frequency of attacks. Twenty-eight migraine with aura, 25 migraine without aura, and 24 non-headache control subjects participated. The performance of the migraine groups was not significantly different from each other. The migraine groups showed significantly lower general sensitivity across the visual field and higher incidence of localized visual field deficits relative to controls. Both length of migraine history and frequency of migraine occurrence over the past 12 months were significantly correlated with lower general sensitivity to flickering visual stimuli.
Collapse
Affiliation(s)
- A M McKendrick
- School of Psychology, University of Western Australia, Crawley, Australia.
| | | |
Collapse
|
3
|
Zele AJ, Cao D. Vision under mesopic and scotopic illumination. Front Psychol 2015; 5:1594. [PMID: 25657632 PMCID: PMC4302711 DOI: 10.3389/fpsyg.2014.01594] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/28/2014] [Indexed: 11/21/2022] Open
Abstract
Evidence has accumulated that rod activation under mesopic and scotopic light levels alters visual perception and performance. Here we review the most recent developments in the measurement of rod and cone contributions to mesopic color perception and temporal processing, with a focus on data measured using a four-primary photostimulator method that independently controls rod and cone excitations. We discuss the findings in the context of rod inputs to the three primary retinogeniculate pathways to understand rod contributions to mesopic vision. Additionally, we present evidence that hue perception is possible under scotopic, pure rod-mediated conditions that involves cortical mechanisms.
Collapse
Affiliation(s)
- Andrew J. Zele
- Visual Science Laboratory, School of Optometry and Vision Science & Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Dingcai Cao
- Visual Perception Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at ChicagoChicago, IL, USA
| |
Collapse
|
4
|
Zele AJ, Maynard ML, Joyce DS, Cao D. Effect of rod-cone interactions on mesopic visual performance mediated by chromatic and luminance pathways. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:A7-A14. [PMID: 24695205 PMCID: PMC3979541 DOI: 10.1364/josaa.31.0000a7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We studied the effect of rod-cone interactions on mesopic visual reaction time (RT). Rod and cone photoreceptor excitations were independently controlled using a four-primary photostimulator. It was observed that (1) lateral rod-cone interactions increase the cone-mediated RTs; (2) the rod-cone interactions are strongest when rod sensitivity is maximal in a dark surround, but weaker with increased rod activity in a light surround; and (3) the presence of a dark surround nonselectively increased the mean and variability of chromatic (+L-M, S-cone) and luminance (L+M+S) RTs independent of the level of rod activity. The results demonstrate that lateral rod-cone interactions must be considered when deriving mesopic luminous efficiency using RT.
Collapse
Affiliation(s)
- Andrew J. Zele
- Visual Science Laboratory, School of Optometry and Vision Science & Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 QLD, Australia
| | - Michelle L. Maynard
- Visual Science Laboratory, School of Optometry and Vision Science & Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 QLD, Australia
| | - Daniel S. Joyce
- Visual Science Laboratory, School of Optometry and Vision Science & Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 QLD, Australia
| | - Dingcai Cao
- Visual Perception Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago 60612, Illinois, USA
| |
Collapse
|
5
|
Lesmes LA, Jackson ML, Bex P. Visual Function Endpoints to Enable Dry AMD Clinical Trials. ACTA ACUST UNITED AC 2013; 10:e43-e50. [PMID: 32863843 DOI: 10.1016/j.ddstr.2012.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The slow progression of non-exudative age-related macular degeneration (dry AMD) presents challenges for drug discovery. The standard endpoint used for ophthalmic clinical trials, best-corrected visual acuity, is insensitive to the early stages and slow progression of dry AMD. Effective drug discovery for dry AMD treatments will therefore require novel applications of more effective visual function endpoints. This review will present candidates for visual function endpoints for dry AMD clinical trials. The promising visual assessments include contrast sensitivity, reading speed, microperimetry, and dark adaptation. Their adoption as exploratory endpoints in future trials will be critical for determining their accuracy, precision, and applicability, and ultimately determine their value for drug discovery.
Collapse
Affiliation(s)
- Luis Andres Lesmes
- Schepens Eye Research Institute, 20 Staniford St, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, United States
| | - Mary Lou Jackson
- Massachusetts Eye and Ear Infirmary, 243 Charles St, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, United States
| | - Peter Bex
- Schepens Eye Research Institute, 20 Staniford St, Boston, MA, United States
- Massachusetts Eye and Ear Infirmary, 243 Charles St, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, United States
| |
Collapse
|
6
|
Huang KC, Lin RT, Wu CF. Effects of Flicker Rate, Complexity, and Color Combinations of Chinese Characters and Backgrounds on Visual Search Performance with Varying Flicker Types. Percept Mot Skills 2011; 113:201-14. [DOI: 10.2466/01.03.24.26.pms.113.4.201-214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study investigated the effects of number of strokes in Chinese characters, flicker rate, flicker type, and character/background color combination on search performance. 37 participants ages 14 to 18 years were randomly assigned to each flicker-type condition. The search field contained 36 characters arranged in a 6 × 6 matrix. Participants were asked to search for the target characters among the surrounding distractors and count how many target characters were displayed in the search array. Analysis indicated that the character/background color combination significantly affected search times. The color combinations of white/purple and white/green yielded search times greater than those for black/white and black/yellow combinations. A significant effect for flicker type on search time was also identified. Rotating characters facilitated search time, compared with twinkling ones. The number of strokes and the flicker rates also had positive effects on search performances. For flicker rate, the search accuracy for 0.5 Hz was greater than that for 1.0 Hz, and the latter was also greater than that for 2.0 Hz. Results are applicable to web advertisement designs containing dynamic characters, in terms of how to best capture readers' attention by various means of dynamic character presentation.
Collapse
Affiliation(s)
| | - Rung-Tai Lin
- Crafts & Design Department, National Taiwan University of Arts
| | - Chih-Fu Wu
- Department of Media Design, Tatung University
| |
Collapse
|
7
|
Anderson AJ, Johnson CA, Werner JS. Measuring visual function in age-related macular degeneration with frequency-doubling (matrix) perimetry. Optom Vis Sci 2011; 88:806-15. [PMID: 21478785 PMCID: PMC3132570 DOI: 10.1097/opx.0b013e31821861bd] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To determine the agreement between the Humphrey Matrix perimeter 10-2 test and the 10-2 Humphrey Field Analyzer (HFA) test when assessing visual function in patients with age-related macular degeneration (AMD). METHODS Forty-two eyes of 42 subjects with AMD (average 75.0 years, SD=6.2: median visual acuity in logarithm of the minimum angle of resolution of 0.26, range, -0.12 to 1.04) were evaluated with the Matrix and HFA 10-2 visual field tests. Mean deviation (MD), pattern standard deviation, and test time were recorded. We calculated spatial concordance of individual test locations, being the proportion of spatially agreeing locations with identical classification (normal vs. abnormal, p < 5%) on the pattern deviation plot. As multiple HFA stimuli overlapped with some Matrix locations, several criteria for grouping HFA data into locations were investigated. RESULTS Both MD and pattern standard deviation were significantly correlated for the two devices (r(2)=0.79 and r(2)=0.80, respectively, p<0.0001). Using our standard criterion for abnormal HFA locations (≥50% stimuli abnormal), the median spatial concordance was 0.76, with 95% of tests giving a concordance of ≥0.59. A small, but significant, increase in concordance occurred when a stricter criterion (all stimuli abnormal at a location) was applied. Median fixation loss percentages were 7 and 0% for the HFA and Matrix, respectively. Visual acuity in logarithm of the minimum angle of resolution showed modest correlations with both defect depth (HFA MD: r(2)=0.39, p<0.0001) and size of defect (number of abnormal points on the HFA: r(2)=0.24, p<0.0001). CONCLUSIONS Using a simple metric to calculate spatial concordance, the Matrix 10-2 test quantifies the spatial extent of significant depression of the central visual fields in AMD in a manner similar to the HFA 10-2. The spatial extent and depth of central visual field loss in AMD are only modestly predicted by visual acuity measurements.
Collapse
Affiliation(s)
- Andrew John Anderson
- Department of Optometry & Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
8
|
Karanovic O, Thabet M, Wilson HR, Wilkinson F. Detection and discrimination of flicker contrast in migraine. Cephalalgia 2011; 31:723-36. [PMID: 21493642 PMCID: PMC3571449 DOI: 10.1177/0333102411398401] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/15/2010] [Accepted: 12/28/2010] [Indexed: 11/25/2022]
Abstract
AIMS Flickering light is strongly aversive to many individuals with migraine. This study was designed to evaluate other abnormalities in the processing of temporally modulating visual stimulation. METHODS We measured psychophysical thresholds for detection of a flickering target and for the discrimination of suprathreshold flicker contrasts (increment thresholds) in 14 migraineurs and 14 healthy controls with and without prior adaptation to high-contrast flicker. Visual discomfort (aversion) thresholds were also assessed. RESULTS In the baseline (no adaptation) conditions, detection and discrimination thresholds did not differ significantly between groups. Following adaptation, flicker detection thresholds were elevated equivalently in both groups; however, discrimination thresholds were more strongly affected in migraineurs than in controls, showing greater elevation at moderate contrasts and greater threshold reduction (sensitisation) at high contrast (70%). Migraineurs also had significantly elevated discomfort scores, and these were significantly correlated with number of years with migraine. DISCUSSION We conclude that visual flicker not only causes discomfort but also exerts measurable effects on contrast processing in the visual pathways in migraine. The findings are discussed in the context of the existing literature on habituation, adaptation and contrast-gain control.
Collapse
|
9
|
Neelam K, Nolan J, Chakravarthy U, Beatty S. Psychophysical Function in Age-related Maculopathy. Surv Ophthalmol 2009; 54:167-210. [DOI: 10.1016/j.survophthal.2008.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Huang KC, Chen CF, Chiang SY. Icon Flickering, Flicker Rate, and Color Combinations of an Icon's Symbol/Background in Visual Search Performance. Percept Mot Skills 2008; 106:117-27. [DOI: 10.2466/pms.106.1.117-127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of color combinations of an icon's symbol/background and components of flicker and flicker rate on visual search performance on a liquid crystal display screen were investigated with 39 subjects who searched for a target icon in a circular stimulus array (diameter = 20 cm) including one target and 19 distractors. Analysis showed that the icon's symbol/background color significantly affected search time. The search times for icons with black/red and white/blue were significantly shorter than for white/yellow, black/yellow, and black/blue. Flickering of different components of the icon significantly affected the search time. Search time for an icon's border flickering was shorter than for an icon symbol flickering; search for flicker rates of 3 and 5 Hz was shorter than that for 1 Hz. For icon's symbol/background color combinations, search error rate for black/blue was greater than for black/red and white/blue combinations, and the error rate for an icon's border flickering was lower than for an icon's symbol flickering. Interactions affected search time and error rate. Results are applicable to design of graphic user interfaces.
Collapse
Affiliation(s)
| | - Chen-Fu Chen
- Clayton School of Information Technology, Monash University
| | - Shu-Ying Chiang
- Graduate School of Design, National Taiwan University of Science and Technology
| |
Collapse
|
11
|
Zele AJ, Vingrys AJ. Defining the detection mechanisms for symmetric and rectified flicker stimuli. Vision Res 2007; 47:2700-13. [PMID: 17825346 DOI: 10.1016/j.visres.2007.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 05/10/2007] [Accepted: 05/10/2007] [Indexed: 10/22/2022]
Abstract
Symmetric flicker modulates about a background light level and effects no change in the time-average luminance. Rectified flicker is achieved by modulating a luminance-increment and results in both a flickering component and an increase in the time-averaged luminance (luminance-pedestal) above the adapting background light level. We studied the effect that changes in adapting light level and local luminance (within the area of the flickering target) have on thresholds. We measured thresholds for single and multiple cycles of flicker over a range of adapting light levels (Threshold versus Intensity paradigm) and defined their gain as a function of luminance-pedestal amplitude (Threshold versus Amplitude paradigm). The dynamics of symmetric and rectified flicker responses were determined using a Stimulus Onset Asynchrony paradigm. The data show rectified flicker thresholds differ from symmetric flicker thresholds due to two factors that can be contrast-dependent or contrast-independent: (1) local adaptation, which varies with stimulus duration and (2) surround interactions that depend on adapting light level. The dynamics of the thresholds for symmetric and rectified flicker stimuli suggest the detection mechanisms occur early in the visual pathways, involving the magnocellular pathway.
Collapse
Affiliation(s)
- Andrew J Zele
- Department of Optometry and Vision Sciences, The University of Melbourne, VIC, Australia
| | | |
Collapse
|
12
|
Abstract
Late age-related maculopathy (ARM) is responsible for the majority of blind registrations in the Western world among persons over 50 years of age. It has devastating effects on quality of life and independence and is becoming a major public health concern. Current treatment options are limited and most aim to slow progression rather than restore vision; therefore, early detection to identify those patients most suitable for these interventions is essential. In this work, we review the literature encompassing the investigation of visual function in ARM in order to highlight those visual function parameters which are affected very early in the disease process. We pay particular attention to measures of acuity, contrast sensitivity (CS), cone function, electrophysiology, visual adaptation, central visual field sensitivity and metamorphopsia. We also consider the impact of bilateral late ARM on visual function as well as the relationship between measures of vision function and self-reported visual functioning. Much interest has centred on the identification of functional changes which may predict progression to neovascular disease; therefore, we outline the longitudinal studies, which to date have reported dark-adaptation time, short-wavelength cone sensitivity, colour-match area effect, dark-adapted foveal sensitivity, foveal flicker sensitivity, slow recovery from glare and slower foveal electroretinogram implicit time as functional risk factors for the development of neovascular disease. Despite progress in this area, we emphasise the need for longitudinal studies designed in light of developments in disease classification and retinal imaging, which would ensure the correct classification of cases and controls, and provide increased understanding of the natural course and progression of the disease and further elucidate the structure-function relationships in this devastating disorder.
Collapse
Affiliation(s)
- R E Hogg
- Ophthalmology and Vision Science, Queen's University and Royal Victoria Hospitals, Belfast BT12 6BA, UK
| | | |
Collapse
|
13
|
Ditchfield JA, McKendrick AM, Badcock DR. Processing of global form and motion in migraineurs. Vision Res 2005; 46:141-8. [PMID: 16257032 DOI: 10.1016/j.visres.2005.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 09/14/2005] [Accepted: 09/15/2005] [Indexed: 11/26/2022]
Abstract
Previous studies have identified anomalies of cortical visual processing in migraineurs that appear to extend beyond V1. Migraineurs respond differently than controls to transcranial magnetic stimulation of V5, and can demonstrate impairments of global motion processing. This study was designed to assess the integrity of intermediate stages of both motion and form processing in people with migraine. We measured the ability to integrate local orientation information into a global form percept, and to integrate local motion information into a global motion percept. Control subjects performed significantly better than migraineurs on both tasks, suggesting a diffuse visual cortical processing anomaly in migraine.
Collapse
Affiliation(s)
- Jennifer A Ditchfield
- School of Psychology, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | | | | |
Collapse
|
14
|
Purkiss TJ, DeMarco PJ. Adaptation of spatiotemporal mechanisms by increment and decrement stimuli. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2002; 19:1475-1483. [PMID: 12152687 DOI: 10.1364/josaa.19.001475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sawtooth modulation has been used in the past to examine visual sensitivity to luminance increments and decrements. The threshold elevation caused by adaptation depends on the spatial profile of the stimulus field and the polarities of the adaptation and test stimuli. We hypothesized that the adaptation effects reflect a change in the sensitivity of the spatiotemporal channels that detect the stimuli. We used a 2-deg disk centered in a larger surround field. Five levels of contrast between the test field and surround were investigated: equiluminant, three intermediate levels, and dark. At each contrast, observers adapted for 5 s to 2-Hz sawtooth modulation (rapid-on or rapid-off). Immediately after adaptation, thresholds were measured for detection of a single cycle of either a rapid-on or a rapid-off waveform. Varying the contrast of the surround affected observers' sensitivity to the polarity of the sawtooth stimulus to the extent that the pattern of sensitivity with the equiluminant surround was the opposite of that with the dark surround. To examine temporal factors, we measured thresholds for slow (500-ms ramps) and fast (8.3-ms pulses) test stimuli. The adaptation effect was preserved with the ramp stimuli but not with the pulse stimuli. Blurring the edge between the test and surround fields in the equiluminant surround condition raised thresholds for all sawtooth test stimuli, suggesting that spatiotemporal channels sensitive to high spatial frequencies and low temporal frequencies facilitate detection in that condition. These findings suggest that adaptation to sawtooth modulation can differentially effect the sensitivity of ON and OFF pathways, but the relative desensitization of each pathway depends on an interaction with the adaptation state of spatiotemporal channels that are involved in detection.
Collapse
Affiliation(s)
- Todd J Purkiss
- Department of Psychological and Brain Sciences, University of Louisville, Kentucky 40292, USA
| | | |
Collapse
|
15
|
Abstract
We investigated the effect that spatially coincident luminance increments (luminance pedestals) have on flicker thresholds at several eccentricities and target sizes. Luminance pedestals elevated flicker amplitude-thresholds more when stimuli were presented eccentrically, both at low (4 Hz) and high (20 Hz) temporal frequencies. Altering the size of the eccentric stimulus failed to equate central and eccentric thresholds at all pedestal amplitudes. Comparisons with flicker thresholds at various background luminances suggests that the increase in luminance-pedestal flicker thresholds peripherally is due to increased suppressive rod-cone interactions, increased effectiveness of luminous contrast on edge-sensitive flicker mechanisms, as well as increased gain in the light adaptation response.
Collapse
Affiliation(s)
- Andrew John Anderson
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Vic. 3010, Australia
| | | |
Collapse
|