1
|
Himmelberg MM, Kwak Y, Carrasco M, Winawer J. Preferred spatial frequency covaries with cortical magnification in human primary visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644195. [PMID: 40166269 PMCID: PMC11957105 DOI: 10.1101/2025.03.19.644195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Primary visual cortex (V1) has played a key role in understanding the organization of cerebral cortex. Both structural and functional properties vary sharply throughout the human V1 map. Despite large variation, underlying constancies computed from the covariation pattern of V1 properties have been proposed. Such constancies would imply that V1 is composed of multiple identical units whose visual properties differ only due to differences in their inputs. To test this, we used fMRI to investigate how V1 cortical magnification and preferred spatial frequency covary across eccentricity and polar angle, and across individual observers (n=40). The two properties correlated across individuals, such that those with higher overall cortical magnification (i.e., larger V1 maps) had higher preferred spatial frequency (integrated across the map). Although correlated, the two properties were not proportional, and hence their ratio (mm of cortex per stimulus cycle) was not constant. Cortical magnification and preferred spatial frequency were strongly correlated across eccentricity and across polar angle, however their relation differed between these dimensions: they were proportional across eccentricity but not polar angle. The constant ratio of cortical magnification to preferred spatial frequency across eccentricity suggests a shared underlying cause of variation in the two properties, e.g., the gradient of retinal ganglion cell density across eccentricity. In contrast, the deviation from proportionality around polar angle implies that cortical variation differs from that in retina along this dimension. Thus, a constancy hypothesis is supported for one of the two spatial dimensions of V1, highlighting the importance of examining the full 2D-map, in multiple individuals, to understand how V1 is organized.
Collapse
Affiliation(s)
- Marc M. Himmelberg
- Department of Psychology, New York University, New York, NY, USA, 10003
- Center for Neural Science, New York University, New York, NY, USA, 10003
| | - Yuna Kwak
- Department of Psychology, New York University, New York, NY, USA, 10003
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA, 10003
- Center for Neural Science, New York University, New York, NY, USA, 10003
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY, USA, 10003
- Center for Neural Science, New York University, New York, NY, USA, 10003
| |
Collapse
|
2
|
Lee HH, Carrasco M. Visual adaptation stronger at horizontal than vertical meridian: Linking performance with V1 cortical surface area. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642102. [PMID: 40166189 PMCID: PMC11956974 DOI: 10.1101/2025.03.07.642102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Visual adaptation reduces bioenergetic expenditure by decreasing sensitivity to repetitive and similar stimuli. In human adults, visual performance varies systematically around polar angle for many visual dimensions and tasks. Performance is superior along the horizontal than the vertical meridian (horizontal-vertical anisotropy, HVA), and the lower than upper vertical meridian (vertical meridian asymmetry, VMA). These asymmetries are resistant to spatial and temporal attention. Here, we investigated how adaptation influences contrast sensitivity at the fovea and perifovea across the four cardinal meridian locations, for horizontal and vertical stimuli. In the non-adapted conditions, the HVA was more pronounced for horizontal than vertical stimuli. For both orientations, adaptation was stronger along the horizontal than vertical meridian, exceeding foveal adaptation. Additionally, perifoveal adaptation effects positively correlated with individual V1 cortical surface area. These findings reveal that visual adaptation mitigates the HVA in contrast sensitivity, fostering perceptual uniformity around the visual field while conserving bioenergetic resources.
Collapse
|
3
|
Crotty N, Massa N, Tellez D, White AL, Grubb MA. A preliminary investigation of the interaction between expectation and the reflexive allocation of covert spatial attention. Sci Rep 2025; 15:5778. [PMID: 39962116 PMCID: PMC11833114 DOI: 10.1038/s41598-025-89845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Sudden onsets in the visual periphery elicit reflexive shifts of covert exogenous spatial attention. Here, we asked: are the behavioral effects of such an irrelevant exogenous cue modulated by implicit knowledge about the probability of the cue's presence? Participants discriminated the orientation of a visual target that was preceded, on some trials, by an abrupt-onset task-irrelevant disk (exogenous cue). A color at fixation (red or green) signaled the probability that a cue would appear (0.8, "high-probability", or 0.2, "low-probability"). When presented, this cue flashed briefly in the periphery, either near the target (valid cue) or non-target stimulus (invalid cue, equally likely). We used a speed-accuracy tradeoff (SAT) procedure to vary the time given for participants to process the stimuli before responding. We found that low-probability cues generated significantly larger cueing effects (discrimination accuracy, valid-invalid) than high-probability cues, but only when responses were made early in the accumulation of visual information (i.e., under strict time pressure). Both the directionality and temporal dynamics of these results were replicated across a series of online studies. Thus, expectations about an exogenous cue's presence or absence have a significant yet transient impact on its ability to direct the reflexive allocation of covert exogenous spatial attention.
Collapse
Affiliation(s)
| | - Nicole Massa
- Trinity College, Hartford, CT, USA
- Mass General Brigham, Boston, MA, USA
| | | | | | | |
Collapse
|
4
|
Galas L, Donovan I, Dugué L. Attention Rhythmically Shapes Sensory Tuning. J Neurosci 2025; 45:e1616242024. [PMID: 39824635 PMCID: PMC11823332 DOI: 10.1523/jneurosci.1616-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/20/2025] Open
Abstract
Attention is key to perception and human behavior, and evidence shows that it periodically samples sensory information (<20 Hz). However, this view has been recently challenged due to methodological concerns and gaps in our understanding of the function and mechanism of rhythmic attention. Here we used an intensive ∼22 h psychophysical protocol combined with reverse correlation analyses to infer the neural representation underlying these rhythms. Participants (male/female) performed a task in which covert spatial (sustained and exploratory) attention was manipulated and then probed at various delays. Our results show that sustained and exploratory attention periodically modulate perception via different neural computations. While sustained attention suppresses distracting stimulus features at the alpha (∼12 Hz) frequency, exploratory attention increases the gain around task-relevant stimulus feature at the theta (∼6 Hz) frequency. These findings reveal that both modes of rhythmic attention differentially shape sensory tuning, expanding the current understanding of the rhythmic sampling theory of attention.
Collapse
Affiliation(s)
- Laurie Galas
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris F-75006, France
| | - Ian Donovan
- Department of Psychology and Center for Neural Science, New York University, New York, New York 10003
| | - Laura Dugué
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris F-75006, France
- Institut Universitaire de France (IUF), Paris F-75005, France
| |
Collapse
|
5
|
Tünçok E, Kiorpes L, Carrasco M. Opposite asymmetry in visual perception of humans and macaques. Curr Biol 2025; 35:681-687.e4. [PMID: 39814028 PMCID: PMC11817857 DOI: 10.1016/j.cub.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
In human adults, visual perception varies throughout the visual field. Performance decreases with eccentricity1,2 and varies around polar angle. At isoeccentric locations, performance is typically higher along the horizontal than vertical meridian (horizontal-vertical asymmetry [HVA]) and along the lower than the upper vertical meridian (vertical meridian asymmetry [VMA]).3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 It is unknown whether the macaque visual system, the leading animal model for understanding human vision,24,25 also exhibits these performance asymmetries. Here, we investigated whether and how visual field asymmetries differ between these two groups. Human adults and adult macaque monkeys (Macaca nemestrina) performed a two-alternative forced choice (2AFC) motion direction discrimination task for a target presented among distractors at isoeccentric locations. Both groups showed heterogeneous visual sensitivity around the visual field, but there were striking differences between them. Human observers showed a large VMA-their sensitivity was poorest at the upper vertical meridian-a weak horizontal-vertical asymmetry, and lower sensitivity at intercardinal locations. Macaque performance revealed an inverted VMA-their sensitivity was poorest in the lower vertical meridian. The opposite pattern of VMA in macaques and humans revealed in this study may reflect adaptive behavior by increasing discriminability at locations with greater relevance for visuomotor integration. This study reveals that performance also varies as a function of polar angle for monkeys, but in a different manner than in humans, and highlights the need to investigate species-specific similarities and differences in brain and behavior to constrain models of vision and brain function.
Collapse
Affiliation(s)
- Ekin Tünçok
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Lynne Kiorpes
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
6
|
Jenks SK, Carrasco M, Poletti M. Asymmetries in foveal vision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629715. [PMID: 39763996 PMCID: PMC11702834 DOI: 10.1101/2024.12.20.629715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Visual perception is characterized by known asymmetries in the visual field; human's visual sensitivity is higher along the horizontal than the vertical meridian, and along the lower than the upper vertical meridian. These asymmetries decrease with decreasing eccentricity from the periphery to the center of gaze, suggesting that they may be absent in the 1-deg foveola, the retinal region used to explore scenes at high-resolution. Using high-precision eyetracking and gaze-contingent display, allowing for accurate control over the stimulated foveolar location despite the continuous eye motion at fixation, we investigated fine visual discrimination at different isoeccentric locations across the foveola and parafovea. Although the tested foveolar locations were only 0.3 deg away from the center of gaze, we show that, similar to more eccentric locations, humans are more sensitive to stimuli presented along the horizontal than the vertical meridian. Whereas the magnitude of this asymmetry is reduced in the foveola, the magnitude of the vertical meridian asymmetry is comparable but, interestingly, reversed: objects presented slightly above the center of gaze are more easily discerned than when presented at the same eccentricity below the center of gaze. Therefore, far from being uniform, as often assumed, foveolar vision is characterized by perceptual asymmetries. Further, these asymmetries differ not only in magnitude but also in direction compared to those present just ~4deg away from the center of gaze, resulting in overall different foveal and extrafoveal perceptual fields.
Collapse
Affiliation(s)
- Samantha K. Jenks
- Department of Brain and Cognitive Sciences, University of Rochester
- Center for Visual Science, University of Rochester
| | - Marisa Carrasco
- Department of Psychology, New York University
- Center for Neural Science, New York University
| | - Martina Poletti
- Department of Brain and Cognitive Sciences, University of Rochester
- Department of Neuroscience, University of Rochester
- Center for Visual Science, University of Rochester
| |
Collapse
|
7
|
Scott MTW, Yakovleva A, Norcia AM. Visual Field Asymmetries in Responses to ON and OFF Pathway Biasing Stimuli. Vis Neurosci 2024; 41:E007. [PMID: 39698978 PMCID: PMC11730990 DOI: 10.1017/s095252382400004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 12/20/2024]
Abstract
Recent reports suggest the ON and OFF pathways are differentially susceptible to selective vision loss in glaucoma. Thus, perimetric assessment of ON- and OFF-pathway function may serve as a useful diagnostic. However, this necessitates a developed understanding of normal ON/OFF pathway function around the visual field and as a function of input intensity. Here, using electroencephalography, we measured ON- and OFF-pathway biased contrast response functions in the upper and lower visual fields. Using the steady-state visually evoked potential paradigm, we flickered achromatic luminance probes according to a saw-tooth waveform, the fast phase of which biased responses towards the ON or OFF pathways. Neural responses from the upper and lower visual fields were simultaneously measured using frequency tagging - probes in the upper visual field modulated at 3.75 Hz, while those in the lower visual field modulated at 3 Hz. We find that responses to OFF/decrements are larger than ON/increments, especially in the lower visual field. In the lower visual field, both ON and OFF responses were well described by a sigmoidal non-linearity. In the upper visual field, the ON pathway function was very similar to that of the lower, but the OFF pathway function showed reduced saturation and more cross-subject variability. Overall, this demonstrates that the relationship between the ON and OFF pathways depends on the visual field location and contrast level, potentially reflective of natural scene statistics.
Collapse
|
8
|
Lee HH, Fernández A, Carrasco M. Adaptation and exogenous attention interact in the early visual cortex: A TMS study. iScience 2024; 27:111155. [PMID: 39524352 PMCID: PMC11544076 DOI: 10.1016/j.isci.2024.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/18/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) to early visual cortex modulates the effect of adaptation and eliminates the effect of exogenous (involuntary) attention on contrast sensitivity. Here, we investigated whether adaptation modulates exogenous attention under TMS to V1/V2. Observers performed an orientation discrimination task while attending to one of two stimuli, with or without adaptation. Following an attentional cue, two stimuli were presented in the stimulated region and its contralateral symmetric region. A response cue indicated the stimulus whose orientation observers had to discriminate. Without adaptation, in the distractor-stimulated condition, contrast sensitivity increased at the attended location and decreased at the unattended location via response gain-but these effects were eliminated in the target-stimulated condition. Critically, after adaptation, exogenous attention altered performance similarly in both distractor-stimulated and target-stimulated conditions. These results reveal that (1) adaptation and attention interact in the early visual cortex, and (2) adaptation shields exogenous attention from TMS effects.
Collapse
Affiliation(s)
- Hsing-Hao Lee
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Antonio Fernández
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Sciences, New York University, New York, NY 10003, USA
| |
Collapse
|
9
|
Sárközy A, Robinson JE, Kovács G. Motion-induced blindness shows spatial anisotropies in conscious perception. Sci Rep 2024; 14:27718. [PMID: 39532989 PMCID: PMC11557702 DOI: 10.1038/s41598-024-78939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Polar angle asymmetries (PAAs), the differences in perceptual experiences and performance across different regions of the visual field are present in various paradigms and tasks of visual perception. Currently, research in this area is sparse, particularly regarding the influence of PAAs during perceptual illusions, highlighting a gap in visual cognition studies. We aim to fill this gap by measuring PAAs across the visual field during an illusion applied to test conscious vision widely. Motion-induced blindness (MIB) is an illusion when a peripheral target disappears from consciousness as the result of a continuously moving background pattern. During MIB we separately measured the average disappearance time of peripheral targets in eight equidistant visual field positions. Our results indicate a significant variation in MIB disappearance times and frequencies as a function of target location. Specifically, we found shorter and fewer disappearances along the cardinal compared to oblique directions, and along the horizontal compared to the vertical meridian. Our results suggest specific consistencies between visual field asymmetries and conscious visual perception.
Collapse
Affiliation(s)
| | - Jonathan E Robinson
- Monash Centre for Consciousness and Contemplative Studies, Monash University, Clayton, 3168, Australia
| | - Gyula Kovács
- Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
10
|
Kwak Y, Lu ZL, Carrasco M. How the window of visibility varies around polar angle. J Vis 2024; 24:4. [PMID: 39499527 PMCID: PMC11542588 DOI: 10.1167/jov.24.12.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024] Open
Abstract
Contrast sensitivity, the amount of contrast required to discriminate an object, depends on spatial frequency (SF). The contrast sensitivity function (CSF) peaks at intermediate SFs and drops at other SFs. The CSF varies from foveal to peripheral vision, but only a couple of studies have assessed how the CSF changes with polar angle of the visual field. For many visual dimensions, sensitivity is better along the horizontal than the vertical meridian and at the lower than the upper vertical meridian, yielding polar angle asymmetries. Here, for the first time, to our knowledge, we investigate CSF attributes around polar angle at both group and individual levels and examine the relations in CSFs across locations and individual observers. To do so, we used hierarchical Bayesian modeling, which enables precise estimation of CSF parameters. At the group level, maximum contrast sensitivity and the SF at which the sensitivity peaks are higher at the horizontal than vertical meridian and at the lower than the upper vertical meridian. By analyzing the covariance across observers (n = 28), we found that, at the individual level, CSF attributes (e.g., maximum sensitivity) across locations are highly correlated. This correlation indicates that, although the CSFs differ across locations, the CSF at one location is predictive of that at another location. Within each location, the CSF attributes covary, indicating that CSFs across individuals vary in a consistent manner (e.g., as maximum sensitivity increases, so does the corresponding SF), but more so at the horizontal than the vertical meridian locations. These results show similarities and uncover some critical polar angle differences across locations and individuals, suggesting that the CSF should not be generalized across isoeccentric locations around the visual field.
Collapse
Affiliation(s)
- Yuna Kwak
- Department of Psychology, New York University, New York, NY, USA
| | - Zhong-Lin Lu
- Division of Arts & Sciences, New York University Shanghai, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science, Shanghai, China
- Center for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
11
|
Mahjoob M, Anderson AJ. Effect of ageing on attended visual stimuli in the presence of cognitive mental load. Ophthalmic Physiol Opt 2024; 44:1561-1568. [PMID: 39133735 DOI: 10.1111/opo.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 11/01/2024]
Abstract
PURPOSE This study was designed to compare the effects of mental load, caused by concurrent auditory tasks, on attended and non-attended visual stimuli in older and younger adults. METHODS Participants performed a visual orientation discrimination task involving two spatially separated Gabor patches of 4 cycles/degree and 55% contrast. Participants received either a valid-cue, invalid-cue or a neutral-cue for the patch whose orientation they were required to determine. An auditory n-back task was performed simultaneously to impose mental load. Repeated-measures ANOVA was used for investigation of main effects and interactions of ageing, mental load and attention condition on orientation discrimination. RESULTS A total of 27 younger (mean age ± SD, 22.6 ± 1.3 years) and 23 older adults (54.7 ± 4.3 years) participated in the study. There was a significant effect of age (p = 0.01) and mental load (p < 0.001) on the proportion of correct orientation discrimination responses. Attentional condition significantly affected the proportion of correct responses (p = 0.02), but there was no significant interaction between attention, mental load and age group (p = 0.85). There was no overall difference in the proportion of no responses (the proportion of trials in which the participants failed to respond) between the two age groups (p = 0.53) nor on the overall effect of attention on the proportion of no responses (p = 0.25). There was, however, a significant effect of mental load on the proportion of no responses (p = 0.002). CONCLUSION Although mental load reduced performance equally for both age groups and for all attentional conditions, older adults had poorer overall performance. Therefore, a given mental load is more likely to drive older observers to unacceptable levels of task performance.
Collapse
Affiliation(s)
- Monireh Mahjoob
- Health Promotion Research Centre, Department of Optometry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Andrew J Anderson
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
12
|
Carandini M. Sensory choices as logistic classification. Neuron 2024; 112:2854-2868.e1. [PMID: 39013468 PMCID: PMC11377159 DOI: 10.1016/j.neuron.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
Logistic classification is a simple way to make choices based on a set of factors: give each factor a weight, sum the results, and use the sum to set the log odds of a random draw. This operation is known to describe human and animal choices based on value (economic decisions). There is increasing evidence that it also describes choices based on sensory inputs (perceptual decisions), presented across sensory modalities (multisensory integration) and combined with non-sensory factors such as prior probability, expected value, overall motivation, and recent actions. Logistic classification can also capture the effects of brain manipulations such as local inactivations. The brain may implement it by thresholding stochastic inputs (as in signal detection theory) acquired over time (as in the drift diffusion model). It is the optimal strategy under certain conditions, and the brain appears to use it as a heuristic in a wider set of conditions.
Collapse
Affiliation(s)
- Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London WC1 6BT, UK.
| |
Collapse
|
13
|
Kwak Y, Zhao Y, Lu ZL, Hanning NM, Carrasco M. Presaccadic Attention Enhances and Reshapes the Contrast Sensitivity Function Differentially around the Visual Field. eNeuro 2024; 11:ENEURO.0243-24.2024. [PMID: 39197949 PMCID: PMC11397507 DOI: 10.1523/eneuro.0243-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 09/01/2024] Open
Abstract
Contrast sensitivity (CS), which constrains human vision, decreases from fovea to periphery, from the horizontal to the vertical meridian, and from the lower vertical to the upper vertical meridian. It also depends on spatial frequency (SF), and the contrast sensitivity function (CSF) depicts this relation. To compensate for these visual constraints, we constantly make saccades and foveate on relevant objects in the scene. Already before saccade onset, presaccadic attention shifts to the saccade target and enhances perception. However, it is unknown whether and how it modulates the interplay between CS and SF, and if this effect varies around polar angle meridians. CS enhancement may result from a horizontal or vertical shift of the CSF, increase in bandwidth, or any combination. In addition, presaccadic attention could enhance CS similarly around the visual field, or it could benefit perception more at locations with poorer performance (i.e., vertical meridian). Here, we investigated these possibilities by extracting key attributes of the CSF of human observers. The results reveal that presaccadic attention (1) increases CS across SF, (2) increases the most preferred and the highest discernable SF, and (3) narrows the bandwidth. Therefore, presaccadic attention helps bridge the gap between presaccadic and postsaccadic input by increasing visibility at the saccade target. Counterintuitively, this CS enhancement was more pronounced where perception is better-along the horizontal than the vertical meridian-exacerbating polar angle asymmetries. Our results call for an investigation of the differential neural modulations underlying presaccadic perceptual changes for different saccade directions.
Collapse
Affiliation(s)
- Yuna Kwak
- Department of Psychology, New York University, New York, New York 10003
| | - Yukai Zhao
- Center for Neural Science, New York University, New York, New York 10003
| | - Zhong-Lin Lu
- Department of Psychology, New York University, New York, New York 10003
- Center for Neural Science, New York University, New York, New York 10003
- Division of Arts and Sciences, New York University Shanghai, Shanghai 200124, China
- NYU-ECNU Institute of Brain and Cognitive Science, Shanghai 200062, China
| | - Nina Maria Hanning
- Department of Psychology, New York University, New York, New York 10003
- Center for Neural Science, New York University, New York, New York 10003
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, New York 10003
- Center for Neural Science, New York University, New York, New York 10003
| |
Collapse
|
14
|
Luo ZX, Pan WN, Zeng XJ, Gong LY, Cai YC. Endogenous attention enhances contrast appearance regardless of stimulus contrast. Atten Percept Psychophys 2024; 86:1883-1896. [PMID: 38992320 DOI: 10.3758/s13414-024-02929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
There has been enduring debate on how attention alters contrast appearance. Recent research indicates that exogenous attention enhances contrast appearance for low-contrast stimuli but attenuates it for high-contrast stimuli. Similarly, one study has demonstrated that endogenous attention heightens perceived contrast for low-contrast stimuli, yet none have explored its impact on high-contrast stimuli. In this study, we investigated how endogenous attention alters contrast appearance, with a specific focus on high-contrast stimuli. In Experiment 1, we utilized the rapid serial visual presentation (RSVP) paradigm to direct endogenous attention, revealing that contrast appearance was enhanced for both low- and high-contrast stimuli. To eliminate potential influences from the confined attention field in the RSVP paradigm, Experiment 2 adopted the letter identification paradigm, deploying attention across a broader visual field. Results consistently indicated that endogenous attention increased perceived contrast for high-contrast stimuli. Experiment 3 employed equiluminant chromatic letters as stimuli in the letter identification task to eliminate potential interference from contrast adaption, which might have occurred in Experiment 2. Remarkably, the boosting effect of endogenous attention persisted. Combining the results from these experiments, we propose that endogenous attention consistently enhances contrast appearance, irrespective of stimulus contrast levels. This stands in contrast to the effects of exogenous attention, suggesting that mechanisms through which endogenous attention alters contrast appearance may differ from those of exogenous attention.
Collapse
Affiliation(s)
- Zi-Xi Luo
- Department of Psychology and Behavioral Sciences, Zhejiang University (Zijingang Campus), Yuhangtang Road No. 866, Zhejiang Province, 310058, People's Republic of China
| | - Wang-Nan Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University (Zijingang Campus), Yuhangtang Road No. 866, Zhejiang Province, 310058, People's Republic of China
| | - Xiang-Jun Zeng
- Department of Psychology and Behavioral Sciences, Zhejiang University (Zijingang Campus), Yuhangtang Road No. 866, Zhejiang Province, 310058, People's Republic of China
| | - Liang-Yu Gong
- Department of Psychology and Behavioral Sciences, Zhejiang University (Zijingang Campus), Yuhangtang Road No. 866, Zhejiang Province, 310058, People's Republic of China
| | - Yong-Chun Cai
- Department of Psychology and Behavioral Sciences, Zhejiang University (Zijingang Campus), Yuhangtang Road No. 866, Zhejiang Province, 310058, People's Republic of China.
| |
Collapse
|
15
|
Carandini M. Sensory choices as logistic classification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576029. [PMID: 38979189 PMCID: PMC11230223 DOI: 10.1101/2024.01.17.576029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Logistic classification is a simple way to make choices based on a set of factors: give each factor a weight, sum the results, and use the sum to set the log odds of a random draw. This operation is known to describe human and animal choices based on value (economic decisions). There is increasing evidence that it also describes choices based on sensory inputs (perceptual decisions), presented across sensory modalities (multisensory integration) and combined with non-sensory factors such as prior probability, expected value, overall motivation, and recent actions. Logistic classification can also capture the effects of brain manipulations such as local inactivations. The brain may implement by thresholding stochastic inputs (as in signal detection theory) acquired over time (as in the drift diffusion model). It is the optimal strategy under certain conditions, and the brain appears to use it as a heuristic in a wider set of conditions.
Collapse
Affiliation(s)
- Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London WC1 6BT, UK
| |
Collapse
|
16
|
Purokayastha S, Roberts M, Carrasco M. Do microsaccades vary with discriminability around the visual field? J Vis 2024; 24:11. [PMID: 38869372 PMCID: PMC11178122 DOI: 10.1167/jov.24.6.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 06/14/2024] Open
Abstract
Microsaccades-tiny fixational eye movements-improve discriminability in high-acuity tasks in the foveola. To investigate whether they help compensate for low discriminability at the perifovea, we examined microsaccade characteristics relative to the adult visual performance field, which is characterized by two perceptual asymmetries: horizontal-vertical anisotropy (better discrimination along the horizontal than vertical meridian) and vertical meridian asymmetry (better discrimination along the lower than upper vertical meridian). We investigated whether and to what extent microsaccade directionality varies when stimuli are at isoeccentric locations along the cardinals under conditions of heterogeneous discriminability (Experiment 1) and homogeneous discriminability, equated by adjusting stimulus contrast (Experiment 2). Participants performed a two-alternative forced-choice orientation discrimination task. In both experiments, performance was better on trials without microsaccades between ready signal onset and stimulus offset than on trials with microsaccades. Across the trial sequence, the microsaccade rate and directional pattern were similar across locations. Our results indicate that microsaccades were similar regardless of stimulus discriminability and target location, except during the response period-once the stimuli were no longer present and target location no longer uncertain-when microsaccades were biased toward the target location. Thus, this study reveals that microsaccades do not flexibly adapt as a function of varying discriminability in a basic visual task around the visual field.
Collapse
Affiliation(s)
| | - Mariel Roberts
- Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Carrasco Lab, New York University, New York, NY, USA
| |
Collapse
|
17
|
Krug A, Eberhardt LV, Huckauf A. Transient attention does not alter the eccentricity effect in estimation of duration. Atten Percept Psychophys 2024; 86:392-403. [PMID: 37550478 PMCID: PMC10806013 DOI: 10.3758/s13414-023-02766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 08/09/2023]
Abstract
Previous research investigating the influence of stimulus eccentricity on perceived duration showed an increasing duration underestimation with increasing eccentricity. Based on studies showing that precueing the stimulus location prolongs perceived duration, one might assume that this eccentricity effect is influenced by spatial attention. In the present study, we assessed the influence of transient covert attention on the eccentricity effect in duration estimation in two experiments, one online and one in a laboratory setting. In a duration estimation task, participants judged whether a comparison stimulus presented near or far from fixation with a varying duration was shorter or longer than a standard stimulus presented foveally with a constant duration. To manipulate transient covert attention, either a transient luminance cue was used (valid cue) to direct attention to the position of the subsequent peripheral comparison stimulus or all positions were marked by luminance (neutral cue). Results of both experiments yielded a greater underestimation of duration for the far than for the near stimulus, replicating the eccentricity effect. Although cueing was effective (i.e., shorter response latencies for validly cued stimuli), cueing did not alter the eccentricity effect on estimation of duration. This indicates that cueing leads to covert attentional shifts but does not account for the eccentricity effect in perceived duration.
Collapse
Affiliation(s)
- Alina Krug
- Department of General Psychology, Institute of Psychology and Education, Ulm University, 89069, Ulm, Germany.
| | - Lisa Valentina Eberhardt
- Department of General Psychology, Institute of Psychology and Education, Ulm University, 89069, Ulm, Germany
| | - Anke Huckauf
- Department of General Psychology, Institute of Psychology and Education, Ulm University, 89069, Ulm, Germany
| |
Collapse
|
18
|
Purokayastha S, Roberts M, Carrasco M. Do microsaccades vary with discriminability around the visual field? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575288. [PMID: 38260406 PMCID: PMC10802594 DOI: 10.1101/2024.01.11.575288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microsaccades-tiny fixational eye movements- improve discriminability in high acuity tasks in the foveola. To investigate whether they help compensate for low discriminability at perifovea, we examined MS characteristics relative to the adult visual performance field, which is characterized by two perceptual asymmetries: Horizontal-Vertical Anisotropy (better discrimination along the horizontal than vertical meridian), and Vertical Meridian Asymmetry (better discrimination along the lower- than upper-vertical meridian). We investigated whether and to what extent microsaccade directionality varies when stimuli are at isoeccentric locations along the cardinals under conditions of heterogeneous discriminability (Experiment 1) and homogeneous discriminability, equated by adjusting stimulus contrast (Experiment 2). Participants performed a two-alternative forced-choice orientation discrimination task. In both experiments, performance was better on trials without microsaccades between ready signal onset and stimulus offset than on trials with microsaccades. Across the trial sequence the microsaccade rate and directional pattern were similar across locations. Our results indicate that microsaccades were similar regardless of stimulus discriminability and target location, except during the response period-once the stimuli were no longer present and target location no longer uncertain-when microsaccades were biased toward the target location. Thus, this study reveals that microsaccades do not flexibly adapt as a function of varying discriminability in a basic visual task around the visual field.
Collapse
Affiliation(s)
| | - Mariel Roberts
- Department of Psychology, New York University, New York, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, USA
- Center for Neural Science, New York University, New York, USA
| |
Collapse
|
19
|
Barnas AJ, Ebner NC, Weisberg SM. Allocation of Space-Based Attention is Guided by Efficient Comprehension of Spatial Direction. J Cogn 2024; 7:1. [PMID: 38223233 PMCID: PMC10785961 DOI: 10.5334/joc.325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/24/2023] [Indexed: 01/16/2024] Open
Abstract
Spatial navigation is supported by visual cues (e.g., scenes, schemas like arrows, and words) that must be comprehended quickly to facilitate effective transit. People comprehend spatial directions faster from schemas and words than scenes. We hypothesize that this occurs because schemas and words efficiently engage space-based attention, allowing for less costly computations. Here, participants completed a spatial cueing paradigm, and we calculated cue validity effects - how much faster participants responded to validly than invalidly cued locations - for each cue format. We pre-registered Experiment 1 and found significant cue validity effects with schemas and words, but not scenes, suggesting space-based attention was allocated more efficiently with schemas and words than scenes. In Experiment 2, we explicitly instructed participants to interpret the scenes from an egocentric perspective and found that this instruction manipulation still did not result in a significant cue validity effect with scenes. In Experiment 3, we investigated whether the differential effects between conditions were due to costly computations to extract spatial direction and found that increasing cue duration had no influence. In Experiment 4, significant cue validity effects were observed for orthogonal but not non-orthogonal spatial directions, suggesting space-based attention was allocated more efficiently when the spatial direction precisely matched the target location. These findings confirm our hypothesis that efficient allocation of space-based attention is guided by faster spatial direction comprehension. Altogether, this work suggests that schemas and words may be more effective supports than scenes for navigation performance in the real-world.
Collapse
Affiliation(s)
- Adam J. Barnas
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Natalie C. Ebner
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
20
|
Potok W, van der Groen O, Sivachelvam S, Bächinger M, Fröhlich F, Kish LB, Wenderoth N. Contrast detection is enhanced by deterministic, high-frequency transcranial alternating current stimulation with triangle and sine waveform. J Neurophysiol 2023; 130:458-473. [PMID: 37465880 PMCID: PMC10625838 DOI: 10.1152/jn.00465.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023] Open
Abstract
Stochastic resonance (SR) describes a phenomenon where an additive noise (stochastic carrier-wave) enhances the signal transmission in a nonlinear system. In the nervous system, nonlinear properties are present from the level of single ion channels all the way to perception and appear to support the emergence of SR. For example, SR has been repeatedly demonstrated for visual detection tasks, also by adding noise directly to cortical areas via transcranial random noise stimulation (tRNS). When dealing with nonlinear physical systems, it has been suggested that resonance can be induced not only by adding stochastic signals (i.e., noise) but also by adding a large class of signals that are not stochastic in nature that cause "deterministic amplitude resonance" (DAR). Here, we mathematically show that high-frequency, deterministic, periodic signals can yield resonance-like effects with linear transfer and infinite signal-to-noise ratio at the output. We tested this prediction empirically and investigated whether nonrandom, high-frequency, transcranial alternating current stimulation (tACS) applied to the visual cortex could induce resonance-like effects and enhance the performance of a visual detection task. We demonstrated in 28 participants that applying 80-Hz triangular-waves or sine-waves with tACS reduced the visual contrast detection threshold for optimal brain stimulation intensities. The influence of tACS on contrast sensitivity was equally effective to tRNS-induced modulation, demonstrating that both tACS and tRNS can reduce contrast detection thresholds. Our findings suggest that a resonance-like mechanism can also emerge when deterministic electrical waveforms are applied via tACS.NEW & NOTEWORTHY Our findings extend our understanding of neuromodulation induced by noninvasive electrical stimulation. We provide the first evidence showing acute online benefits of transcranial alternating current stimulation (tACS)triangle and tACSsine targeting the primary visual cortex (V1) on visual contrast detection in accordance with the resonance-like phenomenon. The "deterministic" tACS and "stochastic" high-frequency-transcranial random noise stimulation (tRNS) are equally effective in enhancing visual contrast detection.
Collapse
Affiliation(s)
- Weronika Potok
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Onno van der Groen
- Neurorehabilitation and Robotics Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Sahana Sivachelvam
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marc Bächinger
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Neurology, University of North Carolina at Chapel Hill, North Carolina, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, North Carolina, United States
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Laszlo B Kish
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, United States
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| |
Collapse
|
21
|
Himmelberg MM, Winawer J, Carrasco M. Polar angle asymmetries in visual perception and neural architecture. Trends Neurosci 2023; 46:445-458. [PMID: 37031051 PMCID: PMC10192146 DOI: 10.1016/j.tins.2023.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 04/10/2023]
Abstract
Human visual performance changes with visual field location. It is best at the center of gaze and declines with eccentricity, and also varies markedly with polar angle. These perceptual polar angle asymmetries are linked to asymmetries in the organization of the visual system. We review and integrate research quantifying how performance changes with visual field location and how this relates to neural organization at multiple stages of the visual system. We first briefly review how performance varies with eccentricity and the neural foundations of this effect. We then focus on perceptual polar angle asymmetries and their neural foundations. Characterizing perceptual and neural variations across and around the visual field contributes to our understanding of how the brain translates visual signals into neural representations which form the basis of visual perception.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
22
|
Palmieri H, Fernández A, Carrasco M. Microsaccades and temporal attention at different locations of the visual field. J Vis 2023; 23:6. [PMID: 37145653 PMCID: PMC10168009 DOI: 10.1167/jov.23.5.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
Temporal attention, the prioritization of information at specific points in time, improves performance in behavioral tasks but cannot ameliorate the perceptual asymmetries that exist across the visual field. That is, even after attentional deployment, performance is better along the horizontal than vertical meridian and worse at the upper than lower vertical meridian. Here we asked whether and how microsaccades-tiny fixational eye-movements-could mirror or alternatively attempt to compensate for these performance asymmetries by assessing temporal profiles and direction of microsaccades as a function of visual field location. Observers were asked to report the orientation of one of two targets presented at different time points, in one of three blocked locations (fovea, right horizontal meridian, upper vertical meridian). We found the following: (1) Microsaccade occurrence did not affect either task performance or the magnitude of the temporal attention effect. (2) Temporal attention modulated the microsaccade temporal profiles, and this modulation varied with polar angle location. At all locations, microsaccade rates were significantly more suppressed in anticipation of the target when temporally cued than in the neutral condition. Moreover, microsaccade rates were more suppressed during target presentation in the fovea than in the right horizontal meridian. (3) Across locations and attention conditions, there was a pronounced bias toward the upper hemifield. Overall, these results reveal that temporal attention benefits performance similarly around the visual field, microsaccade suppression is more pronounced for attention than expectation (neutral trials) across locations, and the directional bias toward the upper hemifield could reflect an attempt to compensate for typical poor performance at the upper vertical meridian.
Collapse
Affiliation(s)
- Helena Palmieri
- Department of Psychology, New York University, New York, NY, USA
| | - Antonio Fernández
- Department of Psychology, New York University, New York, NY, USA
- Department of Psychology, University of Texas in Austin, Austin, TX, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
23
|
Noah S, Meyyappan S, Ding M, Mangun GR. Time Courses of Attended and Ignored Object Representations. J Cogn Neurosci 2023; 35:645-658. [PMID: 36735619 PMCID: PMC10024573 DOI: 10.1162/jocn_a_01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Selective attention prioritizes information that is relevant to behavioral goals. Previous studies have shown that attended visual information is processed and represented more efficiently, but distracting visual information is not fully suppressed, and may also continue to be represented in the brain. In natural vision, to-be-attended and to-be-ignored objects may be present simultaneously in the scene. Understanding precisely how each is represented in the visual system, and how these neural representations evolve over time, remains a key goal in cognitive neuroscience. In this study, we recorded EEG while participants performed a cued object-based attention task that involved attending to target objects and ignoring simultaneously presented and spatially overlapping distractor objects. We performed support vector machine classification on the stimulus-evoked EEG data to separately track the temporal dynamics of target and distractor representations. We found that (1) both target and distractor objects were decodable during the early phase of object processing (∼100 msec to ∼200 msec after target onset), and (2) the representations of both objects were sustained over time, remaining decodable above chance until ∼1000-msec latency. However, (3) the distractor object information faded significantly beginning after about 300-msec latency. These findings provide information about the fate of attended and ignored visual information in complex scene perception.
Collapse
Affiliation(s)
- Sean Noah
- University of California, Davis.,University of California, Berkeley
| | | | | | | |
Collapse
|
24
|
Huang Z, Zhang S, Wang Z. Distractor-evoked deviation in saccade direction suggests an asymmetric representation of the upper and lower visual fields on oculomotor maps. Atten Percept Psychophys 2023; 85:1150-1158. [PMID: 37002461 DOI: 10.3758/s13414-023-02701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/03/2023]
Abstract
The programming of rapid eye movements or "saccades" involves a large collection of neural substrates. The subcortical oculomotor center - the superior colliculus (SC) - contains a topographical motor map that encodes saccade vectors. Using a visual distractor task, the present study examined a classic model of the SC motor map, which assumes a symmetrical representation of the upper visual field (UVF) and lower visual field (LVF). Visual distractors are known to attract or repel the saccade trajectory, depending on their angular distance from the target. In the present study, the distractor (if presented) was placed at a location that mirrored the target in the opposite visual field (upper or lower). The symmetrical SC model predicts equivalent directional deviations for saccades into the UVF and LVF. The results, however, showed that the directional deviations evoked by visual distractors were much stronger for saccades directed to the LVF. We argue that this observation is consistent with the recent neurophysiological finding that the LVF is relatively under-represented, as compared to the UVF, in the SC and possibly in other oculomotor centers. We conclude the paper with a suggested revision to the SC model.
Collapse
|
25
|
Jigo M, Tavdy D, Himmelberg MM, Carrasco M. Cortical magnification eliminates differences in contrast sensitivity across but not around the visual field. eLife 2023; 12:e84205. [PMID: 36961485 PMCID: PMC10089656 DOI: 10.7554/elife.84205] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Human visual performance changes dramatically both across (eccentricity) and around (polar angle) the visual field. Performance is better at the fovea, decreases with eccentricity, and is better along the horizontal than vertical meridian and along the lower than the upper vertical meridian. However, all neurophysiological and virtually all behavioral studies of cortical magnification have investigated eccentricity effects without considering polar angle. Most performance differences due to eccentricity are eliminated when stimulus size is cortically magnified (M-scaled) to equate the size of its cortical representation in primary visual cortex (V1). But does cortical magnification underlie performance differences around the visual field? Here, to assess contrast sensitivity, human adult observers performed an orientation discrimination task with constant stimulus size at different locations as well as when stimulus size was M-scaled according to stimulus eccentricity and polar angle location. We found that although M-scaling stimulus size eliminates differences across eccentricity, it does not eliminate differences around the polar angle. This finding indicates that limits in contrast sensitivity across eccentricity and around polar angle of the visual field are mediated by different anatomical and computational constraints.
Collapse
Affiliation(s)
- Michael Jigo
- Department of Psychology, New York UniversityNew YorkUnited States
| | - Daniel Tavdy
- Department of Psychology, New York UniversityNew YorkUnited States
| | - Marc M Himmelberg
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Marisa Carrasco
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
26
|
Himmelberg MM, Tünçok E, Gomez J, Grill-Spector K, Carrasco M, Winawer J. Comparing retinotopic maps of children and adults reveals a late-stage change in how V1 samples the visual field. Nat Commun 2023; 14:1561. [PMID: 36944643 PMCID: PMC10030632 DOI: 10.1038/s41467-023-37280-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
Adult visual performance differs with angular location -it is better for stimuli along the horizontal than vertical, and lower than upper vertical meridian of the visual field. These perceptual asymmetries are paralleled by asymmetries in cortical surface area in primary visual cortex (V1). Children, unlike adults, have similar visual performance at the lower and upper vertical meridian. Do children have similar V1 surface area representing the upper and lower vertical meridian? Using MRI, we measure the surface area of retinotopic maps (V1-V3) in children and adults. Many features of the maps are similar between groups, including greater V1 surface area for the horizontal than vertical meridian. However, unlike adults, children have a similar amount of V1 surface area representing the lower and upper vertical meridian. These data reveal a late-stage change in V1 organization that may relate to the emergence of the visual performance asymmetry along the vertical meridian by adulthood.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York, NY, 10003, USA.
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| | - Ekin Tünçok
- Department of Psychology, New York University, New York, NY, 10003, USA
| | - Jesse Gomez
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, 10003, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY, 10003, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| |
Collapse
|
27
|
Carrasco M, Myers C, Roberts M. Visual field asymmetries vary between adolescents and adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.04.531124. [PMID: 36945488 PMCID: PMC10028823 DOI: 10.1101/2023.03.04.531124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
For human adults, visual perception varies around isoeccentric locations (with polar angle at a constant distance from the center of gaze). The same visual information yields better performance along the horizontal than vertical meridian (horizontal vertical anisotropy, HVA) and along the lower than upper vertical meridian (vertical meridian asymmetry, VMA). For children, performance is better along the horizontal than vertical meridian (HVA) but does not differ between the lower and the upper vertical meridian. Here, we investigated whether the extent of the HVA varies and the VMA emerges and fully develops during adolescence, or whether the VMA only emerges in adulthood. We found that for adolescents, performance yields both HVA and VMA, but both are less pronounced than those for adults.
Collapse
|
28
|
Mahjoob M, Anderson AJ. Effect of Cognitive Mental Load on Attended and Nonattended Visual Stimuli. Optom Vis Sci 2023; 100:201-206. [PMID: 36728337 DOI: 10.1097/opx.0000000000001989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SIGNIFICANCE In the real word, visual tasks may be concurrent with other activity that imposes mental load. Although the brain's capacity to process information is limited, attention can improve visual performance by selectively allocating processing resources. Therefore, measuring visual performance under such circumstances can reflect patients' vision more accurately. PURPOSE The aim of this study was to evaluate the effect of nonvisual task-induced mental load on visual performance at both attended and unattended locations in stimulus-driven captured attention. METHODS Visual function was measured with an orientation discrimination task for Gabor patches with contrasts of 10, 15, 30, 50, and 80%. Three attentional conditions (valid-cue, invalid-cue, and neutral-cue) were randomly interleaved within runs. To modulate mental load, the visual task was performed either with or without a simultaneous auditory n-back task (two-back for maximum mental load and zero-back to control for the effect of having to perform a simultaneous task). RESULTS Our result showed that the effect of mental load on correct responses was significant ( P = .02). Correct responses decreased significantly during the two-back task when compared with the baseline condition ( P = .03), but there was no significant difference between baseline and zero-back conditions ( P = .06). The effect of attention and spatial frequencies on the percentage of correct responses was significant ( P < .001). There was no significant interaction between mental load and spatial frequency, contrast level, or attention ( P > .05). CONCLUSIONS Mental load had a similar decreasing effect on attended and unattended visual stimuli. This may be due to a generalized effect on processing resources upstream to where spatial attention is allocated.
Collapse
Affiliation(s)
| | - Andrew J Anderson
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
29
|
Kwak Y, Hanning NM, Carrasco M. Presaccadic attention sharpens visual acuity. Sci Rep 2023; 13:2981. [PMID: 36807313 PMCID: PMC9941468 DOI: 10.1038/s41598-023-29990-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Visual perception is limited by spatial resolution, the ability to discriminate fine details. Spatial resolution not only declines with eccentricity but also differs for polar angle locations around the visual field, also known as 'performance fields'. To compensate for poor peripheral resolution, we make rapid eye movements-saccades-to bring peripheral objects into high-acuity foveal vision. Already before saccade onset, visual attention shifts to the saccade target location and prioritizes visual processing. This presaccadic shift of attention improves performance in many visual tasks, but whether it changes resolution is unknown. Here, we investigated whether presaccadic attention sharpens peripheral spatial resolution; and if so, whether such effect interacts with performance fields asymmetries. We measured acuity thresholds in an orientation discrimination task during fixation and saccade preparation around the visual field. The results revealed that presaccadic attention sharpens acuity, which can facilitate a smooth transition from peripheral to foveal representation. This acuity enhancement is similar across the four cardinal locations; thus, the typically robust effect of presaccadic attention does not change polar angle differences in resolution.
Collapse
Affiliation(s)
- Yuna Kwak
- Department of Psychology, NYU, New York, USA.
| | - Nina M Hanning
- Department of Psychology, NYU, New York, USA
- Center for Neural Science, NYU, New York, USA
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marisa Carrasco
- Department of Psychology, NYU, New York, USA
- Center for Neural Science, NYU, New York, USA
| |
Collapse
|
30
|
Where and when matter in visual recognition. Atten Percept Psychophys 2023; 85:404-417. [PMID: 36333625 DOI: 10.3758/s13414-022-02607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Our perceptual system processes only a selected subset of an incoming stream of stimuli due to sensory biases and limitations in spatial and temporal attention and working memory capacity. In this study, we investigated perceptual access to sensory information that was temporally predictable or unpredictable and spread across the visual field. In a visual recognition task, participants were presented with an array of different number of alphabetical stimuli that were followed by a probe with a delay. They had to indicate whether the probe was included in the stimulus-set or not. To test the impact of temporal attention, coloured cues that were displayed before the visual stimuli indicated the presentation onset of the stimulus-set. We found that temporal predictability of stimulus onset yields higher performance. In addition, recognition performance was biased across the visual field with higher performance for stimuli that were presented on the upper and right visual quadrants. Our findings demonstrate that recognition accuracy is enhanced by temporal cues and has an inherently asymmetric shape across the visual field.
Collapse
|
31
|
Kiepe F, Kraus N, Hesselmann G. Virtual occlusion effects on the perception of self-initiated visual stimuli. Conscious Cogn 2023; 107:103460. [PMID: 36577211 DOI: 10.1016/j.concog.2022.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
Virtual reality (VR) has established itself as a useful tool in the study of human perception in the laboratory. A recent study introduced a new approach to examine visual sensory attenuation (SA) effects in VR. Hand movements triggered the appearance of Gabor stimuli, which were either presented behind the participant's hand - not rendered in VR ("virtual occlusion") - or elsewhere on the display. Virtual occlusion led to a rightward shift of the psychometric curve, suggesting that self-generated hand movements reduced the perceived contrast of the stimulus. Since such attenuation effects might provide a window into the predictive processing of the sensory and cognitive apparatus, we sought to better understand the nature of the virtual occlusion effects. In our study, the presentation of test stimuli was either self-initiated, self-initiated with a variable delay, or triggered externally; the test stimuli were occluded or not. In conflict with our hypothesis, we found moderate to strong evidence for an absence of any horizontal shifts between the psychometric curves. However, virtual occlusion was associated with a decrease in the slope of the psychometric function. Our results suggest that virtual occlusion attenuated the relative perceptual sensitivity, so that participants had more difficulty discriminating contrast differences when the test stimulus was presented behind the hand. We tentatively conclude that, in the visual domain, the discriminability of stimulus intensity is modified by internal predictive cues (i.e., proprioception), possibly linked to shifts in covert spatial attention.
Collapse
Affiliation(s)
- Fabian Kiepe
- Psychologische Hochschule Berlin (PHB), Department of General and Biological Psychology, Berlin, Germany.
| | - Nils Kraus
- Psychologische Hochschule Berlin (PHB), Department of General and Biological Psychology, Berlin, Germany
| | - Guido Hesselmann
- Psychologische Hochschule Berlin (PHB), Department of General and Biological Psychology, Berlin, Germany.
| |
Collapse
|
32
|
Soballa P, Schöpper LM, Frings C, Merz S. Spatial biases in inhibition of return. VISUAL COGNITION 2022. [DOI: 10.1080/13506285.2023.2188336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
33
|
Boshra R, Kastner S. Attention control in the primate brain. Curr Opin Neurobiol 2022; 76:102605. [PMID: 35850060 DOI: 10.1016/j.conb.2022.102605] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
Attention is fundamental to all cognition. In the primate brain, it is implemented by a large-scale network that consists of areas spanning across all major lobes, also including subcortical regions. Classical attention accounts assume that control over the selection process in this network is exerted by 'top-down' mechanisms in the fronto-parietal cortex that influence sensory representations via feedback signals. More recent studies have expanded this view of attentional control. In this review, we will start from a traditional top-down account of attention control, and then discuss more recent findings on feature-based attention, thalamic influences, temporal network dynamics, and behavioral dynamics that collectively lead to substantial modifications. We outline how the different emerging accounts can be reconciled and integrated into a unified theory.
Collapse
Affiliation(s)
- Rober Boshra
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA; Department of Psychology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
34
|
Himmelberg MM, Winawer J, Carrasco M. Linking individual differences in human primary visual cortex to contrast sensitivity around the visual field. Nat Commun 2022; 13:3309. [PMID: 35697680 PMCID: PMC9192713 DOI: 10.1038/s41467-022-31041-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022] Open
Abstract
A central question in neuroscience is how the organization of cortical maps relates to perception, for which human primary visual cortex (V1) is an ideal model system. V1 nonuniformly samples the retinal image, with greater cortical magnification (surface area per degree of visual field) at the fovea than periphery and at the horizontal than vertical meridian. Moreover, the size and cortical magnification of V1 varies greatly across individuals. Here, we used fMRI and psychophysics in the same observers to quantify individual differences in V1 cortical magnification and contrast sensitivity at the four polar angle meridians. Across observers, the overall size of V1 and localized cortical magnification positively correlated with contrast sensitivity. Moreover, greater cortical magnification and higher contrast sensitivity at the horizontal than the vertical meridian were strongly correlated. These data reveal a link between cortical anatomy and visual perception at the level of individual observer and stimulus location.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York, NY, 10003, USA.
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY, 10003, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, 10003, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| |
Collapse
|
35
|
Abstract
Peripheral vision is fundamental for many real-world tasks, including walking, driving, and aviation. Nonetheless, there has been no effort to connect these applied literatures to research in peripheral vision in basic vision science or sports science. To close this gap, we analyzed 60 relevant papers, chosen according to objective criteria. Applied research, with its real-world time constraints, complex stimuli, and performance measures, reveals new functions of peripheral vision. Peripheral vision is used to monitor the environment (e.g., road edges, traffic signs, or malfunctioning lights), in ways that differ from basic research. Applied research uncovers new actions that one can perform solely with peripheral vision (e.g., steering a car, climbing stairs). An important use of peripheral vision is that it helps compare the position of one’s body/vehicle to objects in the world. In addition, many real-world tasks require multitasking, and the fact that peripheral vision provides degraded but useful information means that tradeoffs are common in deciding whether to use peripheral vision or move one’s eyes. These tradeoffs are strongly influenced by factors like expertise, age, distraction, emotional state, task importance, and what the observer already knows. These tradeoffs make it hard to infer from eye movements alone what information is gathered from peripheral vision and what tasks we can do without it. Finally, we recommend three ways in which basic, sport, and applied science can benefit each other’s methodology, furthering our understanding of peripheral vision more generally.
Collapse
|
36
|
Abstract
Redundancy masking is the reduction of the perceived number of items in repeating patterns. It shares a number of characteristics with crowding, the impairment of target identification in visual clutter. Crowding strongly depends on the location of the target in the visual field. For example, it is stronger in the upper compared to the lower visual field and is usually weakest on the horizontal meridian. This pattern of visual field asymmetries is common in spatial vision, as revealed by tasks measuring, for example, spatial resolution and contrast sensitivity. Here, to characterize redundancy masking and reveal its similarities to and differences from other spatial tasks, we investigated whether redundancy masking shows the same typical visual field asymmetries. Observers were presented with three to six radially arranged lines at 10° eccentricity at one of eight locations around fixation and were asked to report the number of lines. We found asymmetries that differed pronouncedly from those found in crowding. Redundancy masking did not differ between upper and lower visual fields. Importantly, redundancy masking was stronger on the horizontal meridian than on the vertical meridian, the opposite of what is usually found in crowding. These results show that redundancy masking diverges from crowding in regard to visual field asymmetries, suggesting different underlying mechanisms of redundancy masking and crowding. We suggest that the observed atypical visual field asymmetries in redundancy masking are due to the superior extraction of regularity and a more pronounced compression of visual space on the horizontal compared to the vertical meridian.
Collapse
Affiliation(s)
| | - Daniel R Coates
- Institute of Psychology, University of Bern, Bern, Switzerland.,College of Optometry, University of Houston, Houston, TX, USA.,
| | - Bilge Sayim
- Institute of Psychology, University of Bern, Bern, Switzerland.,Sciences Cognitives et Sciences Affectives (SCALab), CNRS, UMR 9193, University of Lille, Lille, France.,
| |
Collapse
|
37
|
Hanning NM, Himmelberg MM, Carrasco M. Presaccadic attention enhances contrast sensitivity, but not at the upper vertical meridian. iScience 2022; 25:103851. [PMID: 35198902 PMCID: PMC8850791 DOI: 10.1016/j.isci.2022.103851] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Visual performance has striking polar performance asymmetries: At a fixed eccentricity, it is better along the horizontal than vertical meridian and the lower than upper vertical meridian. These asymmetries are not alleviated by covert exogenous or endogenous attention, but have been studied exclusively during eye fixation. However, a major driver of everyday attentional orienting is saccade preparation, during which attention automatically shifts to the future eye fixation. This presaccadic attention shift is considered strong and compulsory, and relies on different neural computations and substrates than covert attention. Thus, we asked: Can presaccadic attention compensate for the ubiquitous performance asymmetries observed during eye fixation? Our data replicate polar performance asymmetries during fixation and document the same asymmetries during saccade preparation. Crucially, however, presaccadic attention enhanced contrast sensitivity at the horizontal and lower vertical meridian, but not at the upper vertical meridian. Thus, instead of attenuating performance asymmetries, presaccadic attention exacerbates them.
Collapse
Affiliation(s)
- Nina M. Hanning
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Sciences, New York University, New York, NY 10003, USA
| | - Marc M. Himmelberg
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Sciences, New York University, New York, NY 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Sciences, New York University, New York, NY 10003, USA
| |
Collapse
|
38
|
Zhang S, Chen X, Wang Y, Liu B, Gao X. Visual field inhomogeneous in brain-computer interfaces based on rapid serial visual presentation. J Neural Eng 2022; 19. [PMID: 35016160 DOI: 10.1088/1741-2552/ac4a3e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/11/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Visual attention is not homogeneous across the visual field, while how to mine the effective EEG characteristics that are sensitive to the inhomogeneous of visual attention and further explore applications such as the performance of brain-computer interface (BCI) are still distressing explorative scientists. APPROACH Images were encoded into a rapid serial visual presentation (RSVP) paradigm, and were presented in three visuospatial patterns (central, left/right, upper/lower) at the stimulation frequencies of 10Hz, 15Hz and 20Hz. The comparisons among different visual fields were conducted in the dimensions of subjective behavioral and EEG characteristics. Furthermore, the effective features (e.g. SSVEP, N2pc and P300) that sensitive to visual-field asymmetry were also explored. RESULTS The visual fields had significant influences on the performance of RSVP target detection, in which the performance of central was better than that of peripheral visual field, the performance of horizontal meridian was better than that of vertical meridian, the performance of left visual field was better than that of right visual field, and the performance of upper visual field was better than that of lower visual field. Furthermore, stimuli of different visual fields had significant effects on the spatial distributions of EEG, in which N2pc and P300 showed left-right asymmetry in occipital and frontal regions, respectively. In addition, the evidences of SSVEP characteristics indicated that there was obvious overlap of visual fields on the horizontal meridian, but not on the vertical meridian. SIGNIFICANCE The conclusions of this study provide insights into the relationship between visual field inhomogeneous and EEG characteristics. In addition, this study has the potential to achieve precise positioning of the target's spatial orientation in RSVP-BCIs.
Collapse
Affiliation(s)
- Shangen Zhang
- University of Science and Technology Beijing, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, CHINA
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, Tianjin, 300192, CHINA
| | - Yijun Wang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, China State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China, Beijing, 100083, CHINA
| | - Baolin Liu
- University of Science and Technology Beijing, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China, Beijing, 100083, CHINA
| | - Xiaorong Gao
- Department of Biomedical Engineering, Tsinghua University, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China, Beijing, 100084, CHINA
| |
Collapse
|
39
|
Walshe RC, Geisler WS. Efficient allocation of attentional sensitivity gain in visual cortex reduces foveal sensitivity in visual search. Curr Biol 2022; 32:26-36.e6. [PMID: 34706217 PMCID: PMC8766254 DOI: 10.1016/j.cub.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/20/2021] [Accepted: 10/06/2021] [Indexed: 01/12/2023]
Abstract
The human visual system has a high-resolution fovea and a low-resolution periphery. When actively searching for a target, humans perform a covert search during each fixation, and then shift fixation (the fovea) to probable target locations. Previous studies of covert search under carefully controlled conditions provide strong evidence that for simple and small search displays, humans process all potential target locations with the same efficiency that they process those locations when individually cued on each trial. Here, we extend these studies to the case of large displays, in which the target can appear anywhere within the display. These more natural conditions reveal an attentional effect in which sensitivity in the fovea and parafovea is greatly diminished. We show that this "foveal neglect" is the expected consequence of efficiently allocating a fixed total attentional sensitivity gain across the retinotopic map in the visual cortex. We present a formal theory that explains our findings and the previous findings.
Collapse
Affiliation(s)
- R Calen Walshe
- Center for Perceptual Systems, The University of Texas at Austin, 108 East Dean Keeton Street, Austin, TX 78712, USA.
| | - Wilson S Geisler
- Center for Perceptual Systems, The University of Texas at Austin, 108 East Dean Keeton Street, Austin, TX 78712, USA; Department of Psychology, The University of Texas at Austin, 108 East Dean Keeton Street, Austin, TX 78712, USA.
| |
Collapse
|
40
|
Kupers ER, Benson NC, Carrasco M, Winawer J. Asymmetries around the visual field: From retina to cortex to behavior. PLoS Comput Biol 2022; 18:e1009771. [PMID: 35007281 PMCID: PMC8782511 DOI: 10.1371/journal.pcbi.1009771] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/21/2022] [Accepted: 12/19/2021] [Indexed: 11/29/2022] Open
Abstract
Visual performance varies around the visual field. It is best near the fovea compared to the periphery, and at iso-eccentric locations it is best on the horizontal, intermediate on the lower, and poorest on the upper meridian. The fovea-to-periphery performance decline is linked to the decreases in cone density, retinal ganglion cell (RGC) density, and V1 cortical magnification factor (CMF) as eccentricity increases. The origins of polar angle asymmetries are not well understood. Optical quality and cone density vary across the retina, but recent computational modeling has shown that these factors can only account for a small percentage of behavior. Here, we investigate how visual processing beyond the cone photon absorptions contributes to polar angle asymmetries in performance. First, we quantify the extent of asymmetries in cone density, midget RGC density, and V1 CMF. We find that both polar angle asymmetries and eccentricity gradients increase from cones to mRGCs, and from mRGCs to cortex. Second, we extend our previously published computational observer model to quantify the contribution of phototransduction by the cones and spatial filtering by mRGCs to behavioral asymmetries. Starting with photons emitted by a visual display, the model simulates the effect of human optics, cone isomerizations, phototransduction, and mRGC spatial filtering. The model performs a forced choice orientation discrimination task on mRGC responses using a linear support vector machine classifier. The model shows that asymmetries in a decision maker's performance across polar angle are greater when assessing the photocurrents than when assessing isomerizations and are greater still when assessing mRGC signals. Nonetheless, the polar angle asymmetries of the mRGC outputs are still considerably smaller than those observed from human performance. We conclude that cone isomerizations, phototransduction, and the spatial filtering properties of mRGCs contribute to polar angle performance differences, but that a full account of these differences will entail additional contribution from cortical representations.
Collapse
Affiliation(s)
- Eline R. Kupers
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Neural Sciences, New York University, New York, New York, United States of America
| | - Noah C. Benson
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Neural Sciences, New York University, New York, New York, United States of America
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Neural Sciences, New York University, New York, New York, United States of America
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Neural Sciences, New York University, New York, New York, United States of America
| |
Collapse
|
41
|
Himmelberg MM, Kurzawski JW, Benson NC, Pelli DG, Carrasco M, Winawer J. Cross-dataset reproducibility of human retinotopic maps. Neuroimage 2021; 244:118609. [PMID: 34582948 PMCID: PMC8560578 DOI: 10.1016/j.neuroimage.2021.118609] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022] Open
Abstract
Population receptive field (pRF) models fit to fMRI data are used to non-invasively measure retinotopic maps in human visual cortex, and these maps are a fundamental component of visual neuroscience experiments. Here, we examined the reproducibility of retinotopic maps across two datasets: a newly acquired retinotopy dataset from New York University (NYU) (n = 44) and a public dataset from the Human Connectome Project (HCP) (n = 181). Our goal was to assess the degree to which pRF properties are similar across datasets, despite substantial differences in their experimental protocols. The two datasets simultaneously differ in their stimulus apertures, participant pool, fMRI protocol, MRI field strength, and preprocessing pipeline. We assessed the cross-dataset reproducibility of the two datasets in terms of the similarity of vertex-wise pRF estimates and in terms of large-scale polar angle asymmetries in cortical magnification. Within V1, V2, V3, and hV4, the group-median NYU and HCP vertex-wise polar angle estimates were nearly identical. Both eccentricity and pRF size estimates were also strongly correlated between the two datasets, but with a slope different from 1; the eccentricity and pRF size estimates were systematically greater in the NYU data. Next, to compare large-scale map properties, we quantified two polar angle asymmetries in V1 cortical magnification previously identified in the HCP data. The NYU dataset confirms earlier reports that more cortical surface area represents horizontal than vertical visual field meridian, and lower than upper vertical visual field meridian. Together, our findings show that the retinotopic properties of V1, V2, V3, and hV4 can be reliably measured across two datasets, despite numerous differences in their experimental design. fMRI-derived retinotopic maps are reproducible because they rely on an explicit computational model of the fMRI response. In the case of pRF mapping, the model is grounded in physiological evidence of how visual receptive fields are organized, allowing one to quantitatively characterize the BOLD signal in terms of stimulus properties (i.e., location and size). The new NYU Retinotopy Dataset will serve as a useful benchmark for testing hypotheses about the organization of visual areas and for comparison to the HCP 7T Retinotopy Dataset.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York 10003, NY, USA.
| | - Jan W Kurzawski
- Department of Psychology, New York University, New York 10003, NY, USA
| | - Noah C Benson
- eScience Institute, University of Washington, Seattle 98195, WA, USA
| | - Denis G Pelli
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| | - Jonathan Winawer
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| |
Collapse
|
42
|
Purokayastha S, Roberts M, Carrasco M. Voluntary attention improves performance similarly around the visual field. Atten Percept Psychophys 2021; 83:2784-2794. [PMID: 34036535 PMCID: PMC8514247 DOI: 10.3758/s13414-021-02316-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
Performance as a function of polar angle at isoeccentric locations across the visual field is known as a performance field (PF) and is characterized by two asymmetries: the HVA (horizontal-vertical anisotropy) and VMA (vertical meridian asymmetry). Exogenous (involuntary) spatial attention does not affect the shape of the PF, improving performance similarly across polar angle. Here we investigated whether endogenous (voluntary) spatial attention, a flexible mechanism, can attenuate these perceptual asymmetries. Twenty participants performed an orientation discrimination task while their endogenous attention was either directed to the target location or distributed across all possible locations. The effects of attention were assessed either using the same stimulus contrast across locations or equating difficulty across locations using individually titrated contrast thresholds. In both experiments, endogenous attention similarly improved performance at all locations, maintaining the canonical PF shape. Thus, despite its voluntary nature, like exogenous attention, endogenous attention cannot alleviate perceptual asymmetries at isoeccentric locations.
Collapse
Affiliation(s)
| | - Mariel Roberts
- Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA.
- Center for Neural Science, New York University, 6 Washington Place, Room 970, New York, NY, 10003, USA.
| |
Collapse
|
43
|
Han Y, Tan Z, Zhuang H, Qian J. Contrasting effects of exogenous and endogenous attention on size perception. BRITISH JOURNAL OF PSYCHOLOGY (LONDON, ENGLAND : 1953) 2021; 113:153-175. [PMID: 34435351 DOI: 10.1111/bjop.12529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
Although neuroimaging studies have shown that exogenous and endogenous attention are dissociable, only a few behavioural studies have explored their differential effects on visual sensitivity, and none have directly focused on visual appearance. Here, we show that exogenous and endogenous attention produces contrasting effects on apparent size. Participants performed a spatial pre-cueing comparative judgement task that had been frequently used to test the attentional effects on visual perception. The results showed that a smaller stimulus within the focus of exogenous attention was perceived to be equal in size as a larger unattended stimulus, whereas a larger stimulus within the focus of endogenous attention was perceived to be equal in size as a smaller unattended stimulus. In other words, exogenous attention increased the perceived size while endogenous attention decreased the perceived size. The contrasting effects may be attributed to the mechanism that exogenous attention favours parvocellular processing for which more neurons with smaller receptive fields (RFs) are activated for a given size, whereas endogenous attention favours magnocellular processing for which fewer neurons with larger RFs are activated. This finding shows that exogenous and endogenous attention acts differentially on size perception, and provides supportive evidence for the distinct mechanisms underlying the two types of attentional processing.
Collapse
Affiliation(s)
- Yifei Han
- Department of Psychology, Sun Yat-Sen University, Guangzhou, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhihao Tan
- Department of Psychology, Sun Yat-Sen University, Guangzhou, China
| | - Huang Zhuang
- Department of Psychology, Sun Yat-Sen University, Guangzhou, China
| | - Jiehui Qian
- Department of Psychology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
44
|
Benson NC, Kupers ER, Barbot A, Carrasco M, Winawer J. Cortical magnification in human visual cortex parallels task performance around the visual field. eLife 2021; 10:e67685. [PMID: 34342581 PMCID: PMC8378846 DOI: 10.7554/elife.67685] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/02/2021] [Indexed: 12/03/2022] Open
Abstract
Human vision has striking radial asymmetries, with performance on many tasks varying sharply with stimulus polar angle. Performance is generally better on the horizontal than vertical meridian, and on the lower than upper vertical meridian, and these asymmetries decrease gradually with deviation from the vertical meridian. Here, we report cortical magnification at a fine angular resolution around the visual field. This precision enables comparisons between cortical magnification and behavior, between cortical magnification and retinal cell densities, and between cortical magnification in twin pairs. We show that cortical magnification in the human primary visual cortex, measured in 163 subjects, varies substantially around the visual field, with a pattern similar to behavior. These radial asymmetries in the cortex are larger than those found in the retina, and they are correlated between monozygotic twin pairs. These findings indicate a tight link between cortical topography and behavior, and suggest that visual field asymmetries are partly heritable.
Collapse
Affiliation(s)
- Noah C Benson
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Sciences, New York UniversityNew YorkUnited States
| | - Eline R Kupers
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Sciences, New York UniversityNew YorkUnited States
| | - Antoine Barbot
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Sciences, New York UniversityNew YorkUnited States
| | - Marisa Carrasco
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Sciences, New York UniversityNew YorkUnited States
| | - Jonathan Winawer
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Sciences, New York UniversityNew YorkUnited States
| |
Collapse
|
45
|
Buonocore A, Dietze N, McIntosh RD. Time-dependent inhibition of covert shifts of attention. Exp Brain Res 2021; 239:2635-2648. [PMID: 34216231 PMCID: PMC8354873 DOI: 10.1007/s00221-021-06164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/23/2021] [Indexed: 11/03/2022]
Abstract
Visual transients can interrupt overt orienting by abolishing the execution of a planned eye movement due about 90 ms later, a phenomenon known as saccadic inhibition (SI). It is not known if the same inhibitory process might influence covert orienting in the absence of saccades, and consequently alter visual perception. In Experiment 1 (n = 14), we measured orientation discrimination during a covert orienting task in which an uninformative exogenous visual cue preceded the onset of an oriented probe by 140-290 ms. In half of the trials, the onset of the probe was accompanied by a brief irrelevant flash, a visual transient that would normally induce SI. We report a time-dependent inhibition of covert orienting in which the irrelevant flash impaired orientation discrimination accuracy when the probe followed the cue by 190 and 240 ms. The interference was more pronounced when the cue was incongruent with the probe location, suggesting an impact on the reorienting component of the attentional shift. In Experiment 2 (n = 12), we tested whether the inhibitory effect of the flash could occur within an earlier time range, or only within the later, reorienting range. We presented probes at congruent cue locations in a time window between 50 and 200 ms. Similar to Experiment 1, discrimination performance was altered at 200 ms after the cue. We suggest that covert attention may be susceptible to similar inhibitory mechanisms that generate SI, especially in later stages of attentional shifting (> 200 ms after a cue), typically associated with reorienting.
Collapse
Affiliation(s)
- Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076, Tübingen, BW, Germany.
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076, Tübingen, BW, Germany.
| | - Niklas Dietze
- Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK
- Neuro-Cognitive Psychology, Department of Psychology, Bielefeld University, 33501, Bielefeld, NRW, Germany
- Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33501, Bielefeld, NRW, Germany
| | - Robert D McIntosh
- Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
46
|
Mirpour K, Bisley JW. The roles of the lateral intraparietal area and frontal eye field in guiding eye movements in free viewing search behavior. J Neurophysiol 2021; 125:2144-2157. [PMID: 33949898 DOI: 10.1152/jn.00559.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lateral intraparietal area (LIP) and frontal eye field (FEF) have been shown to play significant roles in oculomotor control, yet most studies have found that the two areas behave similarly. To identify the unique roles each area plays in guiding eye movements, we recorded 200 LIP neurons and 231 FEF neurons from four animals performing a free viewing visual foraging task. We analyzed how neuronal responses were modulated by stimulus identity and the animals' choice of where to make a saccade. We additionally analyzed the comodulation of the sensory signals and the choice signal to identify how the sensory signals drove the choice. We found a clearly defined division of labor: LIP provided a stable map integrating task rules and stimulus identity, whereas FEF responses were dynamic, representing more complex information and, just before the saccade, were integrated with task rules and stimulus identity to decide where to move the eye.NEW & NOTEWORTHY The lateral intrapareital area (LIP) and frontal eye field (FEF) are known to contribute to guiding eye movements, but little is known about the unique roles that each area plays. Using a free viewing visual search task, we found that LIP provides a stable map of the visual world, integrating task rules and stimulus identity. FEF activity is consistently modulated by more complex information but, just before the saccade, integrates all the information to make the final decision about where to move.
Collapse
Affiliation(s)
- Koorosh Mirpour
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - James W Bisley
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Psychology and the Brain Research Institute, UCLA, Los Angeles, California
| |
Collapse
|
47
|
Li HH, Pan J, Carrasco M. Different computations underlie overt presaccadic and covert spatial attention. Nat Hum Behav 2021; 5:1418-1431. [PMID: 33875838 DOI: 10.1038/s41562-021-01099-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 03/11/2021] [Indexed: 11/09/2022]
Abstract
Perception and action are tightly coupled: visual responses at the saccade target are enhanced right before saccade onset. This phenomenon, presaccadic attention, is a form of overt attention-deployment of visual attention with concurrent eye movements. Presaccadic attention is well-documented, but its underlying computational process remains unknown. This is in stark contrast to covert attention-deployment of visual attention without concurrent eye movements-for which the computational processes are well characterized by a normalization model. Here, a series of psychophysical experiments reveal that presaccadic attention modulates visual performance only via response gain changes. A response gain change was observed even when attention field size increased, violating the predictions of a normalization model of attention. Our empirical results and model comparisons reveal that the perceptual modulations by overt presaccadic and covert spatial attention are mediated through different computations.
Collapse
Affiliation(s)
- Hsin-Hung Li
- Department of Psychology, New York University, New York, NY, USA. .,Center for Neural Science, New York University, New York, NY, USA.
| | - Jasmine Pan
- Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA.,Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
48
|
Hafed ZM, Yoshida M, Tian X, Buonocore A, Malevich T. Dissociable Cortical and Subcortical Mechanisms for Mediating the Influences of Visual Cues on Microsaccadic Eye Movements. Front Neural Circuits 2021; 15:638429. [PMID: 33776656 PMCID: PMC7991613 DOI: 10.3389/fncir.2021.638429] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Visual selection in primates is intricately linked to eye movements, which are generated by a network of cortical and subcortical neural circuits. When visual selection is performed covertly, without foveating eye movements toward the selected targets, a class of fixational eye movements, called microsaccades, is still involved. Microsaccades are small saccades that occur when maintaining precise gaze fixation on a stationary point, and they exhibit robust modulations in peripheral cueing paradigms used to investigate covert visual selection mechanisms. These modulations consist of changes in both microsaccade directions and frequencies after cue onsets. Over the past two decades, the properties and functional implications of these modulations have been heavily studied, revealing a potentially important role for microsaccades in mediating covert visual selection effects. However, the neural mechanisms underlying cueing effects on microsaccades are only beginning to be investigated. Here we review the available causal manipulation evidence for these effects' cortical and subcortical substrates. In the superior colliculus (SC), activity representing peripheral visual cues strongly influences microsaccade direction, but not frequency, modulations. In the cortical frontal eye fields (FEF), activity only compensates for early reflexive effects of cues on microsaccades. Using evidence from behavior, theoretical modeling, and preliminary lesion data from the primary visual cortex and microstimulation data from the lower brainstem, we argue that the early reflexive microsaccade effects arise subcortically, downstream of the SC. Overall, studying cueing effects on microsaccades in primates represents an important opportunity to link perception, cognition, and action through unaddressed cortical-subcortical neural interactions. These interactions are also likely relevant in other sensory and motor modalities during other active behaviors.
Collapse
Affiliation(s)
- Ziad M. Hafed
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Masatoshi Yoshida
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Xiaoguang Tian
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antimo Buonocore
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Tatiana Malevich
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
- Graduate School of Neural and Behavioural Sciences, International Max-Planck Research School, Tübingen University, Tübingen, Germany
| |
Collapse
|
49
|
Parker S, Heathcote A, Finkbeiner M. Spatial Attention and Saccade Preparation Both Independently Contribute to the Discrimination of Oblique Orientations. Adv Cogn Psychol 2021; 16:329-343. [PMID: 33532009 PMCID: PMC7839255 DOI: 10.5709/acp-0307-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The extent to which the preparation of an eye movement and spatial attention both independently influence performance within the same task has long been debated. In a recent study that combined computational modelling with a dual-task, both saccade preparation and spatial cueing were revealed to separately contribute to the discrimination of targets oriented along the cardinal axis (horizontal and vertical). However, it remains to be seen whether and to what degree the same holds true when different perceptual stimuli are used. In the present study, we combined evidence accumulation modelling with a dual-task paradigm to assess the extent to which both saccade preparation and spatial attention contribute to the discrimination of full contrast targets oriented along the oblique axis (diagonal). The results revealed a separate and quantifiable contribution of both types of orienting to discrimination performance. Comparison of the magnitude of these effects to those obtained for cardinal orientation discrimination revealed the influence of saccade preparation and spatial attention to be six times smaller for oblique orientations. Importantly, the results revealed a separate and quantifiable contribution of both saccade preparation and spatial attention regardless of perceptual stimuli or stimulus contrast.
Collapse
Affiliation(s)
- Samantha Parker
- Perception in Action Research Centre and Department of Cognitive Science, Macquarie University, Sydney, Australia
| | - Andrew Heathcote
- Department of Psychology, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Matthew Finkbeiner
- Perception in Action Research Centre and Department of Cognitive Science, Macquarie University, Sydney, Australia
| |
Collapse
|
50
|
Barbot A, Xue S, Carrasco M. Asymmetries in visual acuity around the visual field. J Vis 2021; 21:2. [PMID: 33393963 PMCID: PMC7794272 DOI: 10.1167/jov.21.1.2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Human vision is heterogeneous around the visual field. At a fixed eccentricity, performance is better along the horizontal than the vertical meridian and along the lower than the upper vertical meridian. These asymmetric patterns, termed performance fields, have been found in numerous visual tasks, including those mediated by contrast sensitivity and spatial resolution. However, it is unknown whether spatial resolution asymmetries are confined to the cardinal meridians or whether and how far they extend into the upper and lower hemifields. Here, we measured visual acuity at isoeccentric peripheral locations (10 deg eccentricity), every 15° of polar angle. On each trial, observers judged the orientation (± 45°) of one of four equidistant, suprathreshold grating stimuli varying in spatial frequency (SF). On each block, we measured performance as a function of stimulus SF at 4 of 24 isoeccentric locations. We estimated the 75%-correct SF threshold, SF cutoff point (i.e., chance-level), and slope of the psychometric function for each location. We found higher SF estimates (i.e., better acuity) for the horizontal than the vertical meridian and for the lower than the upper vertical meridian. These asymmetries were most pronounced at the cardinal meridians and decreased gradually as the angular distance from the vertical meridian increased. This gradual change in acuity with polar angle reflected a shift of the psychometric function without changes in slope. The same pattern was found under binocular and monocular viewing conditions. These findings advance our understanding of visual processing around the visual field and help constrain models of visual perception.
Collapse
Affiliation(s)
- Antoine Barbot
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| | - Shutian Xue
- Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|