1
|
Serrano A, Cinca-Fernando P, Carro J, Velázquez-Campoy A, Martínez-Júlvez M, Martínez ÁT, Ferreira P. Unveiling the kinetic versatility of aryl-alcohol oxidases with different electron acceptors. Front Bioeng Biotechnol 2024; 12:1440598. [PMID: 39161354 PMCID: PMC11330772 DOI: 10.3389/fbioe.2024.1440598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction: Aryl-alcohol oxidase (AAO) shows a pronounced duality as oxidase and dehydrogenase similar to that described for other glucose-methanol-choline (GMC) oxidase/dehydrogenase superfamily proteins involved in lignocellulose decomposition. In this work, we detail the overall mechanism of AAOs from Pleurotus eryngii and Bjerkandera adusta for catalyzing the oxidation of natural aryl-alcohol substrates using either oxygen or quinones as electron acceptors and describe the crystallographic structure of AAO from B. adusta in complex with a product analogue. Methods: Kinetic studies with 4-methoxybenzyl and 3-chloro-4- methoxybenzyl alcohols, including both transient-state and steady-state analyses, along with interaction studies, provide insight into the oxidase and dehydrogenase mechanisms of these enzymes. Moreover, the resolution of the crystal structure of AAO from B. adusta allowed us to compare their overall folding and the structure of the active sites of both AAOs in relation to their activities. Results and Discussion: Although both enzymes show similar mechanistic properties, notable differences are highlighted in this study. In B. adusta, the AAO oxidase activity is limited by the reoxidation of the flavin, while in P. eryngii the slower step takes place during the reductive half-reaction, which determines the overall reaction rate. By contrast, dehydrogenase activity in both enzymes, irrespective of the alcohol participating in the reaction, is limited by the hydroquinone release from the active site. Despite these differences, both AAOs are more efficient as dehydrogenases, supporting the physiological role of this activity in lignocellulosic decay. This dual activity would allow these enzymes to adapt to different environments based on the available electron acceptors.
Collapse
Affiliation(s)
- Ana Serrano
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Paula Cinca-Fernando
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Juan Carro
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
- Institute for Health Research Aragon (IIS Aragon), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Ángel T. Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Patricia Ferreira
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
2
|
Bidleman TF, Ericson L, Liljelind P, Tysklind M. Drosophilin A methyl ether (DAME) and other chlorinated dimethoxybenzenes in fungi and forest litter from Sweden. CHEMOSPHERE 2024; 347:140685. [PMID: 37981018 DOI: 10.1016/j.chemosphere.2023.140685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Fungi and substrates undergoing fungal decomposition were collected from forests in northern and southern Sweden and analyzed for chlorinated dimethoxybenzenes (DMBs). Specimens were fungi fruiting bodies, rotting wood, forest litter and underlying humus. Targeted compounds were DAME (1,2,4,5-tetrachloro-3,6-DMB) and related fungal secondary metabolites. A screening procedure was developed which involved soaking the specimens in ethyl acetate followed by analysis by capillary gas chromatography - mass spectrometry with mass selective detection (GC-MSD). DAME was the most frequently found (62% of 47 specimens) and often the most abundant target compound, with range and mean ± SD concentrations of <0.0017-3.81 and 0.21 ± 0.63 mg kg-1 ww. Based on log-log correlations of partition coefficients of hydrophobic compounds between fungal biomass/water (KD) and octanol/water (KOW), five species of fungi are suggested to produce DAME de novo versus bioaccumulation from forest runoff water. Full-scan mass spectra of some high-concentration specimens indicated the presence of a Cl2DMB and a Cl3DMB, which could not be identified further due to lack of standards, and drosophilin A (DA = 2,3,5,6-tetrachloro-4-methoxyphenol), the precursor to DAME. Tetrachloroveratrole (TeCV = 1,2,3,4-tetrachloro-5,6-DMB) was found in only a few specimens. This study supports our hypothesis of fungi as a source of DAME in terrestrial runoff and indicates that other chlorinated secondary metabolites are present. DAME is widely distributed globally, and it would be good to have a better understanding of its sources and pathways as a marker of terrestrial organochlorines and their availability for bioaccumulation.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87, Umeå, Sweden.
| | - Lars Ericson
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 6, SE-901 87, Umeå, Sweden.
| | - Per Liljelind
- Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87, Umeå, Sweden.
| | - Mats Tysklind
- Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87, Umeå, Sweden.
| |
Collapse
|
3
|
Bürger F, Koch M, Fraatz MA, Omarini AB, Berger RG, Zorn H. Production of an Anise- and Woodruff-like Aroma by Monokaryotic Strains of Pleurotus sapidus Grown on Citrus Side Streams. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030651. [PMID: 35163915 PMCID: PMC8838675 DOI: 10.3390/molecules27030651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
The production of natural flavors by means of microorganisms is of great interest for the food and flavor industry, and by-products of the agro-industry are particularly suitable as substrates. In the present study, Citrus side streams were fermented using monokaryotic strains of the fungus Pleurotus sapidus. Some of the cultures exhibited a pleasant smell, reminiscent of woodruff and anise, as well as herbaceous notes. To evaluate the composition of the overall aroma, liquid/liquid extracts of submerged cultures of a selected monokaryon were prepared, and the volatiles were isolated via solvent-assisted flavor evaporation. Aroma extract dilution analyses revealed p-anisaldehyde (sweetish, anisic- and woodruff-like) with a flavor dilution factor of 218 as a character impact compound. The coconut-like, herbaceous, and sweetish smelling acyloin identified as (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone also contributed to the overall aroma and was described as an aroma-active substance with an odor threshold in air of 0.2 ng L−1 to 2.4 ng L−1 for the first time. Supplementation of the culture medium with isotopically substituted l-tyrosine elucidated this phenolic amino acid as precursor of p-anisaldehyde as well as of (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone. Chiral analysis via HPLC revealed an enantiomeric excess of 97% for the isolated product produced by P. sapidus.
Collapse
Affiliation(s)
- Friederike Bürger
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (F.B.); (M.K.); (M.A.F.)
| | - Maximilian Koch
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (F.B.); (M.K.); (M.A.F.)
| | - Marco A. Fraatz
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (F.B.); (M.K.); (M.A.F.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Alejandra B. Omarini
- CONICET Asociación para el Desarrollo de Villa Elisa y Zona Héctor de Elia 1247, Villa Elisa E3265, Entre Ríos, Argentina;
- Institute of Food Chemistry, Leibniz University Hannover, Callinstrasse 5, 30167 Hannover, Germany;
| | - Ralf G. Berger
- Institute of Food Chemistry, Leibniz University Hannover, Callinstrasse 5, 30167 Hannover, Germany;
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (F.B.); (M.K.); (M.A.F.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-(0)-641-99-349-00
| |
Collapse
|
4
|
Chilczuk T, Schäberle TF, Vahdati S, Mettal U, El Omari M, Enke H, Wiese M, König GM, Niedermeyer THJ. Halogenation-Guided Chemical Screening Provides Insight into Tjipanazole Biosynthesis by the Cyanobacterium Fischerella ambigua. Chembiochem 2020; 21:2170-2177. [PMID: 32182403 PMCID: PMC7497240 DOI: 10.1002/cbic.202000025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Halogenated natural products (HNPs) show a wide range of interesting biological activities. Chemistry-guided screening with a software tool dedicated to identifying halogenated compounds in HPLC-MS data indicated the presence of several uncharacterised HNPs in an extract of the cyanobacterium Fischerella ambigua (Näg.) Gomont 108b. Three new natural products, tjipanazoles K, L, and M, were isolated from this strain together with the known tjipanazoles D and I. Taking into account the structures of all tjipanazole derivatives detected in this strain, reanalysis of the tjipanazole biosynthetic gene cluster allowed us to propose a biosynthetic pathway for the tjipanazoles. As the isolated tjipanazoles show structural similarity to arcyriaflavin A, an inhibitor of the clinically relevant multidrug-transporter ABCG2 overexpressed by different cancer cell lines, the isolated compounds were tested for ABCG2 inhibitory activity. Only tjipanazole K showed appreciable transporter inhibition, whereas the compounds lacking the pyrrolo[3,4-c] ring or featuring additional chloro substituents were found to be much less active.
Collapse
Affiliation(s)
- Tomasz Chilczuk
- Department of Pharmaceutical Biology/Pharmacognosy Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Sahel Vahdati
- Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Ute Mettal
- Institute for Insect Biotechnology, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Mustafa El Omari
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Heike Enke
- Cyano Biotech GmbH, Magnusstraße 11, 12489, Berlin, Germany
| | - Michael Wiese
- Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Timo H J Niedermeyer
- Department of Pharmaceutical Biology/Pharmacognosy Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| |
Collapse
|
5
|
Georgousaki K, Tsafantakis N, Gumeni S, Lambrinidis G, González-Menéndez V, Tormo JR, Genilloud O, Trougakos IP, Fokialakis N. Biological Evaluation and In Silico Study of Benzoic Acid Derivatives from Bjerkandera adusta Targeting Proteostasis Network Modules. Molecules 2020; 25:molecules25030666. [PMID: 32033190 PMCID: PMC7036779 DOI: 10.3390/molecules25030666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 01/17/2023] Open
Abstract
A main cellular functional module that becomes dysfunctional during aging is the proteostasis network. In the present study, we show that benzoic acid derivatives isolated from Bjerkandera adusta promote the activity of the two main protein degradation systems, namely the ubiquitin-proteasome (UPP) and especially the autophagy-lysosome pathway (ALP) in human foreskin fibroblasts. Our findings were further supported by in silico studies, where all compounds were found to be putative binders of both cathepsins B and L. Among them, compound 3 (3-chloro-4-methoxybenzoic acid) showed the most potent interaction with both enzymes, which justifies the strong activation of cathepsins B and L (467.3 ± 3.9%) on cell-based assays. Considering that the activity of both the UPP and ALP pathways decreases with aging, our results suggest that the hydroxybenzoic acid scaffold could be considered as a promising candidate for the development of novel modulators of the proteostasis network, and likely of anti-aging agents.
Collapse
Affiliation(s)
- Katerina Georgousaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (K.G.); (N.T.)
| | - Nikolaos Tsafantakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (K.G.); (N.T.)
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (S.G.); (I.P.T.)
| | - George Lambrinidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 157 84 Athens, Greece;
| | - Victor González-Menéndez
- Fundacion MEDINA, Health Sciences Technology Park, 18016 Granada, Spain; (V.G.-M.); (J.R.T.); (O.G.)
| | - Jose R. Tormo
- Fundacion MEDINA, Health Sciences Technology Park, 18016 Granada, Spain; (V.G.-M.); (J.R.T.); (O.G.)
| | - Olga Genilloud
- Fundacion MEDINA, Health Sciences Technology Park, 18016 Granada, Spain; (V.G.-M.); (J.R.T.); (O.G.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (S.G.); (I.P.T.)
| | - Nikolas Fokialakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (K.G.); (N.T.)
- Correspondence: ; Tel.:+30-210-727-4727
| |
Collapse
|
6
|
Wang T, Rabe P, Citron CA, Dickschat JS. Halogenated volatiles from the fungus Geniculosporium and the actinomycete Streptomyces chartreusis. Beilstein J Org Chem 2013; 9:2767-77. [PMID: 24367440 PMCID: PMC3869313 DOI: 10.3762/bjoc.9.311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/07/2013] [Indexed: 12/17/2022] Open
Abstract
Two unidentified chlorinated volatiles X and Y were detected in headspace extracts of the fungus Geniculosporium. Their mass spectra pointed to the structures of a chlorodimethoxybenzene for X and a dichlorodimethoxybenzene for Y. The mass spectra of some constitutional isomers for X and Y were included in our databases and proved to be very similar, thus preventing a full structural assignment. For unambiguous structure elucidation all possible constitutional isomers for X and Y were obtained by synthesis or from commercial suppliers. Comparison of mass spectra and GC retention times rigorously established the structures of the two chlorinated volatiles. Chlorinated volatiles are not very widespread, but brominated or even iodinated volatiles are even more rare. Surprisingly, headspace extracts from Streptomyces chartreusis contained methyl 2-iodobenzoate, a new natural product that adds to the small family of iodinated natural products.
Collapse
Affiliation(s)
- Tao Wang
- Institut für Organische Chemie, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Patrick Rabe
- Institut für Organische Chemie, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Christian A Citron
- Institut für Organische Chemie, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Jeroen S Dickschat
- Institut für Organische Chemie, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Katayama N, Fujimura M, Yasui M, Ogawa H, Nakao S. Hypersensitivity pneumonitis and bronchial asthma attacks caused by environmental fungi. Allergol Int 2008; 57:277-80. [PMID: 18493169 DOI: 10.2332/allergolint.c-07-56] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 12/10/2007] [Indexed: 11/20/2022] Open
Abstract
We report a case of hypersensitivity pneumonitis and asthma attacks caused by environmental fungi in a 75-year-old man. The diagnosis was established by inhalation challenge with Bjerkandera adusta and Aspergillus fumigatus. The patient was admitted for treatment of fever, wheezing, and dyspnea. Chest computed tomography showed small nodular shadows with diffuse, partially patchy, ground-glass opacities. The findings of bronchoalveolar lavage fluid were compatible with hypersensitivity pneumonitis. His symptoms and objective findings, including chest radiographs, worsened after returning home, suggesting the existence of causative antigens in his house. B. adusta and A. fumigatus were isolated from the living room and bedroom. Based on the results of antigen inhalation bronchoprovocation test, he was given a diagnosis of hypersensitivity pneumonitis caused by B. adusta and bronchial asthma attacks caused by B. adusta and A. fumigatus. After cleaning the entire house, the patient has had no recurrence of the symptoms on returning home.
Collapse
Affiliation(s)
- Nobuyuki Katayama
- Respiratory Medicine, Kanazawa University Hospital, Ishikawa, Japan.
| | | | | | | | | |
Collapse
|
8
|
Wang FW, Hou ZM, Wang CR, Li P, Shi DH. Bioactive metabolites from Penicillium sp., an endophytic fungus residing in Hopea hainanensis. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9720-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Moeder M, Martin C, Schlosser D, Harynuk J, Górecki T. Separation of technical 4-nonylphenols and their biodegradation products by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. J Chromatogr A 2006; 1107:233-9. [PMID: 16427065 DOI: 10.1016/j.chroma.2005.12.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 12/12/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
Comprehensive two-dimensional gas chromatography (GC x GC) coupled to time-of-flight mass spectrometry (TOF-MS) was applied to improve the separation of 4-nonylphenol isomers and their biodegradation products. The structurally similar nonylphenol isomers were separated by combining a 30 m long semi-polar column and a short polar capillary. Both were coupled via a custom-made liquid nitrogen cryogenic modulator. The advanced GC resolution of coeluting isomers, additionally supported by fast scanning TOF-MS, provided clearer, non-interfered mass spectra of individual isomers. Thus, identification of components is facilitated as shown for isomeric 4-nonylphenols and metabolites of their biodegradation by Clavariopsis aquatica, an aquatic fungus. GC x GC-TOF-MS analysis enabled the separation of about 40 alkylphenol isomers included in technical 4-nonylphenol. During biodegradation the variety of emerging compounds increased with longer reaction time. The comprehensive analysis indicated a broad spectrum of hydroxylated, carboxylated nonylphenolisomers and additionally, chlorinated aromatic compounds produced and released from the fungal culture.
Collapse
Affiliation(s)
- M Moeder
- UFZ Centre for Environmental Research Leipzig-Halle, Department of Analytical Chemistry, Permoserstrasse 15, D-04318 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
10
|
Silk PJ, Macaulay JB. Stereoselective biosynthesis of chloroarylpropane diols by the basidiomyceteBjerkandera adusta: exploring the roles of amino acids, pyruvate, glycerol and phenyl acetyl carbinol. FEMS Microbiol Lett 2003; 228:11-9. [PMID: 14612230 DOI: 10.1016/s0378-1097(03)00725-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Bjerkandera adusta produces many chlorometabolites including chlorinated anisyl metabolites (CAMs) and 1-arylpropane-1,2-diols (1, 2, 3, 4) as idiophasic metabolic products of L-phenylalanine. These diols are stereoselectively biosynthesized from a C7-unit (benzylic, from L-phenylalanine) and a C2-unit, of unknown origin, as predominantly erythro (1R,2S) enantiomers. Of the labeled amino acids tested as possible C2-units, at the 4-10 mM level, none were found to efficiently label the 2,3-propane carbons of the diols. However, glycine (2-13C), L-serine (2,3,3-d3) and L-methionine (methyl-d3) entered the biomethylation pathway. Neither pyruvate (2,3-13C2), acetate (1,2-13C2), acetaldehyde (d4) nor ethanol (ethyl-d5) labeled the 2,3-propane carbons of the diols at the 4-10 mM level. Pyruvate (2,3-13C2) and L-serine (2,3,3-d3) (which also entered the biomethylation pathway) did, however, effectively label the 2,3-propane carbons of the alpha-ketols and diols at the 40 mM level as evidenced by mass spectrometry. Glycerol (1,1,2,3,3-d5) also appeared to label one of the 2,3-propane carbons (ca. 5% as 2H2 in the C3 side chain) as suggested by mass spectrometric data and also entered the biomethylation pathway, likely via amino acid synthesis. Glycerol (through pyruvate), therefore, likely supplies C2 and C3 of the propane side chain with arylpropane diol biosynthesis. Incubation of B. adusta with synthetic [2-2H1, 2-18O]-glycerol showed that neither 2H nor 18O were incorporated in the alpha-ketols or diols. The oxygen atom on the C2 of the ketols/diols, therefore, does not appear to come from the oxygen atom on the C2 of glycerol. Glycerol, however, can readily form L-serine (which can then form pyruvate via PLP/serine dehydratase and involve transamination washing out the 18O label and providing the oxygen from water), and can then go on to label the C2-unit. Labeled alpha-ketol, phenyl acetyl carbinol (5) (PAC; ring-d(5), 2,3-13C2 propane) cultured with B. adusta leads to stereospecific reduction to the (1R,2S)-diol (6) (ring-d5 and 2,3-13C2); in all other metabolites produced, the 2,3-13C2) label is washed out. Incubation of the fungus with 4-fluorobenzaldehyde (13) produces a pooling of predominantly erythro (1R,2S) 1-(4'-fluorophenyl)-1,2-propane diol (18 as diacetate) (through the corresponding alpha-ketols 16, 17). Blocking the para-position with fluorine thus appears to prevent ring oxygenation and also chlorination, forcing the conclusion that para-ring oxygenation precedes meta-chlorination.
Collapse
Affiliation(s)
- Peter James Silk
- Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, P.O. Box 4000, 1350 Regent Street, Fredericton, NB, Canada E3B 5P7.
| | | |
Collapse
|
11
|
Abstract
More than 3800 organohalogen compounds, mainly containing chlorine or bromine but a few with iodine and fluorine, are produced by living organisms or are formed during natural abiogenic processes, such as volcanoes, forest fires, and other geothermal processes. The oceans are the single largest source of biogenic organohalogens, which are biosynthesized by myriad seaweeds, sponges, corals, tunicates, bacteria, and other marine life. Terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and even humans also account for a diverse collection of organohalogens.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, NH 03755-3564, USA.
| |
Collapse
|
12
|
Silk PJ, Macaulay JB. Stereoselective biosynthesis of chloroarylpropane diols by the basidiomycete Bjerkandera adusta. CHEMOSPHERE 2003; 52:503-512. [PMID: 12738275 DOI: 10.1016/s0045-6535(03)00203-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previously we have shown that 1-arylpropane-1,2-diols are catabolic products of L-phenylalanine during idiophasic metabolism of B. adusta that are stereoselectively biosynthesized from a C(7)-unit (ring+benzylic carbon) and a C(2)-unit as predominantly erythro 1R, 2S enantiomers.In order to probe the mechanism of 1-arylpropane-1,2-diol formation, the products of the incubation of isotopically labelled aromatic aldehydes as substrates with Bjerkandera adusta (DAOM 215869) have been characterized. The aromatic aldehydes were benzaldehyde (ring D(5)) and 4-methoxy- and 4-hydroxybenzaldehydes (ring 13C(6)). These aldehydes were all stereoselectively incorporated into the corresponding 1-arylpropane-1,2-diols, including the chloro analogues, as well as into the corresponding alpha-ketols (phenyl acetyl carbinols (PAC's) and 2-hydroxy propiophenones (2-HPP's)) the presumed precursors of the diols. Benzoic acid (ring D(5)) was likewise incorporated into the diols, chlorodiols and alpha-ketols. These results lead us to conclude that the aromatic aldehydes benzaldehyde, 4-hydroxybenzaldehyde and 4-methoxybenzaldehyde are likely C(7)-unit precursors in the carboligation reaction(s) that leads to 1-arylpropane-1,2-diol biosynthesis. The metabolic role of the diols remains to be elucidated but they may be important intermediates in CAM (chlorinated anisyl metabolite) aldehyde-alcohol cycling and also act as substrates for the chlorination/hydroxylation enzymes yet to be identified in white rot fungi.
Collapse
Affiliation(s)
- P J Silk
- Department of Chemical and Biotechnical Services, Research and Productivity Council, 921 College Hill Road, Fredericton, New Brunswick, Canada E3B 6Z9.
| | | |
Collapse
|
13
|
Matich AJ, Young H, Allen JM, Wang MY, Fielder S, McNeilage MA, MacRae EA. Actinidia arguta: volatile compounds in fruit and flowers. PHYTOCHEMISTRY 2003; 63:285-301. [PMID: 12737978 DOI: 10.1016/s0031-9422(03)00142-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
More than 240 compounds were detected when the volatile components of the flowers and the fruit from several Actinidia arguta genotypes were investigated. Around 60-70 different compounds were extracted from individual tissues of each genotype. Two different methods of volatile sampling (headspace and solvent) favoured different classes of compounds, dependent upon their volatilities and solubilities in the flower or fruit matrices. The compounds extracted from flowers largely comprised linalool derivatives including the lilac aldehydes (12a-d) and alcohols (13a-d), 2,6-dimethyl-6-hydroxyocta-2,7-dienal (8), 8-hydroxylinalool (9), sesquiterpenes, and benzene compounds that are presumed metabolites of phenylalanine and tyrosine. Extracts of fruit samples contained some monoterpenes, but were dominated by esters such as ethyl butanoate, hexanoate, 2-methylbutanoate and 2-methylpropanoate, and by the aldehydes hexanal and hex-E2-enal. A number of unidentified compounds were also detected, including 8 from flowers that are so closely related that they are either isomers of one compound or two or more closely related compounds. This is the first report of the presence of a range of linalool derivatives in Actinidia.
Collapse
Affiliation(s)
- Adam J Matich
- The Horticultural and Food Research Institute of New Zealand Ltd, Private Bag 11030, Palmerston North, New Zealand.
| | | | | | | | | | | | | |
Collapse
|