1
|
Yin Z(S, Wang Z. Strategies for engineering oncolytic viruses to enhance cancer immunotherapy. Front Pharmacol 2024; 15:1450203. [PMID: 39309012 PMCID: PMC11413971 DOI: 10.3389/fphar.2024.1450203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is the predominant form of lung cancer and is characterized by rapid metastasis and high mortality, presenting a challenge for early-stage treatment modalities. The heterogeneity of NSCLC's tumor microenvironment (TME) significantly influences the efficacy of anti-PD-1 immune checkpoint inhibitors (ICIs) therapy, leading to varied patient responses. This review characterized different strains of oncolytic viruses in NSCLC and the different gene edits in pre-existing oncolytic viruses. This study also aimed to provide strategies to enhance anti-PD-1 therapy in NSCLC by engineering oncolytic viruses (OVs). This study offers insights into the genomic adaptations necessary for OVs targeting NSCLC, identify genetic determinants of anti-PD-1 response variability, and propose genomic edits to bolster therapy effectiveness. The primary goal of this study is to present a theoretically designed OV with a detailed genomic framework capable of enhancing the response to anti-PD-1 therapy, thereby advancing the field of cancer immunotherapy.
Collapse
Affiliation(s)
| | - Zhengfeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Pál D, Tóth G, Sugár S, Fügedi KD, Szabó D, Kovalszky I, Papp D, Schlosser G, Tóth C, Tornóczky T, Drahos L, Turiák L. Compositional Analysis of Glycosaminoglycans in Different Lung Cancer Types-A Pilot Study. Int J Mol Sci 2023; 24:ijms24087050. [PMID: 37108213 PMCID: PMC10138872 DOI: 10.3390/ijms24087050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer is one of the most commonly diagnosed cancer types. Studying the molecular changes that occur in lung cancer is important to understand tumor formation and identify new therapeutic targets and early markers of the disease to decrease mortality. Glycosaminoglycan chains play important roles in various signaling events in the tumor microenvironment. Therefore, we have determined the quantity and sulfation characteristics of chondroitin sulfate and heparan sulfate in formalin-fixed paraffin-embedded human lung tissue samples belonging to different lung cancer types as well as tumor adjacent normal areas. Glycosaminoglycan disaccharide analysis was performed using HPLC-MS following on-surface lyase digestion. Significant changes were identified predominantly in the case of chondroitin sulfate; for example, the total amount was higher in tumor tissue compared to the adjacent normal tissue. We also observed differences in the degree of sulfation and relative proportions of individual chondroitin sulfate disaccharides between lung cancer types and adjacent normal tissue. Furthermore, the differences in the 6-O-/4-O-sulfation ratio of chondroitin sulfate were different between the lung cancer types. Our pilot study revealed that further investigation of the role of chondroitin sulfate chains and enzymes involved in their biosynthesis is an important aspect of lung cancer research.
Collapse
Affiliation(s)
- Domonkos Pál
- MS Proteomics Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, H-1085 Budapest, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Simon Sugár
- MS Proteomics Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, H-1085 Budapest, Hungary
| | - Kata Dorina Fügedi
- MS Proteomics Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Dániel Szabó
- MS Proteomics Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
| | - Dávid Papp
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Csaba Tóth
- Teaching Hospital Markusovszky, University of Pécs, H-9700 Szombathely, Hungary
| | - Tamás Tornóczky
- Department of Pathology, Faculty of Medicine and Clinical Center, University of Pécs, H-7624 Pécs, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| |
Collapse
|
3
|
Jung M, Han Y, Woo C, Ki CS. Pulmonary tissue-mimetic hydrogel niches for small cell lung cancer cell culture. J Mater Chem B 2021; 9:1858-1866. [PMID: 33533364 DOI: 10.1039/d0tb02609c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although small cell lung cancer (SCLC) is characterized by early metastasis and high resistance to most anti-cancer therapeutics, resulting in poor prognosis, surgical treatment is unavailable for most patients. Instead, clinical treatment for SCLC patients relies largely on chemotherapy. Therefore, an analysis platform supporting research into the physiology of SCLC cells and novel anti-cancer drugs is strongly needed. Decellularized extracellular matrix (dECM) hydrogel is a promising candidate cell-culture system that could provide a tissue-specific environment. However, dECM-based hydrogels have limited property control, poor mechanical properties, and loss of components during decellularization. In this study, porcine decellularized lung tissue and hyaluronic acid (HA) were hybridized via photopolymerization to form a pulmonary tissue-mimetic hydrogel. dECM solution was obtained by decellularization and pepsin digestion. The dECM and HA were then modified with methacrylic moieties, which produced dECM-methacrylate (dECM-MA) and HA methacrylate (HA-MA). dECM-MA/HA-MA hydrogels were fabricated by photopolymerization using a photoinitiator under UV light irradiation. The mechanical properties of the dECM-based hydrogel were compared with those of native tissue. SCLC cells (NCI-H69) were encapsulated in multiple types of dECM-based hydrogels, and they exhibited higher cell proliferation, drug resistance, and CD44 expression in the presence of dECM-MA and HA-MA than in the control condition.
Collapse
Affiliation(s)
- Mijung Jung
- Department of Agriculture, Forestry and Bioresources, Seoul National Univerisity, Seoul 08826, Republic of Korea.
| | - Yoobin Han
- Department of Agriculture, Forestry and Bioresources, Seoul National Univerisity, Seoul 08826, Republic of Korea.
| | - Changhee Woo
- Department of Agriculture, Forestry and Bioresources, Seoul National Univerisity, Seoul 08826, Republic of Korea.
| | - Chang Seok Ki
- Department of Agriculture, Forestry and Bioresources, Seoul National Univerisity, Seoul 08826, Republic of Korea. and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|