1
|
Trost L, Gahr M, ter Maat A. Neural Activity During Call Production in the Female Zebra Finch Homolog of the Male Forebrain Song System. Eur J Neurosci 2025; 61:e70123. [PMID: 40304281 PMCID: PMC12042645 DOI: 10.1111/ejn.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/31/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025]
Abstract
Female zebra finches (Taeniopygia guttata) are unable to sing because of the vestigial development of forebrain song control areas such as the RA (nucleus robustus archistriatalis), a premotor nucleus of the song control pathway. In male zebra finches, RA is also involved in call-based vocal communication in addition to song control. Here, we monitored the activity of RA neurons during vocal communication in freely behaving females using a miniaturized telemetric recording device combined with telemetric audio recording. Neurons in the RA region showed premotor activity associated with stack and tet calls, two innate short-range social calls produced by both sexes. RA units were active when females called to respond to a male partner's call or to initiate a partner's call. However, spontaneous, regularly firing units, typical of male RA, were very rare in females or, when found, showed no association with vocal output. Despite the small number of adult female RA neurons, these neurons are not functionless, but are involved in call-based communication.
Collapse
Affiliation(s)
- Lisa Trost
- Department of Behavioural NeurobiologyMax Planck Institute for Biological IntelligenceSeewiesenGermany
| | - Manfred Gahr
- Department of Behavioural NeurobiologyMax Planck Institute for Biological IntelligenceSeewiesenGermany
| | - Andries ter Maat
- Department of Behavioural NeurobiologyMax Planck Institute for Biological IntelligenceSeewiesenGermany
| |
Collapse
|
2
|
Rose EM, Haakenson CM, Ball GF. Sex differences in seasonal brain plasticity and the neuroendocrine regulation of vocal behavior in songbirds. Horm Behav 2022; 142:105160. [PMID: 35366412 DOI: 10.1016/j.yhbeh.2022.105160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022]
Abstract
Birdsong is controlled in part by a discrete network of interconnected brain nuclei regulated in turn by steroid hormones and environmental stimuli. This complex interaction results in neural changes that occur seasonally as the environment varies (e.g., photoperiod, food/water availability, etc.). Variation in environment, vocal behavior, and neuroendocrine control has been primarily studied in male songbirds in both laboratory studies of captive birds and field studies of wild caught birds. The bias toward studying seasonality in the neuroendocrine regulation of song in male birds comes from a historic focus on sexually selected male behaviors. In fact, given that male song is often loud and accompanied by somewhat extravagant courtship behaviors, female song has long been overlooked. To compound this bias, the primary model songbird species for studies in the lab, zebra finches (Taeniopygia guttata) and canaries (Serinus canaria), exhibit little or no female song. Therefore, understanding the degree of variation and neuroendocrine control of seasonality in female songbirds is a major gap in our knowledge. In this review, we discuss the importance of studying sex differences in seasonal plasticity and the song control system. Specifically, we discuss sex differences in 1) the neuroanatomy of the song control system, 2) the distribution of receptors for androgens and estrogens and 3) the seasonal neuroplasticity of the hypothalamo-pituitary-gonadal axis as well as in the neural and cellular mechanisms mediating song system changes. We also discuss how these neuroendocrine mechanisms drive sex differences in seasonal behavior. Finally, we highlight specific gaps in our knowledge and suggest experiments critical for filling these gaps.
Collapse
Affiliation(s)
- Evangeline M Rose
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA.
| | - Chelsea M Haakenson
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
3
|
How king penguins advertise their sexual maturity. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Schlinger BA, Chiver I. Behavioral Sex Differences and Hormonal Control in a Bird with an Elaborate Courtship Display. Integr Comp Biol 2021; 61:1319-1328. [PMID: 33885763 DOI: 10.1093/icb/icab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gonadal hormones can activate performance of reproductive behavior in adult animals, but also organize sex-specific neural circuits developmentally. Few studies have examined the hormonal basis of sex differences in the performance of elaborate, physically complex and energetic male courtship displays. Here we describe our studies over more than 20 years examining sex difference and hormonal control of courtship in Golden-collared manakins (Manacus vitellinus) of Panamaian rainforests. Our recent studies of birds studied in an artificial "lek" in a rainforest aviary provide many new insights. Wild and captive males and females differ markedly in their performance of male-typical behaviors. Testosterone (T) treatment augments performance of virtually all of these behaviors in juvenile males with low levels of circulating T. By contrast, T-treatment of females (with low circulating T) either failed to activate some behaviors or activated male behaviors weakly or strongly. These results are discussed within a framework of our appreciation for hormonal vs genetic basis for sex differences in behavior with speculation about the neural mechanisms producing these patterns of hormonal activation.
Collapse
Affiliation(s)
- Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095.,Smithsonian Tropical Research Institute, Panama City, Panama
| | | |
Collapse
|
5
|
Gessara I, Dittrich F, Hertel M, Hildebrand S, Pfeifer A, Frankl-Vilches C, McGrew M, Gahr M. Highly Efficient Genome Modification of Cultured Primordial Germ Cells with Lentiviral Vectors to Generate Transgenic Songbirds. Stem Cell Reports 2021; 16:784-796. [PMID: 33740464 PMCID: PMC8072032 DOI: 10.1016/j.stemcr.2021.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The ability to genetically manipulate organisms has led to significant insights into functional genomics in many species. In birds, manipulation of the genome is hindered by the inaccessibility of the one-cell embryo. During embryonic development, avian primordial germ cells (PGCs) migrate through the bloodstream and reach the gonadal anlage, where they develop into mature germ cells. Here, we explored the use of PGCs to produce transgenic offspring in the zebra finch, which is a major animal model for sexual brain differentiation, vocal learning, and vocal communication. Zebra finch PGCs (zfPGCs) obtained from embryonic blood significantly proliferated when cultured in an optimized culture medium and conserved the expression of germ and stem cell markers. Transduction of cultured zfPGCs with lentiviral vectors was highly efficient, leading to strong expression of the enhanced green fluorescent protein. Transduced zfPGCs were injected into the host embryo and transgenic songbirds were successfully generated.
Collapse
Affiliation(s)
- Ivana Gessara
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany.
| | - Falk Dittrich
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany
| | - Moritz Hertel
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany
| | - Staffan Hildebrand
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Mike McGrew
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Manfred Gahr
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany
| |
Collapse
|
6
|
Sikora JG, Moyer MJ, Omland KE, Rose EM. Large female song repertoires and within‐pair song type sharing in a temperate breeding songbird. Ethology 2020. [DOI: 10.1111/eth.13115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jonathan G. Sikora
- Department of Biological Sciences University of MarylandBaltimore County Baltimore MD USA
| | - Michelle J. Moyer
- Department of Biological Sciences University of MarylandBaltimore County Baltimore MD USA
| | - Kevin E. Omland
- Department of Biological Sciences University of MarylandBaltimore County Baltimore MD USA
| | - Evangeline M. Rose
- Department of Biological Sciences University of MarylandBaltimore County Baltimore MD USA
- Department of Psychology University of Maryland, College Park College Park MD USA
| |
Collapse
|
7
|
Zachar G, Montagnese C, Fazekas EA, Kemecsei RG, Papp SM, Dóra F, Renner É, Csillag A, Pogány Á, Dobolyi A. Brain Distribution and Sexually Dimorphic Expression of Amylin in Different Reproductive Stages of the Zebra Finch ( Taeniopygia guttata) Suggest Roles of the Neuropeptide in Song Learning and Social Behaviour. Front Neurosci 2020; 13:1401. [PMID: 32009882 PMCID: PMC6971405 DOI: 10.3389/fnins.2019.01401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
The expression of the recently identified neuropeptide, amylin, is restricted in rodents to the postpartum preoptic area and may play a role in the control of parental behaviours and food intake. These processes are substantially different between bird and rodent parents as birds do not lactate but often show biparental care of the offspring. To establish the presence and role of amylin in the bird brain, in the present study, we investigated the distribution of amylin in brains of adult male and female zebra finches in three different reproductive stages (i.e. paired without young, incubating eggs or provisioning nestlings) and in unpaired control birds living in same sex flocks. Amylin mRNA was identified in the hypothalamus of zebra finch by RT-PCR, which was also used to produce probes for in situ hybridisation. Subsequently, in situ hybridisation histochemistry was performed in brain sections, and the labelling signal was quantified and compared between the groups. Amylin showed a much wider brain distribution than that of rodents. A strong and, in some regions, sexually dimorphic label was found in the striatum and several brain regions of the social behavioural network in both males and females. Many regions responsible for the learning of birdsong also contained amylin-positive neurons, and some regions showed sex differences reflecting the fact that vocalisation is sexually dimorphic in the zebra finch: only males sing. Area X (Ar.X), a striatal song centre present only in males, was labelled in paired but not unpaired male. Ar.X, another song centre, the lateral part of the magnocellular nucleus of the anterior nidopallium (lMAN) also contained amylin and had higher amylin label in paired, as opposed to unpaired birds. The wider distribution of amylin in birds as compared to rodents suggests a more general role of amylin in social or other behaviours in avian species than in mammals. Alternatively, parental care in birds may be a more complex behavioural trait involving a wider set of brain regions. The sex differences in song centres, and the changes with reproductive status suggest a participation of amylin in social behaviours and related changes in the singing of males.
Collapse
Affiliation(s)
- Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Catherine Montagnese
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emese A Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary.,Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Róbert G Kemecsei
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Szilvia M Papp
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Fanni Dóra
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ákos Pogány
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
8
|
Shaughnessy DW, Hyson RL, Bertram R, Wu W, Johnson F. Female zebra finches do not sing yet share neural pathways necessary for singing in males. J Comp Neurol 2018; 527:843-855. [PMID: 30370534 DOI: 10.1002/cne.24569] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/28/2022]
Abstract
Adult female zebra finches (Taeniopygia guttata), which do not produce learned songs, have long been thought to possess only vestiges of the forebrain network that supports learned song in males. This view ostensibly explains why females do not sing-many of the neural populations and pathways that make up the male song control network appear rudimentary or even missing in females. For example, classic studies of vocal-premotor cortex (HVC, acronym is name) in male zebra finches identified prominent efferent pathways from HVC to vocal-motor cortex (RA, robust nucleus of the arcopallium) and from HVC to the avian basal ganglia (Area X). In females, by comparison, the efferent targets of HVC were thought to be only partially innervated by HVC axons (RA) or absent (Area X). Here, using a novel visually guided surgical approach to target tracer injections with precision, we mapped the extrinsic connectivity of the adult female HVC. We find that female HVC shows a mostly male-typical pattern of afferent and efferent connectivity, including robust HVC innervation of RA and Area X. As noted by earlier investigators, we find large sex differences in the volume of many regions that control male singing (male > female). However, sex differences in volume were diminished in regions that convey ascending afferent input to HVC. Our findings do not support a vestigial interpretation of the song control network in females. Instead, our findings support the emerging view that the song control network may have an altogether different function in nonsinging females.
Collapse
Affiliation(s)
- Derrick W Shaughnessy
- Program in Neuroscience and Department of Psychology, Florida State University, Tallahassee, Florida
| | - Richard L Hyson
- Program in Neuroscience and Department of Psychology, Florida State University, Tallahassee, Florida
| | - Richard Bertram
- Program in Neuroscience and Department of Mathematics, Florida State University, Tallahassee, Florida
| | - Wei Wu
- Program in Neuroscience and Department of Statistics, Florida State University, Tallahassee, Florida
| | - Frank Johnson
- Program in Neuroscience and Department of Psychology, Florida State University, Tallahassee, Florida
| |
Collapse
|
9
|
|
10
|
Baotic A, Stoeger AS. Sexual dimorphism in African elephant social rumbles. PLoS One 2017; 12:e0177411. [PMID: 28489908 PMCID: PMC5425207 DOI: 10.1371/journal.pone.0177411] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/26/2017] [Indexed: 11/21/2022] Open
Abstract
This study used the source and filter theory approach to analyse sex differences in the acoustic features of African elephant (Loxodonta africana) low-frequency rumbles produced in social contexts ('social rumbles'). Permuted discriminant function analysis revealed that rumbles contain sufficient acoustic information to predict the sex of a vocalizing individual. Features primarily related to the vocalizer's size, i.e. fundamental frequency variables and vocal tract resonant frequencies, differed significantly between the sexes. Yet, controlling for age and size effects, our results indicate that the pronounced sexual size dimorphism in African elephants is partly, but not exclusively, responsible for sexual differences in social rumbles. This provides a scientific foundation for future work investigating the perceptual and functional relevance of specific acoustic characteristics in African elephant vocal sexual communication.
Collapse
Affiliation(s)
- Anton Baotic
- Mammal Communication Lab, Department of Cognitive Biology, University of Vienna, Vienna, Austria
| | - Angela S. Stoeger
- Mammal Communication Lab, Department of Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Giret N, Menardy F, Del Negro C. Sex differences in the representation of call stimuli in a songbird secondary auditory area. Front Behav Neurosci 2015; 9:290. [PMID: 26578918 PMCID: PMC4623205 DOI: 10.3389/fnbeh.2015.00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/12/2015] [Indexed: 02/03/2023] Open
Abstract
Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females.
Collapse
Affiliation(s)
- Nicolas Giret
- Department Cognition and Behaviors, Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique UMR 9197, Paris-Sud University Orsay, France
| | - Fabien Menardy
- Department Cognition and Behaviors, Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique UMR 9197, Paris-Sud University Orsay, France
| | - Catherine Del Negro
- Department Cognition and Behaviors, Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique UMR 9197, Paris-Sud University Orsay, France
| |
Collapse
|
12
|
Schwabl H, Dowling J, Baldassarre DT, Gahr M, Lindsay WR, Webster MS. Variation in song system anatomy and androgen levels does not correspond to song characteristics in a tropical songbird. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Fernández-Vargas M, Johnston RE. Ultrasonic vocalizations in golden hamsters (Mesocricetus auratus) reveal modest sex differences and nonlinear signals of sexual motivation. PLoS One 2015; 10:e0116789. [PMID: 25714096 PMCID: PMC4340904 DOI: 10.1371/journal.pone.0116789] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/16/2014] [Indexed: 11/29/2022] Open
Abstract
Vocal signaling is one of many behaviors that animals perform during social interactions. Vocalizations produced by both sexes before mating can communicate sex, identity and condition of the caller. Adult golden hamsters produce ultrasonic vocalizations (USV) after intersexual contact. To determine whether these vocalizations are sexually dimorphic, we analyzed the vocal repertoire for sex differences in: 1) calling rates, 2) composition (structural complexity, call types and nonlinear phenomena) and 3) acoustic structure. In addition, we examined it for individual variation in the calls. The vocal repertoire was mainly composed of 1-note simple calls and at least half of them presented some degree of deterministic chaos. The prevalence of this nonlinear phenomenon was confirmed by low values of harmonic-to-noise ratio for most calls. We found modest sexual differences between repertoires. Males were more likely than females to produce tonal and less chaotic calls, as well as call types with frequency jumps. Multivariate analysis of the acoustic features of 1-note simple calls revealed significant sex differences in the second axis represented mostly by entropy and bandwidth parameters. Male calls showed lower entropy and inter-quartile bandwidth than female calls. Because the variation of acoustic structure within individuals was higher than among individuals, USV could not be reliably assigned to the correct individual. Interestingly, however, this high variability, augmented by the prevalence of chaos and frequency jumps, could be the result of increased vocal effort. Hamsters motivated to produce high calling rates also produced longer calls of broader bandwidth. Thus, the sex differences found could be the result of different sex preferences but also of a sex difference in calling motivation or condition. We suggest that variable and complex USV may have been selected to increase responsiveness of a potential mate by communicating sexual arousal and preventing habituation to the caller.
Collapse
Affiliation(s)
| | - Robert E. Johnston
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
14
|
Amy M, Salvin P, Naguib M, Leboucher G. Female signalling to male song in the domestic canary, Serinus canaria. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140196. [PMID: 26064577 PMCID: PMC4448791 DOI: 10.1098/rsos.140196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
Most studies on sexual selection focus on male characteristics such as male song in songbirds. Yet female vocalizations in songbirds are growing in interest among behavioural and evolutionary biologists because these vocalizations can reveal the female's preferences for male traits and may affect male display. This study was designed to test whether male song performance influences the different female signals in the domestic canary (Serinus canaria). Female canaries were exposed to three types of song performance, differing in the repetition rate of sexy syllables. This experiment demonstrates that female birds are engaged in multimodal communication during sexual interaction. The results support the copulation solicitation hypothesis for female-specific trills: these trills were positively correlated and had a similar pattern to the copulation solicitation displays; responses were higher to the songs with higher performance and responses decreased with the repetition of the stimulation. Also, we observed a sensitization effect with the repetition of the song of the highest performance for the simple calls. Simple trills and other calls were more frequent during the broadcast of canary songs compared with the heterospecific control songs. The differential use of female signals in response to different song performance reveals a highly differentiated female signalling system which is discussed in light of the role of female traits to understand sexual selection in a broader perspective.
Collapse
Affiliation(s)
- Mathieu Amy
- Laboratoire Ethologie Cognition Développement, EA 3456, Université Paris Ouest – Nanterre La Défense, 200 Avenue de la République, Nanterre 92000, France
| | - Pauline Salvin
- Laboratoire Ethologie Cognition Développement, EA 3456, Université Paris Ouest – Nanterre La Défense, 200 Avenue de la République, Nanterre 92000, France
| | - Marc Naguib
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Gerard Leboucher
- Laboratoire Ethologie Cognition Développement, EA 3456, Université Paris Ouest – Nanterre La Défense, 200 Avenue de la République, Nanterre 92000, France
| |
Collapse
|
15
|
Bowers JM, Perez-Pouchoulen M, Roby CR, Ryan TE, McCarthy MM. Androgen modulation of Foxp1 and Foxp2 in the developing rat brain: impact on sex specific vocalization. Endocrinology 2014; 155:4881-94. [PMID: 25247470 PMCID: PMC4239422 DOI: 10.1210/en.2014-1486] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sex differences in vocal communication are prevalent in both the animals and humans. The mechanism(s) mediating gender differences in human language are unknown, although, sex hormones, principally androgens, play a central role in the development of vocalizations in a wide variety of animal species. The discovery of FOXP2 has added an additional avenue for exploring the origins of language and animal communication. The FOXP2 gene is a member of the forkhead box P (FOXP) family of transcription factors. Prior to the prenatal androgen surge in male fetuses, we observed no sex difference for Foxp2 protein levels in cultured cells. In contrast, 24 hours after the onset of the androgen surge, we found a sex difference for Foxp2 protein levels in cultured cortical cells with males having higher levels than females. Furthermore, we observed the potent nonaromatizable androgen dihydrotestosterone altered not only Foxp2 mRNA and protein levels but also Foxp1. Androgen effects on both Foxp2 and Foxp1 were found to occur in the striatum, cerebellar vermis, and cortex. Immunofluorescence microscopy and coimmunoprecipitation demonstrate Foxp2 and the androgen receptor protein interact. Databases for transcription factor binding sites predict a consensus binding motif for androgen receptor on the Foxp2 promoter regions. We also observed a sex difference in rat pup vocalization with males vocalizing more than females and treatment of females with dihydrotestosterone eliminated the sex difference. We propose that androgens might be an upstream regulator of both Foxp2 and Foxp1 expression and signaling. This has important implications for language and communication as well as neuropsychiatric developmental disorders involving impairments in communication.
Collapse
Affiliation(s)
- J Michael Bowers
- Department of Pharmacology (J.M.B., M.P.-P., C.R.R., M.M.M.), University of Maryland School of Medicine and Programs in Neuroscience (M.M.M.) and Medicine (T.E.R.), University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201
| | | | | | | | | |
Collapse
|
16
|
Zebra finch mates use their forebrain song system in unlearned call communication. PLoS One 2014; 9:e109334. [PMID: 25313846 PMCID: PMC4196903 DOI: 10.1371/journal.pone.0109334] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022] Open
Abstract
Unlearned calls are produced by all birds whereas learned songs are only found in three avian taxa, most notably in songbirds. The neural basis for song learning and production is formed by interconnected song nuclei: the song control system. In addition to song, zebra finches produce large numbers of soft, unlearned calls, among which “stack” calls are uttered frequently. To determine unequivocally the calls produced by each member of a group, we mounted miniature wireless microphones on each zebra finch. We find that group living paired males and females communicate using bilateral stack calling. To investigate the role of the song control system in call-based male female communication, we recorded the electrical activity in a premotor nucleus of the song control system in freely behaving male birds. The unique combination of acoustic monitoring together with wireless brain recording of individual zebra finches in groups shows that the neuronal activity of the song system correlates with the production of unlearned stack calls. The results suggest that the song system evolved from a brain circuit controlling simple unlearned calls to a system capable of producing acoustically rich, learned vocalizations.
Collapse
|
17
|
Female song is widespread and ancestral in songbirds. Nat Commun 2014; 5:3379. [DOI: 10.1038/ncomms4379] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/04/2014] [Indexed: 11/09/2022] Open
|
18
|
Kelly AM, Goodson JL. Functional significance of a phylogenetically widespread sexual dimorphism in vasotocin/vasopressin production. Horm Behav 2013; 64:840-6. [PMID: 24100197 DOI: 10.1016/j.yhbeh.2013.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
Abstract
Male-biased production of arginine vasotocin/vasopressin (VT/VP) in the medial bed nucleus of the stria terminalis (BSTm) represents one of the largest and most phylogenetically widespread sexual dimorphisms in the vertebrate brain. Although this sex difference was identified 30 years ago, the function of the dimorphism has yet to be determined. Because 1) rapid transcriptional activation of BSTm VT/VP neurons is observed selectively in response to affiliation-related stimuli, 2) BSTm VT/VP content and release correlates negatively with aggression, and 3) BSTm VT/VP production is often limited to periods of reproduction, we hypothesized that the sexual dimorphism serves to promote male-specific reproductive behaviors and offset male aggression in the context of reproductive affiliation. We now show that antisense knockdown of BSTm VT production in colony-housed finches strongly increases aggression in a male-specific manner and concomitantly reduces courtship. Thus, the widespread dimorphism may serve to focus males on affiliation in appropriate reproductive contexts (e.g., when courting) while concomitantly offsetting males' tendency for greater aggression relative to females.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
19
|
Abstract
Songbirds have unique value as a model for memory and learning. In their natural social life, they communicate through vocalizations that they must learn to produce and recognize. Song communication elicits abrupt changes in gene expression in regions of the forebrain responsible for song perception and production--what is the functional significance of this genomic response? For 20 years, the focus of research was on just a few genes [primarily ZENK, now known as egr1 (early gene response 1)]. Recently, however, DNA microarrays have been developed and applied to songbird behavioral research, and in 2010 the initial draft assembly of the zebra finch genome was published. Together, these new data reveal that the genomic involvement in song processing is far more complex than anticipated. The concepts of neurogenomic computation and biological embedding are introduced as frameworks for future research.
Collapse
Affiliation(s)
- David F Clayton
- Biological and Experimental Psychology Division, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom;
| |
Collapse
|
20
|
Rudimentary substrates for vocal learning in a suboscine. Nat Commun 2013; 4:2082. [DOI: 10.1038/ncomms3082] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 05/29/2013] [Indexed: 11/08/2022] Open
|
21
|
de Campos D, Ellwanger JH, do Nascimento PS, da Rosa HT, Saur L, Jotz GP, Xavier LL. Sexual Dimorphism in the Human Vocal Fold Innervation. J Voice 2013; 27:267-72. [DOI: 10.1016/j.jvoice.2012.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
22
|
Testosterone modulation of angiogenesis and neurogenesis in the adult songbird brain. Neuroscience 2013; 239:139-48. [PMID: 23291451 DOI: 10.1016/j.neuroscience.2012.12.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 01/17/2023]
Abstract
Throughout life, new neurons arise from the ventricular zone of the adult songbird brain and are recruited to the song control nucleus higher vocal center (HVC), from which they extend projections to its target, nucleus robustus of the arcopallium (RA). This process of ongoing parenchymal neuronal addition and circuit integration is both triggered and modulated by seasonal surges in systemic testosterone. Brain aromatase converts circulating testosterone to estradiol, so that HVC is concurrently exposed to both androgenic and estrogenic stimulation. These two signals cooperate to trigger HVC endothelial cell division and angiogenesis, by inducing the regionally-restricted expression of vascular endothelial growth factor (VEGF), its matrix-releasing protease MMP9, and its endothelial receptor VEGFR2. The expanded HVC microvascular network then secretes the neurotrophic factor BDNF, which in turn supports the recruitment of newly generated neurons. This process is striking for its spatial restriction and hence functional specificity. While androgen receptors are broadly expressed by the nuclei of the vocal control system, estrogen receptor (ERα) expression is largely restricted to HVC and its adjacent mediocaudal neopallium. The geographic overlap of these receptor phenotypes in HVC provides the basis for a regionally-defined set of paracrine interactions between the vascular bed and neuronal progenitor pool that both characterize and distinguish this nucleus. These interactions culminate in the focal attraction of new neurons to the adult HVC, the integration of those neurons into the extant vocal control circuits, and ultimately the acquisition and elaboration of song.
Collapse
|
23
|
Voigt C, Leitner S. Testosterone-dependency of male solo song in a duetting songbird--evidence from females. Horm Behav 2013; 63:122-7. [PMID: 23085444 DOI: 10.1016/j.yhbeh.2012.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 09/04/2012] [Accepted: 10/10/2012] [Indexed: 12/24/2022]
Abstract
For male songbirds of the temperate zone there is a tight link between seasonal song behaviour and circulating testosterone levels. Such a relationship does not seem to hold for tropical species where singing can occur year-round and breeding seasons are often extended. White-browed sparrow weavers (Plocepasser mahali) are cooperatively breeding songbirds with a dominant breeding pair and male and female subordinates found in eastern and southern Africa. Each group defends an all-purpose territory year-round. While all group members sing duets and choruses, the most dominant male additionally sings a solo song that comprises a distinct and large syllable repertoire. Previous studies suggested this type of song being associated with reproduction but failed to support a relationship with males' circulating testosterone levels. The present study aimed to investigate the steroid hormone sensitivity of the solo song in more detail. We found that dominant males had significantly higher circulating testosterone levels than subordinates during the early and late breeding seasons. No changes in solo song characteristics were found between both time points. Further, experimental implantation of captive adult females with exogenous testosterone induced solo singing within one week of treatment. Such females produced male-typical song regarding overall structure and syllable composition. Sex differences existed, however, concerning singing activity, repertoire size and temporal organisation of song. These results suggest that solo singing in white-browed sparrow weavers is under the control of gonadal steroid hormones. Moreover, the behaviour is not male-specific but can be activated in females under certain conditions.
Collapse
Affiliation(s)
- Cornelia Voigt
- Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Eberhard-Gwinner-Strasse, D-82319 Seewiesen, Germany.
| | | |
Collapse
|
24
|
Ellis JMS, Riters LV. Patterns of FOS protein induction in singing female starlings. Behav Brain Res 2012; 237:148-56. [PMID: 23022365 DOI: 10.1016/j.bbr.2012.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 12/27/2022]
Abstract
Females of many songbird species produce song, but information about the neural correlates of singing behavior is limited in this sex. Although well studied in males, activity in premotor song control regions and social behavior regions has not been examined in females during song production. Here, we examined the immediate early gene protein product FOS in both song control and social behavior brain regions after female starlings defending nest boxes responded to an unfamiliar female in a naturalistic setting. We found that females that sang in response to the intruder had much higher numbers of fos-immunoreactive neurons (fos-ir) in the vocal control regions HVC, the robust nucleus of the arcopallium (RA), and the dorsomedial part of the nucleus intercollicularis (DM of the ICo). In HVC, fos-ir correlated positively with song length. In RA, DM and Area X, fos-ir correlated positively with number of songs produced. In social behavior regions, singers showed higher fos-ir in the nucleus taeniae of the amygdala, the dorsal part of the bed nucleus of the stria terminalis, and the ventromedial hypothalamus than non-singers. Overall, patterns of fos-ir in song control regions in females were similar to those reported for males, but differences in fos-ir were identified in social behavior regions. These differences may reflect a distinct role for brain regions involved in social behavior in female song, or they may reflect differences in the social function of female and male song.
Collapse
Affiliation(s)
- Jesse M S Ellis
- 426 Birge Hall, University of Wisconsin - Madison, Department of Zoology, 430 Lincoln Drive, Madison, WI 53706, USA.
| | | |
Collapse
|
25
|
Abstract
The fruitless (fru) gene in Drosophila plays a pivotal role in the formation of neural circuits underlying gender-specific behaviors. Specific labeling of fru expressing neurons has revealed a core circuit responsible for male courtship behavior.Females with a small number of masculinized neuronal clusters in their brain can initiate male-type courtship behavior. By examining the correlations between the masculinized neurons and behavioral gender type, a male-specific neuronal cluster,named P1, which coexpresses fru and double sex, was identified as a putative trigger center for male-type courtship behavior. P1 neurons extend dendrite to the lateral horn,where multimodal sensory inputs converge. Molecular studies suggest that fru determines the level of masculinization of neurons by orchestrating the transcription of a set of downstream genes, which remain to be identified.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences,Sendai, Japan.
| |
Collapse
|
26
|
Abstract
Cadherins, cell adhesion molecules widely expressed in the nervous system, are thought to be involved in synapse formation and function. To explore the role of cadherins in neuronal activity, we performed electrophysiological and morphological analyses of rat hippocampal cultured neurons overexpressing type-II cadherins, such as cadherin-6B and cadherin-7. We found that cadherin-6B increased but cadherin-7 decreased the number of protrusions of dendritic spines, and affected the frequency of miniature excitatory postsynaptic currents. Our results suggest that type-II cadherins may modulate neural activity by regulating neuronal morphology.
Collapse
|
27
|
Matsunaga E, Suzuki K, Kobayashi T, Okanoya K. Comparative analysis of mineralocorticoid receptor expression among vocal learners (Bengalese finch and budgerigar) and non-vocal learners (quail and ring dove) has implications for the evolution of avian vocal learning. Dev Growth Differ 2011; 53:961-70. [PMID: 22010640 DOI: 10.1111/j.1440-169x.2011.01302.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mineralocorticoid receptor is the receptor for corticosteroids such as corticosterone or aldosterone. Previously, we found that mineralocorticoid receptor was highly expressed in song nuclei of a songbird, Bengalese finch (Lonchura striata var. domestica). Here, to examine the relationship between mineralocorticoid receptor expression and avian vocal learning, we analyzed mineralocorticoid receptor expression in the developing brain of another vocal learner, budgerigar (Melopsittacus undulatus) and non-vocal learners, quail (Coturnix japonica) and ring dove (Streptopelia capicola). Mineralocorticoid receptor showed vocal control area-related expressions in budgerigars as Bengalese finches, whereas no such mineralocorticoid receptor expressions were seen in the telencephalon of non-vocal learners. Thus, these results suggest the possibility that mineralocorticoid receptor plays a role in vocal development of parrots as songbirds and that the acquisition of mineralocorticoid receptor expression is involved in the evolution of avian vocal learning.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako 351-0198 Japan.
| | | | | | | |
Collapse
|
28
|
Expression patterns of mineralocorticoid and glucocorticoid receptors in Bengalese finch (Lonchura striata var. domestica) brain suggest a relationship between stress hormones and song-system development. Neuroscience 2011; 194:72-83. [PMID: 21851851 DOI: 10.1016/j.neuroscience.2011.07.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 12/21/2022]
Abstract
Much evidence suggests that song traits function as an honest signal of male quality during mate choice in songbirds. Because songbirds learn vocalizations during the juvenile stage, development of the song system and song traits is affected by stressful conditions. However, it remains unknown how stressful conditions affect later song traits during development. To explore the relationship between glucocorticoids and song-system development, we performed in situ hybridization analysis of the glucocorticoid and mineralocorticoid receptors in juvenile and adult brains. The glucocorticoid receptor showed weak expression in song nuclei and strong expression in the hypothalamus, whereas the mineralocorticoid receptor showed strong song-nuclei-related expression. Thus, it appears that glucocorticoids are involved in song development directly by binding to receptors in song nuclei or indirectly by regulating sex hormones through hypothalamic hormones.
Collapse
|
29
|
Voigt C, Gahr M. Social status affects the degree of sex difference in the songbird brain. PLoS One 2011; 6:e20723. [PMID: 21687671 PMCID: PMC3110770 DOI: 10.1371/journal.pone.0020723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 05/11/2011] [Indexed: 01/08/2023] Open
Abstract
It is thought that neural sex differences are functionally related to sex differences in the behaviour of vertebrates. A prominent example is the song control system of songbirds. Inter-specific comparisons have led to the hypothesis that sex differences in song nuclei size correlate with sex differences in song behaviour. However, only few species with similar song behaviour in both sexes have been investigated and not all data fit the hypothesis. We investigated the proposed structure – function relationship in a cooperatively breeding and duetting songbird, the white-browed sparrow weaver (Plocepasser mahali). This species lives in groups of 2–10 individuals, with a dominant breeding pair and male and female subordinates. While all male and female group members sing duet and chorus song, a male, once it has reached the dominant position in the group, sings an additional type of song that comprises a distinct and large syllable repertoire. Here we show for both types of male – female comparisons a male-biased sex difference in neuroanatomy of areas of the song production pathway (HVC and RA) that does not correlate with the observed polymorphism in song behaviour. In contrast, in situ hybridisation of mRNA of selected genes expressed in the song nucleus HVC reveals a gene expression pattern that is either similar between sexes in female – subordinate male comparisons or female-biased in female – dominant male comparisons. Thus, the polymorphic gene expression pattern would fit the sex- and status-related song behaviour. However, this implies that once a male has become dominant it produces the duetting song with a different neural phenotype than subordinate males.
Collapse
Affiliation(s)
- Cornelia Voigt
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | | |
Collapse
|
30
|
Differences between vocalization evoked by social stimuli in feral cats and house cats. Behav Processes 2011; 87:183-9. [DOI: 10.1016/j.beproc.2011.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 02/21/2011] [Accepted: 03/21/2011] [Indexed: 11/22/2022]
|
31
|
Roth TC, Brodin A, Smulders TV, LaDage LD, Pravosudov VV. Is bigger always better? A critical appraisal of the use of volumetric analysis in the study of the hippocampus. Philos Trans R Soc Lond B Biol Sci 2010; 365:915-31. [PMID: 20156816 DOI: 10.1098/rstb.2009.0208] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A well-developed spatial memory is important for many animals, but appears especially important for scatter-hoarding species. Consequently, the scatter-hoarding system provides an excellent paradigm in which to study the integrative aspects of memory use within an ecological and evolutionary framework. One of the main tenets of this paradigm is that selection for enhanced spatial memory for cache locations should specialize the brain areas involved in memory. One such brain area is the hippocampus (Hp). Many studies have examined this adaptive specialization hypothesis, typically relating spatial memory to Hp volume. However, it is unclear how the volume of the Hp is related to its function for spatial memory. Thus, the goal of this article is to evaluate volume as a main measurement of the degree of morphological and physiological adaptation of the Hp as it relates to memory. We will briefly review the evidence for the specialization of memory in food-hoarding animals and discuss the philosophy behind volume as the main currency. We will then examine the problems associated with this approach, attempting to understand the advantages and limitations of using volume and discuss alternatives that might yield more specific hypotheses. Overall, there is strong evidence that the Hp is involved in the specialization of spatial memory in scatter-hoarding animals. However, volume may be only a coarse proxy for more relevant and subtle changes in the structure of the brain underlying changes in behaviour. To better understand the nature of this brain/memory relationship, we suggest focusing on more specific and relevant features of the Hp, such as the number or size of neurons, variation in connectivity depending on dendritic and axonal arborization and the number of synapses. These should generate more specific hypotheses derived from a solid theoretical background and should provide a better understanding of both neural mechanisms of memory and their evolution.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | | | | | | | | |
Collapse
|
32
|
Cassone VM, Paulose JK, Whitfield-Rucker MG, Peters JL. Time's arrow flies like a bird: two paradoxes for avian circadian biology. Gen Comp Endocrinol 2009; 163:109-16. [PMID: 19523398 PMCID: PMC2710421 DOI: 10.1016/j.ygcen.2009.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/29/2008] [Accepted: 01/13/2009] [Indexed: 01/29/2023]
Abstract
Biological timekeeping in birds is a fundamental feature of avian physiology, behavior and ecology. The physiological basis for avian circadian rhythmicity has pointed to a multi-oscillator system of mutually coupled pacemakers in the pineal gland, eyes and hypothalamic suprachiasmatic nuclei (SCN). In passerines, the role of the pineal gland and its hormone melatonin is particularly important. More recent molecular biological studies have pointed to a highly conserved mechanism involving rhythmic transcription and translation of "clock genes". However, studies attempting to reconcile the physiological role of pineal melatonin with molecular studies have largely failed. Recent work in our laboratory has suggested that melatonin-sensitive physiological processes are only loosely coupled to transcriptional oscillations. Similarly, although the pineal gland has been shown to be critical for overt circadian behaviors, its role in annual cycles of reproductive function appears to be minimal. Recent work on the seasonal control of birdsong, however, suggests that, although the pineal gland does not directly affect gonadal cycles, it is important for seasonal changes in song. Experimental analyses that address these paradoxes will shed light on the roles the biological clock play in birds and in vertebrates in general.
Collapse
Affiliation(s)
- Vincent M Cassone
- Department of Biology, Thomas Hunt Morgan Building, University of Kentucky, 675 Rose Street, Lexington, KY 40506, USA.
| | | | | | | |
Collapse
|
33
|
Derégnaucourt S, Saar S, Gahr M. Dynamics of crowing development in the domestic Japanese quail (Coturnix coturnix japonica). Proc Biol Sci 2009; 276:2153-62. [PMID: 19324760 PMCID: PMC2677600 DOI: 10.1098/rspb.2009.0016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 11/12/2022] Open
Abstract
Species-specific behaviours gradually emerge, via incomplete patterns, to the final complete adult form. A classical example is birdsong, a learned behaviour ideally suited for studying the neural and molecular substrates of vocal learning. Young songbirds gradually transform primitive unstructured vocalizations (subsong, akin to human babbling) into complex, stereotyped sequences of syllables that constitute adult song. In comparison with birdsong, territorial and mating calls of vocal non-learner species are thought to exhibit little change during development. We revisited this issue using the crowing behaviour of domestic Japanese quail (Coturnix coturnix japonica). Crowing activity was continuously recorded in young males maintained in social isolation from the age of three weeks to four months. We observed developmental changes in crow structure, both the temporal and the spectral levels. Speed and trajectories of these developmental changes exhibited an unexpected high inter-individual variability. Mechanisms used by quails to transform sounds during ontogeny resemble those described in oscines during the sensorimotor phase of song learning. Studies on vocal non-learners could shed light on the specificity and evolution of vocal learning.
Collapse
Affiliation(s)
- Sébastien Derégnaucourt
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, 82305 Starnberg (Seewiesen), Germany.
| | | | | |
Collapse
|
34
|
Matsunaga E, Okanoya K. Evolution and diversity in avian vocal system: An Evo-Devo model from the morphological and behavioral perspectives. Dev Growth Differ 2009; 51:355-67. [DOI: 10.1111/j.1440-169x.2009.01091.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Fusani L. Testosterone control of male courtship in birds. Horm Behav 2008; 54:227-33. [PMID: 18502420 DOI: 10.1016/j.yhbeh.2008.04.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 11/15/2022]
Abstract
A sequence of behaviours which we call courtship initiates reproduction in a large number of species. In vertebrates, as a component of male sexual behaviour courtship is strongly influenced by testicular androgen. Here I will review some salient issues about the regulation of courtship by testosterone in birds. The first section will briefly summarize the first 100 years of research on this topic. The specific role of testosterone or its oestrogenic metabolites in the control of different components of courtship will be the subject of the second section. Then, I will discuss how behavioural patterns can be recruited into courtship and modified in their structure by testosterone action. In the following section, the role of sexual selection and female choice in shaping the link between testosterone and courtship will be addressed. The problematic nature of the quantitative relationships between testosterone and behaviour will be topic of the fifth section. Finally, I will discuss how courtship traits that are activated by testosterone can be apparently independent of hormone blood concentrations. These issues will be examined in an evolutionary perspective, in an attempt to understand how natural and sexual selection have shaped the links between the hormone and the behaviour.
Collapse
Affiliation(s)
- Leonida Fusani
- Department of Biology and Evolution, University of Ferrara Via Luigi Borsari 46, 44100 Ferrara, Italy.
| |
Collapse
|