1
|
Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H. Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:98-116. [PMID: 28988233 DOI: 10.1159/000456646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Detection of motion is a feature essential to any living animal. In vertebrates, mechanosensory hair cells organized into the lateral line and vestibular systems are used to detect external water or head/body motion, respectively. While the neuronal components to detect these physical attributes are similar between the two sensory systems, the organizational pattern of the receptors in the periphery and the distribution of hindbrain afferent and efferent projections are adapted to the specific functions of the respective system. Here we provide a concise review comparing the functional organization of the vestibular and lateral line systems from the development of the organs to the wiring from the periphery and the first processing stages. The goal of this review is to highlight the similarities and differences to demonstrate how evolution caused a common neuronal substrate to adapt to different functions, one for the detection of external water stimuli and the generation of sensory maps and the other for the detection of self-motion and the generation of motor commands for immediate behavioral reactions.
Collapse
Affiliation(s)
- Boris P Chagnaud
- Ludwig-Maximilians-Universität München, Department Biology II, Division of Neurobiology, Martinsried-Planegg, Germany
| | | | | | | | | |
Collapse
|
2
|
Kanaya E, Yamahara K, Okano T, Yoshida A, Katsuno T, Takebayashi H, Ito J, Yamamoto N. Expression of the Olig gene family in the developing mouse inner ear. Gene Expr Patterns 2015; 17:79-86. [PMID: 25778822 DOI: 10.1016/j.gep.2015.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/15/2015] [Accepted: 03/07/2015] [Indexed: 10/23/2022]
Abstract
Transcription factors are believed to play key roles in determining cell fate in inner ear development. Olig genes, which are basic helix-loop-helix transcription factors, have been reported to play important roles in the development of the central nervous system. However, members of this family have not previously been implicated in inner ear development, despite the similarity between otocyst and neural tube development. Olig1 begins to be expressed at the ventral domain of the otocyst at embryonic day (E) 9.5, and Olig1 expression in the epithelium of the developing inner ear persists to E15.5. Olig2 expression is localized to the cochleovestibular ganglia from E12.5 through E14.5. Olig3 has a diffuse expression pattern in the developing inner ear from E12.5 through the postnatal stage. Furthermore, at early stages of inner ear development, the Olig1 expression domain overlaps a region that is positive for Sox2 and Jagged1. This observation indicates that Olig1 may play an important role in the specification of the prosensory domain in the developing inner ear. As Olig genes are expressed in the mouse developing inner ear in a temporospatially distinct fashion, they may play substantial roles in the regulation of mammalian inner ear development.
Collapse
Affiliation(s)
- Eriko Kanaya
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo, Kyoto 606-8507, Japan
| | - Kohei Yamahara
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo, Kyoto 606-8507, Japan
| | - Takayuki Okano
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo, Kyoto 606-8507, Japan
| | - Atsuhiro Yoshida
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo, Kyoto 606-8507, Japan
| | - Tatsuya Katsuno
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo, Kyoto 606-8507, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Asahimachi Chuo-ku, Niigata 951-8510, Japan
| | - Juichi Ito
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo, Kyoto 606-8507, Japan
| | - Norio Yamamoto
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo, Kyoto 606-8507, Japan.
| |
Collapse
|
3
|
Deng M, Pan L, Xie X, Gan L. Requirement for Lmo4 in the vestibular morphogenesis of mouse inner ear. Dev Biol 2009; 338:38-49. [PMID: 19913004 DOI: 10.1016/j.ydbio.2009.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 02/02/2023]
Abstract
During development, compartmentalization of an early embryonic structure produces blocks of cells with distinct properties and developmental potentials. The auditory and vestibular components of vertebrate inner ears are derived from defined compartments within the otocyst during embryogenesis. The vestibular apparatus, including three semicircular canals, saccule, utricle, and their associated sensory organs, detects angular and linear acceleration of the head and relays the information through vestibular neurons to vestibular nuclei in the brainstem. How the early developmental events manifest vestibular structures at the molecular level is largely unknown. Here, we show that LMO4, a LIM-domain-only transcriptional regulator, is required for the formation of semicircular canals and their associated sensory cristae. Targeted disruption of Lmo4 resulted in the dysmorphogenesis of the vestibule and in the absence of three semicircular canals, anterior and posterior cristae. In Lmo4-null otocysts, canal outpouches failed to form and cell proliferation was reduced in the dorsolateral region. Expression analysis of the known otic markers showed that Lmo4 is essential for the normal expression of Bmp4, Fgf10, Msx1, Isl1, Gata3, and Dlx5 in the dorsolateral domain of the otocyst, whereas the initial compartmentalization of the otocyst remains unaffected. Our results demonstrate that Lmo4 controls the development of the dorsolateral otocyst into semicircular canals and cristae through two distinct mechanisms: regulating the expression of otic specific genes and stimulating the proliferation of the dorsolateral part of the otocyst.
Collapse
Affiliation(s)
- Min Deng
- University of Rochester Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
4
|
Fritzsch B, Pauley S, Beisel KW. Cells, molecules and morphogenesis: the making of the vertebrate ear. Brain Res 2006; 1091:151-71. [PMID: 16643865 PMCID: PMC3904743 DOI: 10.1016/j.brainres.2006.02.078] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 02/15/2006] [Accepted: 02/15/2006] [Indexed: 01/19/2023]
Abstract
The development and evolution of mechanosensory cells and the vertebrate ear is reviewed with an emphasis on delineating the cellular, molecular and developmental basis of these changes. Outgroup comparisons suggests that mechanosensory cells are ancient features of multicellular organisms. Molecular evidence suggests that key genes involved in mechanosensory cell function and development are also conserved among metazoans. The divergent morphology of mechanosensory cells across phyla is interpreted here as 'deep molecular homology' that was in parallel shaped into different forms in each lineage. The vertebrate mechanosensory hair cell and its associated neuron are interpreted as uniquely derived features of vertebrates. It is proposed that the vertebrate otic placode presents a unique embryonic adaptation in which the diffusely distributed ancestral mechanosensory cells became concentrated to generate a large neurosensory precursor population. Morphogenesis of the inner ear is reviewed and shown to depend on genes expressed in and around the hindbrain that interact with the otic placode to define boundaries and polarities. These patterning genes affect downstream genes needed to maintain proliferation and to execute ear morphogenesis. We propose that fibroblast growth factors (FGFs) and their receptors (FGFRs) are a crucial central node to translate patterning into the complex morphology of the vertebrate ear. Unfortunately, the FGF and FGFR genes have not been fully analyzed in the many mutants with morphogenetic ear defects described thus far. Likewise, little information exists on the ear histogenesis and neurogenesis in many mutants. Nevertheless, a molecular mechanism is now emerging for the formation of the horizontal canal, an evolutionary novelty of the gnathostome ear. The existing general module mediating vertical canal growth and morphogenesis was modified by two sets of new genes: one set responsible for horizontal canal morphogenesis and another set for neurosensory formation of the horizontal crista and associated sensory neurons. The dramatic progress in deciphering the molecular basis of ear morphogenesis offers grounds for optimism for translational research toward intervention in human morphogenetic defects of the ear.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Creighton University, Department of Biomedical Sciences, 2500 California Plaza, Omaha, NE 68178, USA.
| | | | | |
Collapse
|
5
|
Kil SH, Streit A, Brown ST, Agrawal N, Collazo A, Zile MH, Groves AK. Distinct roles for hindbrain and paraxial mesoderm in the induction and patterning of the inner ear revealed by a study of vitamin-A-deficient quail. Dev Biol 2005; 285:252-71. [PMID: 16039643 DOI: 10.1016/j.ydbio.2005.05.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/25/2005] [Accepted: 05/25/2005] [Indexed: 01/22/2023]
Abstract
The hindbrain and cranial paraxial mesoderm have been implicated in the induction and patterning of the inner ear, but the precise role of the two tissues in these processes is still not clear. We have addressed these questions using the vitamin-A-deficient (VAD) quail model, in which VAD embryos lack the posterior half of the hindbrain that normally lies next to the inner ear. Using a battery of molecular markers, we show that the anlagen of the inner ear, the otic placode, is induced in VAD embryos in the absence of the posterior hindbrain. By performing grafting and ablation experiments in chick embryos, we also show that cranial paraxial mesoderm which normally lies beneath the presumptive otic placode is necessary for otic placode induction and that paraxial mesoderm from other locations cannot induce the otic placode. Two members of the fibroblast growth factor family, FGF3 and FGF19, continue to be expressed in this mesodermal population in VAD embryos, and these may be responsible for otic placode induction in the absence of the posterior hindbrain. Although the posterior hindbrain is not required for otic placode induction in VAD embryos, the subsequent patterning of the inner ear is severely disrupted. Several regional markers of the inner ear, such as Pax2, EphA4, SOHo1 and Wnt3a, are incorrectly expressed in VAD otocysts, and the sensory patches and vestibulo-acoustic ganglia are either greatly reduced or absent. Exogenous application of retinoic acid prior to 30 h of development is able rescue the VAD phenotype. By performing such rescue experiments before and after 30 h of development, we show that the inner ear defects of VAD embryos correlate with the absence of the posterior hindbrain. These results show that induction and patterning of the inner ear are governed by separate developmental processes that can be experimentally uncoupled from each other.
Collapse
Affiliation(s)
- Sung-Hee Kil
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 West 3rd Street, Los Angeles, CA 90057, USA
| | | | | | | | | | | | | |
Collapse
|