1
|
Shabkhizan R, Avci ÇB, Haiaty S, Moslehian MS, Sadeghsoltani F, Bazmani A, Mahdipour M, Takanlou LS, Takanlou MS, Zamani ARN, Rahbarghazi R. Metformin exerted tumoricidal effects on colon cancer tumoroids via the regulation of autophagy pathway. Stem Cell Res Ther 2025; 16:45. [PMID: 39901295 PMCID: PMC11792360 DOI: 10.1186/s13287-025-04174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Despite the existence of promising outcomes from standard 2D culture systems, these data are not completely akin to in vivo tumor parenchyma. Therefore, the development and fabrication of various 3D culture systems can in part mimic intricate cell-to-cell interaction within the real tumor mass. Here, we aimed to evaluate the tumoricidal impacts of metformin (MTF) on colorectal cancer (CRC) tumoroids in an in vitro system via the modulation of autophagy. METHODS CRC tumoroids were developed using human umbilical vein endothelial cells (HUVECs), adenocarcinoma HT29 cells, and fibroblasts (HFFF2) in a ratio of 1: 2: 1 and 2.5% methylcellulose. Tumoroids were exposed to different concentrations of MTF, ranging from 20 to 1000 mM, for 72 h. The survival rate was detected using an LDH release assay. The expression and protein levels of autophagy-related factors were measured using PCR array and western blotting, respectively. Using H & E, and immunofluorescence staining (Ki-67), the integrity and proliferation rate of CRC tumoroids were examined. RESULTS The current protocol yielded typical compact tumoroids with a dark central region. Despite slight changes in released LDH contents, no statistically significant differences were achieved in terms of cell toxicity in MTF-exposed groups compared to the control tumoroids, indicating the insufficiency of MTF in the induction of tumor cell death (p > 0.05). Western blotting indicated that the LC3II/I ratio was reduced in tumoroids exposed to 120 mM MTF (p < 0.05). These data coincided with the reduction of intracellular p62 content in MTF 120 mM-treated tumoroids compared to MTF 40 mM and control groups (p < 0.05). PCR array analysis confirmed the up-regulation, and down-regulation of several genes related to various signaling transduction pathways associated with autophagy machinery and shared effectors between autophagy and apoptosis in 40 and 120 mM MTF groups compared to the non-treated control group (p < 0.05). These changes were more prominent in tumoroids incubated with 120 mM MTF. Histological examination confirmed the loosening integrity of tumoroids in MTF-treated groups, especially 120 mM MTF, with the increase in cell death via the induction of apoptosis (chromatin marginalization) and necrotic (pyknotic nuclei) changes. In the 120 mM MTF group, spindle-shaped cells with the remnants of a fibrillar matrix were detected. Data indicated the reduction of proliferating Ki-67+ cells within the tumoroids by increasing the MTF concentration from 40 to 120 mM. CONCLUSIONS Different shared autophagy/apoptosis genes were modulated in CRC tumoroids after MTF treatment coinciding with both typical necrotic and apoptotic cells within the tumoroid structure. MTF can inhibit the integrity and proliferation of CRC tumoroids in dose-dependent manner.
Collapse
Affiliation(s)
- Roya Shabkhizan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Çığır Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y, Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, Cañadas I, Sethi G, Tergaonkar V, Wang L, Lin Y, Kang D, Klionsky DJ. Autophagy in cancer development, immune evasion, and drug resistance. Drug Resist Updat 2025; 78:101170. [PMID: 39603146 DOI: 10.1016/j.drup.2024.101170] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Macroautophagy/autophagy is a highly conserved evolutionary mechanism involving lysosomes for the degradation of cytoplasmic components including organelles. The constitutive, basal level of autophagy is fundamental for preserving cellular homeostasis; however, alterations in autophagy can cause disease pathogenesis, including cancer. The role of autophagy in cancer is particularly complicated, since this process acts both as a tumor suppressor in precancerous stages but facilitates tumor progression during carcinogenesis and later stages of cancer progression. This shift between anti-tumor and pro-tumor roles may be influenced by genetic and environmental factors modulating key pathways such as those involving autophagy-related proteins, the PI3K-AKT-MTOR axis, and AMPK, which often show dysregulation in tumors. Autophagy regulates various cellular functions, including metabolism of glucose, glutamine, and lipids, cell proliferation, metastasis, and several types of cell death (apoptosis, ferroptosis, necroptosis and immunogenic cell death). These multifaceted roles demonstrate the potential of autophagy to affect DNA damage repair, cell death pathways, proliferation and survival, which are critical in determining cancer cells' response to chemotherapy. Therefore, targeting autophagy pathways presents a promising strategy to combat chemoresistance, as one of the major reasons for the failure in cancer patient treatment. Furthermore, autophagy modulates immune evasion and the function of immune cells such as T cells and dendritic cells, influencing the tumor microenvironment and cancer's biological behavior. However, the therapeutic targeting of autophagy is complex due to its dual role in promoting survival and inducing cell death in cancer cells, highlighting the need for strategies that consider both the beneficial and detrimental effects of autophagy modulation in cancer therapy. Hence, both inducers and inhibitors of autophagy have been introduced for the treatment of cancer. This review emphasizes the intricate interplay between autophagy, tumor biology, and immune responses, offering insights into potential therapeutic approaches that deploy autophagy in the cancer suppression.
Collapse
Affiliation(s)
- Xuegang Niu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi You
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Kaijian Hou
- School of Public Health(Long Hu people hospital), Shantou University, Shantou, 515000, Guangdong, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL 60532, USA
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Sun F, Ali NN, Londoño-Vásquez D, Simintiras CA, Qiao H, Ortega MS, Agca Y, Takahashi M, Rivera RM, Kelleher AM, Sutovsky P, Patterson AL, Balboula AZ. Increased DNA damage in full-grown oocytes is correlated with diminished autophagy activation. Nat Commun 2024; 15:9463. [PMID: 39487138 PMCID: PMC11530536 DOI: 10.1038/s41467-024-53559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Unlike mild DNA damage exposure, DNA damage repair (DDR) is reported to be ineffective in full-grown mammalian oocytes exposed to moderate or severe DNA damage. The underlying mechanisms of this weakened DDR are unknown. Here, we show that moderate DNA damage in full-grown oocytes leads to aneuploidy. Our data reveal that DNA-damaged oocytes have an altered, closed, chromatin state, and suggest that the failure to repair damaged DNA could be due to the inability of DDR proteins to access damaged loci. Our data also demonstrate that, unlike somatic cells, mouse and porcine oocytes fail to activate autophagy in response to DNA double-strand break-inducing treatment, which we suggest may be the cause of the altered chromatin conformation and inefficient DDR. Importantly, autophagy activity is further reduced in maternally aged oocytes (which harbor severe DNA damage), and its induction is correlated with reduced DNA damage in maternally aged oocytes. Our findings provide evidence that reduced autophagy activation contributes to weakened DDR in oocytes, especially in those from aged females, offering new possibilities to improve assisted reproductive therapy in women with compromised oocyte quality.
Collapse
Affiliation(s)
- Fei Sun
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Nourhan Nashat Ali
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | - Constantine A Simintiras
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Masashi Takahashi
- Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Rocío M Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Amanda L Patterson
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Ahmed Z Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
4
|
El-Shoura EAM, Abdelzaher LA, Mahmoud NI, Farghaly OA, Sabry M, Girgis Shahataa M, Salem EA, Saad HM, Elhussieny O, Kozman MR, Atwa AM. Combined sulforaphane and β-sitosterol mitigate olanzapine-induced metabolic disorders in rats: Insights on FOXO, PI3K/AKT, JAK/STAT3, and MAPK signaling pathways. Int Immunopharmacol 2024; 140:112904. [PMID: 39116489 DOI: 10.1016/j.intimp.2024.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
One of the best antipsychotics for treating schizophrenia and bipolar disorders is olanzapine (OLA). However, its use is restricted owing to unfavorable adverse effects as liver damage, dyslipidemia, and weight gain. The primary objective of the present investigation was to examine the signaling mechanisms that underlie the metabolic disruption generated by OLA. Besides, the potential protective effect of sulforaphane (SFN) and β-sitosterol (βSS) against obesity and metabolic toxicity induced by OLA were inspected as well. A total of five groups of male Wistar rats were established, including the control, OLA, SFN+OLA, βSS+OLA, and the combination + OLA groups. Hepatic histopathology, biochemical analyses, ultimate body weights, liver function, oxidative stress, and pro-inflammatory cytokines were evaluated. In addition to the relative expression of FOXO, the signaling pathways for PI3K/AKT, JAK/STAT3, and MAPK were assessed as well. All biochemical and hepatic histopathological abnormalities caused by OLA were alleviated by SFN and/or βSS. A substantial decrease in systolic blood pressure (SBP), proinflammatory cytokines, serum lipid profile parameters, hepatic MDA, TBIL, AST, and ALT were reduced through SFN or/and βSS. To sum up, the detrimental effects of OLA are mediated by alterations in the Akt/FOXO3a/ATG12, Ras/SOS2/Raf-1/MEK/ERK1/2, and Smad3,4/TGF-β signaling pathways. The administration of SFN and/or βSS has the potential to mitigate the metabolic deficit, biochemical imbalances, hepatic histological abnormalities, and the overall unfavorable consequences induced by OLA by modulating the abovementioned signaling pathways.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nesreen I Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Omar A Farghaly
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Egypt
| | - Mostafa Sabry
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Egypt
| | - Mary Girgis Shahataa
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom, 32511, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh 51744, Egypt
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh 51744, Egypt
| | - Magy R Kozman
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12563, Egypt
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Ayen Iraqi University, Thi-Qar 64001, Iraq
| |
Collapse
|
5
|
An D, Han J, Fang P, Bu Y, Ji G, Liu M, Deng J, Song X. Evidence for the potential role of m6A modification in regulating autophagy in models of amyotrophic lateral sclerosis. Cytojournal 2024; 21:33. [PMID: 39411168 PMCID: PMC11474754 DOI: 10.25259/cytojournal_101_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Objective Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. Research indicates that N6-methyladenosine (m6A) modification plays a crucial role in cellular autophagy during ALS development. This study investigates the role of autophagy in ALS, with a focus on the effect of messenger ribonucleic acid m6A methylation modification on disease progression. Material and Methods We compared m6A levels and regulatory molecule expressions in transgenic superoxide dismutase (SOD1)-G93A and non-transgenic mice, categorized into end-stage and control groups, using quantitative polymerase chain reaction and Western blotting. The NSC-34 cell line, which was modified to model ALS, enabled the investigation of apoptosis, autophagy, and autophagy disruption through terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assays, Western blotting, and fluorescent staining. Results Our findings indicate significantly elevated m6A methylation levels in ALS mice (0.262 ± 0.005) compared with the controls (0.231 ± 0.003) and in the ALS model cells (0.242±0.005) relative to those belonging to the wild-type control group (0.183 ± 0.007). Furthermore, the proteins involved in m6A RNA modification differed between groups, which suggest impaired autophagy flux in the ALS models. Conclusion These results suggest that m6A methylation may accelerate ALS progression through the disruption of autophagic processes. Our study underscores the role of m6A methylation in the pathology of ALS and proposes the targeting of m6A methylation as a potential therapeutic strategy for disease treatment. Although this study primarily used transgenic SOD1-G93A mice and NSC-34 cell models to investigate ALS pathology, potential differences in disease mechanisms between animal models and humans must be considered. Although a correlation was detected between m6A methylation levels and autophagy disruption in ALS, the study primarily established an association rather than provided detailed mechanistic insights.
Collapse
Affiliation(s)
- Di An
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Jingzhe Han
- Department of Neurology, Hengshui People’s Hospital, Hengshui, Hebei, China
| | - Pingping Fang
- Department of Neurology, Handan Central Hospital, Handan, Hebei, China
| | - Yi Bu
- Department of Neurology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mingjuan Liu
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinliang Deng
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Wang LY, Liu XJ, Li QQ, Zhu Y, Ren HL, Song JN, Zeng J, Mei J, Tian HX, Rong DC, Zhang SH. The romantic history of signaling pathway discovery in cell death: an updated review. Mol Cell Biochem 2024; 479:2255-2272. [PMID: 37851176 DOI: 10.1007/s11010-023-04873-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Cell death is a fundamental physiological process in all living organisms. Processes such as embryonic development, organ formation, tissue growth, organismal immunity, and drug response are accompanied by cell death. In recent years with the development of electron microscopy as well as biological techniques, especially the discovery of novel death modes such as ferroptosis, cuprotosis, alkaliptosis, oxeiptosis, and disulfidptosis, researchers have been promoted to have a deeper understanding of cell death modes. In this systematic review, we examined the current understanding of modes of cell death, including the recently discovered novel death modes. Our analysis highlights the common and unique pathways of these death modes, as well as their impact on surrounding cells and the organism as a whole. Our aim was to provide a comprehensive overview of the current state of research on cell death, with a focus on identifying gaps in our knowledge and opportunities for future investigation. We also presented a new insight for macroscopic intracellular survival patterns, namely that intracellular molecular homeostasis is central to the balance of different cell death modes, and this viewpoint can be well justified by the signaling crosstalk of different death modes. These concepts can facilitate the future research about cell death in clinical diagnosis, drug development, and therapeutic modalities.
Collapse
Affiliation(s)
- Lei-Yun Wang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Xing-Jian Liu
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Qiu-Qi Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Ying Zhu
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Hui-Li Ren
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Jia-Nan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jun Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Hui-Xiang Tian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Ding-Chao Rong
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, Guangdong, People's Republic of China.
| | - Shao-Hui Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China.
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Guo W, Zhou H, Wang J, Lu J, Dong Y, Kang Z, Qiu X, Ouyang X, Chen Q, Li J, Cheng X, Du K, Li M, Lin Z, Jin M, Zhang L, Sarapultsev A, Shi K, Li F, Zhang G, Wu K, Rong Y, Heissmeyer V, Liu Y, Li Y, Huang K, Luo S, Hu D. Aloperine Suppresses Cancer Progression by Interacting with VPS4A to Inhibit Autophagosome-lysosome Fusion in NSCLC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308307. [PMID: 39166458 PMCID: PMC11336898 DOI: 10.1002/advs.202308307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/12/2024] [Indexed: 08/23/2024]
Abstract
Aloperine (ALO), a quinolizidine-type alkaloid isolated from a natural Chinese herb, has shown promising antitumor effects. Nevertheless, its common mechanism of action and specific target remain elusive. Here, it is demonstrated that ALO inhibits the proliferation and migration of non-small cell lung cancer cell lines in vitro and the tumor development in several mouse tumor models in vivo. Mechanistically, ALO inhibits the fusion of autophagosomes with lysosomes and the autophagic flux, leading to the accumulation of sequestosome-1 (SQSTM1) and production of reactive oxygen species (ROS), thereby inducing tumor cell apoptosis and preventing tumor growth. Knockdown of SQSTM1 in cells inhibits ROS production and reverses ALO-induced cell apoptosis. Furthermore, VPS4A is identified as a direct target of ALO, and the amino acids F153 and D263 of VPS4A are confirmed as the binding sites for ALO. Knockout of VPS4A in H1299 cells demonstrates a similar biological effect as ALO treatment. Additionally, ALO enhances the efficacy of the anti-PD-L1/TGF-β bispecific antibody in inhibiting LLC-derived subcutaneous tumor models. Thus, ALO is first identified as a novel late-stage autophagy inhibitor that triggers tumor cell death by targeting VPS4A.
Collapse
Affiliation(s)
- Weina Guo
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
- Department of Laboratory MedicineWuhan Children's Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Junjie Lu
- Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyang441000China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Zhenyu Kang
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Xiaoyuan Qiu
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Xiang Cheng
- Hubei Key Laboratory of Biological Targeted TherapyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Keye Du
- Department of NeurosurgeryUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Mingyue Li
- Department of GastroenterologyZhongda Hospital, Southeast UniversityNanjing210000China
| | - Zhihao Lin
- Institute of Neuroscience, School of MedicineXiamen UniversityXiamen361000China
| | - Min Jin
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250014China
| | - Alexey Sarapultsev
- School of Medical BiologySouth Ural State UniversityChelyabinsk454087Russia
| | - Kuangyu Shi
- Department of Nuclear MedicineUniversity of BernBern3007Switzerland
| | - Fangfei Li
- Shum Yiu Foon Sum Bik Chuen Memorial Centre for Cancer and Inflammation Research School of Chinese MedicineHong Kong Baptist UniversityHong KongSAR999077China
| | - Ge Zhang
- Institute of Integrated Bioinfomedicine and Translational ScienceSchool of Chinese MedicineHong Kong Baptist UniversityHong KongSAR999077China
| | - Kongming Wu
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Yueguang Rong
- School of Basic Medicine of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Vigo Heissmeyer
- Institute for Immunology Biomedical CenterLudwig‐Maximilians‐Universität München82152Planegg‐MartinsriedGermany
| | - Yue Liu
- Cardiovascular Disease CenterXiyuan hospital of China academy of Chinese medical SciencesBeijing100102China
| | - Yunlun Li
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250014China
- Innovation Research Institute of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinan250355China
| | - Kun Huang
- School of Pharmacy of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shanshan Luo
- Institute of Hematology, Union HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
- Hubei Key Laboratory of Biological Targeted TherapyChina‐Russia Medical Research Center for Stress ImmunologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| |
Collapse
|
8
|
Jin S, Kang PM. A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:923. [PMID: 39199169 PMCID: PMC11351257 DOI: 10.3390/antiox13080923] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress plays a significant role in the pathogenesis of cardiovascular diseases, such as myocardial ischemia/reperfusion injury, atherosclerosis, heart failure, and hypertension. This systematic review aims to integrate most relevant studies on oxidative stress management in cardiovascular diseases. We searched relevant literatures in the PubMed database using specific keywords. We put emphasis on those manuscripts that were published more recently and in higher impact journals. We reviewed a total of 200 articles. We examined current oxidative stress managements in cardiovascular diseases, including supplements like resveratrol, vitamins C and E, omega-3 fatty acids, flavonoids, and coenzyme-10, which have shown antioxidative properties and potential cardiovascular benefits. In addition, we reviewed the pharmacological treatments including newly discovered antioxidants and nanoparticles that show potential effects in targeting the specific oxidative stress pathways. Lastly, we examined biomarkers, such as soluble transferrin receptor, transthyretin, and cystatin C in evaluating antioxidant status and identifying cardiovascular risk. By addressing oxidative stress management and mechanisms, this paper emphasizes the importance of maintaining the balance between oxidants and antioxidants in the progression of cardiovascular diseases. This review paper is registered with the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY), registration # INPLASY202470064.
Collapse
Affiliation(s)
- Soyeon Jin
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA
| |
Collapse
|
9
|
Esrefoglu M. Harnessing autophagy: A potential breakthrough in digestive disease treatment. World J Gastroenterol 2024; 30:3036-3043. [PMID: 38983959 PMCID: PMC11230060 DOI: 10.3748/wjg.v30.i24.3036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
Autophagy, a conserved cellular degradation process, is crucial for various cellular processes such as immune responses, inflammation, metabolic and oxidative stress adaptation, cell proliferation, development, and tissue repair and remodeling. Dysregulation of autophagy is suspected in numerous diseases, including cancer, neurodegenerative diseases, digestive disorders, metabolic syndromes, and infectious and inflammatory diseases. If autophagy is disrupted, for example, this can have serious consequences and lead to chronic inflammation and tissue damage, as occurs in diseases such as Chron's disease and ulcerative colitis. On the other hand, the influence of autophagy on the development and progression of cancer is not clear. Autophagy can both suppress and promote the progression and metastasis of cancer at various stages. From inflammatory bowel diseases to gastrointestinal cancer, researchers are discovering the intricate role of autophagy in maintaining gut health and its potential as a therapeutic target. Researchers should carefully consider the nature and progression of diseases such as cancer when trying to determine whether inhibiting or stimulating autophagy is likely to be beneficial. Multidisciplinary approaches that combine cutting-edge research with clinical expertise are key to unlocking the full therapeutic potential of autophagy in digestive diseases.
Collapse
Affiliation(s)
- Mukaddes Esrefoglu
- Department of Histology and Embryology, Bezmialem Vakif University Medical Faculty, Istanbul 34093, Türkiye
| |
Collapse
|
10
|
Soraksa N, Heebkaew N, Promjantuek W, Kunhorm P, Kaokean P, Chaicharoenaudomung N, Noisa P. Cordycepin, a bioactive compound from Cordyceps spp., moderates Alzheimer's disease-associated pathology via anti-oxidative stress and autophagy activation. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:583-603. [PMID: 37735930 DOI: 10.1080/10286020.2023.2258797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
Alzheimer's causes cognitive dysfunction. This study investigated the neuro-promoting effects of cordycepin on amyloid-beta precursor protein (APP) synthesis in human neuroblastoma SH-SY5Y cells. Cordycepin was found to boost SH-SY5Y cell proliferation and decreased AD pathology. APP, PS1, and PS2 were downregulated whereas ADAM10 and SIRT1 were upregulated by cordycepin. Cordycepin also reduced APP secretion in a dose-dependent manner. Cordycepin alleviated oxidative stress by the upregulation of GPX and SOD, as well as autophagy genes (LC3, ATG5, and ATG12). Cordycepin activity was also found to be SIRT1-dependent. Therefore, cordycepin may relieve the neuronal degeneration caused by APP overproduction, and oxidative stress.
Collapse
Affiliation(s)
- Natchadaporn Soraksa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nudjanad Heebkaew
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Palakorn Kaokean
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nipha Chaicharoenaudomung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
11
|
Wen S, Wang L. Cadmium neurotoxicity and therapeutic strategies. J Biochem Mol Toxicol 2024; 38:e23670. [PMID: 38432689 DOI: 10.1002/jbt.23670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Cadmium (Cd) is a multitarget, carcinogenic, nonessential environmental pollutant. Due to its toxic effects at very low concentrations, lengthy biological half-life, and low excretion rate, exposure to Cd carries a concern. Prolonged exposure to Cd causes severe injury to the nervous system of both humans and animals. Nevertheless, the precise mechanisms responsible for the neurotoxic effects of Cd have yet to be fully elucidated. The accurate chemical mechanism potentially entails the destruction of metal-ion homeostasis, inducing oxidative stress, apoptosis, and autophagy. Here we review the evidence of the neurotoxic effects of Cd and corresponding strategies to protect against Cd-induced central nervous system injury.
Collapse
Affiliation(s)
- Shuangquan Wen
- Suzhou Chien-Shiung Institute of Technology, Taicang, China
- Veterinarian Clinical Diagnosis Study Group, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Liang Wang
- Suzhou Chien-Shiung Institute of Technology, Taicang, China
| |
Collapse
|
12
|
Tan XL, Wang Z, Liao S, Yi M, Tao D, Zhang X, Leng X, Shi J, Xie S, Yang Y, Liu YQ. NR0B1 augments sorafenib resistance in hepatocellular carcinoma through promoting autophagy and inhibiting apoptosis. Cancer Sci 2024; 115:465-476. [PMID: 37991109 PMCID: PMC10859617 DOI: 10.1111/cas.16029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
NR0B1 is frequently activated in hepatocellular carcinoma (HCC). However, the role of NR0B1 is controversial in HCC. In this study, we observed that NR0B1 was an independent poor prognostic factor, negatively correlated with the overall survival of HCC and the relapse-free survival of patients treated with sorafenib. Meanwhile, NR0B1 promoted the proliferation, migration, and invasion of HCC cells, inhibited sorafenib-induced apoptosis, and elevated the IC50 of sorafenib in HCC cells. NR0B1 was further displayed to increase sorafenib-induced autophagic vesicles and activate Beclin1/LC3-II-dependent autophagy pathway. Finally, NR0B1 was revealed to transcriptionally suppress GSK3β that restrains AMPK/mTOR-driven autophagy and increases BAX-mediated apoptosis. Collectively, our study uncovered that the ectopic expression of NR0B1 augmented sorafenib-resistance in HCC cells by activating autophagy and inhibiting apoptosis. Our findings supported that NR0B1 was a detrimental factor for HCC prognosis.
Collapse
Affiliation(s)
- Xiao lan Tan
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhaokun Wang
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Shunyao Liao
- Institute of Gerontology and Center for Geriatrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ming Yi
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Dachang Tao
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Xinyue Zhang
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Xiangyou Leng
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Jiaying Shi
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Shengyu Xie
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Yuan Yang
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Yun qiang Liu
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
13
|
Yang X, Liang J, Shu Y, Wei L, Wen C, Luo H, Ma L, Qin T, Wang B, Zeng S, Liu Y, Zhou C. Asperosaponin VI facilitates the regeneration of skeletal muscle injury by suppressing GSK-3β-mediated cell apoptosis. J Cell Biochem 2024; 125:115-126. [PMID: 38079224 DOI: 10.1002/jcb.30510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 01/16/2024]
Abstract
Asperosaponin VI (ASA VI) is a bioactive triterpenoid saponin extracted from Diptychus roots, of Diptyl, and has previously shown protective functions in rheumatoid arthritis and sepsis. This study investigates the effects and molecular mechanisms of ASA VI on skeletal muscle regeneration in a cardiotoxin (CTX)-induced skeletal muscle injury mouse model. Mice were subjected to CTX-induced injury in the tibialis anterior and C2C12 myotubes were treated with CTX. Muscle fiber histology was analyzed at 7 and 14 days postinjury. Apoptosis and autophagy-related protein expression were evaluated t s by Western blot, and muscle regeneration markers were quantified by quantitative polymerase chain reaction. Docking studies, cell viability assessments, and glycogen synthase kinase-3β (GSK-3β) activation analyses were performed to elucidate the mechanism. ASA VI was observed to improve muscle interstitial fibrosis, remodeling, and performance in CTX-treated mice, thereby increased skeletal muscle size, weight, and locomotion. Furthermore, ASA VI modulated the expression of apoptosis and autophagy-related proteins through GSK-3β inhibition and activated the transcription of regeneration genes. Our results suggest that ASA VI mitigates skeletal muscle injury by modulating apoptosis and autophagy via GSK-3β signaling and promotes regeneration, thus presenting a probable therapeutic agent for skeletal muscle injury.
Collapse
Affiliation(s)
- Xinru Yang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Liang
- Department of Pediatrics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yue Shu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Linlin Wei
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Cailing Wen
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Luo
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Liqing Ma
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tian Qin
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Siyu Zeng
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ying Liu
- Department of Pharmacology, School of Pharmacy, Macau University of Science and Technology, Taipa, Macao, China
- Department of Pharmacology, School of Pharmacy, Guangzhou Xinhua University, Guangzhou, China
| | - Chun Zhou
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Anitha K, Chenchula S, Shama N, Mishra N, Singh MK, Radhika C. Molecular Mechanisms of Autophagy Regulation in Cancer. CANCER DRUG DISCOVERY AND DEVELOPMENT 2024:73-93. [DOI: 10.1007/978-3-031-66421-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Takasaki T, Utsumi R, Shimada E, Bamba A, Hagihara K, Satoh R, Sugiura R. Atg1, a key regulator of autophagy, functions to promote MAPK activation and cell death upon calcium overload in fission yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:133-140. [PMID: 37275474 PMCID: PMC10236205 DOI: 10.15698/mic2023.06.798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Autophagy promotes or inhibits cell death depending on the environment and cell type. Our previous findings suggested that Atg1 is genetically involved in the regulation of Pmk1 MAPK in fission yeast. Here, we showed that Δatg1 displays lower levels of Pmk1 MAPK phosphorylation than did the wild-type (WT) cells upon treatment with a 1,3-β-D-glucan synthase inhibitor micafungin or CaCl2, both of which activate Pmk1. Moreover, the overproduction of Atg1, but not that of the kinase inactivating Atg1D193A activates Pmk1 without any extracellular stimuli, suggesting that Atg1 may promote Pmk1 MAPK signaling activation. Notably, the overproduction of Atg1 induces a toxic effect on the growth of WT cells and the deletion of Pmk1 failed to suppress the cell death induced by Atg1, indicating that the Atg1-mediated cell death requires additional mechanism(s) other than Pmk1 activation. Moreover, atg1 gene deletion induces tolerance to micafungin and CaCl2, whereas pmk1 deletion induces severe sensitivities to these compounds. The Δatg1Δpmk1 double mutants display intermediate sensitivities to these compounds, showing that atg1 deletion partly suppressed growth inhibition induced by Δpmk1. Thus, Atg1 may act to promote cell death upon micafungin and CaCl2 stimuli regardless of Pmk1 MAPK activity. Since micafungin and CaCl2 are intracellular calcium inducers, our data reveal a novel role of the autophagy regulator Atg1 to induce cell death upon calcium overload independent of its role in Pmk1 MAPK activation.
Collapse
Affiliation(s)
- Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Ryosuke Utsumi
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Erika Shimada
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Asuka Bamba
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Kanako Hagihara
- Laboratory of Hygienic Science, Department of Pharmacy, Hyogo Medical University, Kobe, 650-8530, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| |
Collapse
|
16
|
Błaszczyk F, Sosinka A, Wilczek G, Student S, Rost-Roszkowska M. Effect of gluten on the digestive tract and fat body of Telodeinopus aoutii (Diplopoda). J Morphol 2023; 284:e21546. [PMID: 36533734 DOI: 10.1002/jmor.21546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Adult specimens or larvae of invertebrates used as food for vertebrates are often maintained close to gluten so they might become vectors for cereal proteins. However, the tissues and internal organs can respond differently in animals with different feeding habits. The midgut epithelium might be a first and sufficient barrier preventing uptake and effects of gluten on the whole body, while the fat body is the main organ that accumulates different xenobiotics. Good models for such research are animals that do not feed on gluten-rich products in their natural environment. The project's goal was to investigate alterations in the midgut epithelium and fat body of the herbivorous millipede Telodeinopus aoutii (Diplopoda) and analyze cell death processes activated by gluten. It enabled us to determine whether changes were intensified or reversed by adaptive mechanisms. Adult specimens were divided into control and experimental animals fed with mushrooms supplemented with gluten and analyzed using transmission electron microscopy, flow cytometry, and confocal microscopy. Two organs were isolated for the qualitative and quantitative analysis: the midgut and the fat body. Our study of the herbivorous T. aoutii which does not naturally feed on gluten containing diet showed that continuous and prolonged gluten feeding activates repair processes that inhibit the processes of cell death (apoptosis and necrosis) and induce an increase in cell viability.
Collapse
Affiliation(s)
- Florentyna Błaszczyk
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Agnieszka Sosinka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Grażyna Wilczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Sebastian Student
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland.,Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
17
|
Cho Y, Jeong YJ, Song KH, Chung IK, Magae J, Kwon TK, Choi YH, Kwak JY, Chang YC. 4-O-Methylascochlorin-Mediated BNIP-3 Expression Controls the Balance of Apoptosis and Autophagy in Cervical Carcinoma Cells. Int J Mol Sci 2022; 23:ijms232315138. [PMID: 36499465 PMCID: PMC9736141 DOI: 10.3390/ijms232315138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
4-O-methylascochlorin (MAC) is a 4-fourth carbon-substituted derivative of ascochlorin, a compound extracted from a phytopathogenic fungus Ascochyta viciae. MAC induces apoptosis and autophagy in various cancer cells, but the effects of MAC on apoptosis and autophagy in cervical cancer cells, as well as how the interaction between apoptosis and autophagy mediates the cellular anticancer effects are not known. Here, we investigated that MAC induced apoptotic cell death of cervical cancer cells without regulating the cell cycle and promoted autophagy by inhibiting the phosphorylation of serine-threonine kinase B (Akt), mammalian target of rapamycin (mTOR), and 70-kDa ribosomal protein S6 kinase (p70S6K). Additional investigations suggested that Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP-3), but not Hypoxia-inducible factor 1 alpha (HIF-1α), is a key regulator of MAC-induced apoptosis and autophagy. BNIP-3 siRNA suppressed MAC-induced increases in cleaved- poly (ADP-ribose) polymerase (PARP) and LC3II expression. The pan-caspase inhibitor Z-VAD-FMK suppressed MAC-induced cell death and enhanced MAC-induced autophagy. The autophagy inhibitor chloroquine (CQ) enhanced MAC-mediated cell death by increasing BNIP-3 expression. These results indicate that MAC induces apoptosis to promote cell death and stimulates autophagy to promote cell survival by increasing BNIP-3 expression. This study also showed that co-treatment of cells with MAC and CQ further enhanced the death of cervical cancer cells.
Collapse
Affiliation(s)
- Yuna Cho
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Kwon-Ho Song
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Il-Kyung Chung
- Department of Biotechnology, Catholic University of Daegu, Gyeongsan-Si 38430, Republic of Korea
| | - Junji Magae
- Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263, Japan
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
- Correspondence:
| |
Collapse
|
18
|
Kumar G, Duggisetty SC, Srivastava A. A Review of Mechanics-Based Mesoscopic Membrane Remodeling Methods: Capturing Both the Physics and the Chemical Diversity. J Membr Biol 2022; 255:757-777. [PMID: 36197492 DOI: 10.1007/s00232-022-00268-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022]
Abstract
Specialized classes of proteins, working together in a tightly orchestrated manner, induce and maintain highly curved cellular and organelles membrane morphology. Due to the various experimental constraints, including the resolution limits of imaging techniques, it is non-trivial to accurately elucidate interactions among the various components involved in membrane deformation. The spatial and temporal scales of the systems also make it formidable to investigate them using simulations with molecular details. Interestingly, mechanics-based mesoscopic models have been used with great success in recapitulating the membrane deformations observed in experiments. In this review, we collate together and discuss the various mechanics-based mesoscopic models for protein-mediated membrane deformation studies. In particular, we provide an elaborate description of a mesoscopic model where the membrane is modeled as a triangulated sheet and proteins are represented as either nematics or filaments. This representation allows us to explore the various aspects of protein-protein and protein-membrane interactions as well as examine the underlying mechanistic pathways for emergent behavior such as curvature-mediated protein localization and membrane deformation. We also put forward current efforts in the field towards back-mapping these mesoscopic models to finer-grained particle-based models-a framework that could be used to explore how molecular interactions propagate to physical scales and vice-versa. We end the review with an integrative-modeling-based road map where experimental imaging micrograph and biochemical data are combined with mesoscopic and molecular simulations methods in a theoretically consistent manner to faithfully recapitulate the multiple length and time scales in the membrane remodeling processes.
Collapse
Affiliation(s)
- Gaurav Kumar
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, C. V. Raman Road, Bangalore, Karnataka, 560012, India
| | - Satya Chaithanya Duggisetty
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, C. V. Raman Road, Bangalore, Karnataka, 560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, C. V. Raman Road, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
19
|
Rotimi DE, Singh SK. Interaction between apoptosis and autophagy in testicular function. Andrologia 2022; 54:e14602. [PMID: 36161318 DOI: 10.1111/and.14602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/27/2022] Open
Abstract
Several processes including oxidative stress, apoptosis, inflammation and autophagy are related to testicular function. Recent studies indicate that a crosstalk between apoptosis and autophagy is essential in regulating testicular function. Autophagy and apoptosis communicate with each other in a complex way, allowing them to work for or against each other in testicular cell survival and death. Several xenobiotics especially endocrine-disrupting chemicals (EDCs) have caused reproductive toxicity because of their potential to modify the rate of autophagy and trigger apoptosis. Therefore, the purpose of the present review was to shed light on how autophagy and apoptosis interact together in the testis.
Collapse
Affiliation(s)
- Damilare E Rotimi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu-Aran, Nigeria.,Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
20
|
Wang X, Yin Y, Qian W, Peng C, Shen S, Wang T, Zhao S. Citric acid of ovarian cancer metabolite induces pyroptosis via the caspase-4/TXNIP-NLRP3-GSDMD pathway in ovarian cancer. FASEB J 2022; 36:e22362. [PMID: 35608902 DOI: 10.1096/fj.202101993rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022]
Abstract
Malignant tumors display profound changes in cellular metabolism, yet how these altered metabolites affect the development and growth of tumors is not fully understood. Here, we used metabolomics to analyze the metabolic profile differences in ovarian cancer and found that citric acid (CA) is the most significantly downregulated metabolite. Recently, CA has been reported to inhibit the growth of a variety of tumor cells, but whether it is involved in pyroptosis of ovarian cancer and its potential molecular mechanisms still remains to be further investigated. Here, we demonstrated that CA inhibits the growth of ovarian cancer cells in a dose-dependent manner. RNA-seq analysis revealed that CA significantly promoted the expression of thioredoxin interacting protein (TXNIP) and caspase-4 (CASP4). Morphologic examination by transmission electron microscopy indicated that CA-treated ovarian cancer cells exhibited typical pyroptosis characteristics. Further mechanistic analyses showed that CA facilitates pyroptosis via the CASP4/TXNIP-NLRP3-Gesdermin-d (GSDMD) pathway in ovarian cancer. This study elucidated that CA induces ovarian cancer cell death through classical and non-classical pyroptosis pathways, which may be beneficial as an ovarian cancer therapy.
Collapse
Affiliation(s)
- Xiaogang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yuxin Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Wei Qian
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Chen Peng
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Lan T, Wu Y, Zhang Y, Li S, Zhu Z, Wang L, Mao X, Li Y, Fan C, Wang W, Yu SY. Agomelatine rescues lipopolysaccharide-induced neural injury and depression-like behaviors via suppression of the Gαi-2-PKA-ASK1 signaling pathway. J Neuroinflammation 2022; 19:117. [PMID: 35610704 PMCID: PMC9131561 DOI: 10.1186/s12974-022-02479-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Agomelatine has been shown to be effective in the treatment of depression, but the molecular mechanisms underlying its antidepressant effects have yet to be elucidated. Identification of these molecular mechanisms would not only offer new insights into the basis for depression but also provide the foundation for the development of novel treatments for this disorder. METHODS Intraperitoneal injection of LPS was used to induce depression-like behaviors in rats. The interactions of the 5-HT2C reporter and Gαi-2 were verified by immunoprecipitation or immunofluorescence assay. Inflammatory related proteins, autophagy related proteins and apoptosis markers were verified by immunoblotting or immunofluorescence assay. Finally, electron microscopy analysis was used to observe the synapse and ultrastructural pathology. RESULTS Here, we found that the capacity for agomelatine to ameliorate depression and anxiety in a lipopolysaccharide (LPS)-induced rat model of depression was associated with an alleviation of neuroinflammation, abnormal autophagy and neuronal apoptosis as well as the promotion of neurogenesis in the hippocampal dentate gyrus (DG) region of these rats. We also found that the 5-HT2C receptor is coupled with G alphai (2) (Gαi-2) protein within hippocampal neurons and, agomelatine, acting as a 5-HT2C receptor antagonist, can up-regulate activity of the Gαi-2-cAMP-PKA pathway. Such events then suppress activation of the apoptosis signal-regulating kinase 1 (ASK1) pathway, a member of the mitogen-activated protein kinase (MAPK) family involved in pathological processes of many diseases. CONCLUSION Taken together, these results suggest that agomelatine plays a neuroprotective role in regulating neuroinflammation, autophagy disorder and apoptosis in this LPS-induced rat model of depression, effects which are associated with the display of antidepressant behaviors. These findings provide evidence for some of the potential mechanisms for the antidepressant effects of agomelatine.
Collapse
Affiliation(s)
- Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Yuhan Wu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Yulei Zhang
- Jinan International Travel Healthcare Center, Wenhuadonglu Road 62#, Jinan, Shandong Province, 250012, People's Republic of China
| | - Shuhan Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Zhanpeng Zhu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Liyan Wang
- Morphological Experimental Center, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Xueqin Mao
- Department of Psychology, Qilu Hospital of Shandong University, 107 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Ye Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Cuiqin Fan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Wenjing Wang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Shu Yan Yu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China. .,Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China.
| |
Collapse
|
22
|
CDDO-Me Attenuates Clasmatodendrosis in CA1 Astrocyte by Inhibiting HSP25-AKT Mediated DRP1-S637 Phosphorylation in Chronic Epilepsy Rats. Int J Mol Sci 2022; 23:ijms23094569. [PMID: 35562960 PMCID: PMC9105539 DOI: 10.3390/ijms23094569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Clasmatodendrosis is one of the irreversible astroglial degeneration, which is involved in seizure duration and its progression in the epileptic hippocampus. Although sustained heat shock protein 25 (HSP25) induction leads to this autophagic astroglial death, dysregulation of mitochondrial dynamics (aberrant mitochondrial elongation) is also involved in the pathogenesis in clasmatodendrosis. However, the underlying molecular mechanisms of accumulation of elongated mitochondria in clasmatodendritic astrocytes are elusive. In the present study, we found that clasmatodendritic astrocytes showed up-regulations of HSP25 expression, AKT serine (S) 473 and dynamin-related protein 1 (DRP1) S637 phosphorylations in the hippocampus of chronic epilepsy rats. 2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; bardoxolone methyl or RTA 402) abrogated abnormal mitochondrial elongation by reducing HSP25 upregulation, AKT S473- and DRP1 S637 phosphorylations. Furthermore, HSP25 siRNA and 3-chloroacetyl-indole (3CAI, an AKT inhibitor) abolished AKT-DRP1-mediated mitochondrial elongation and attenuated clasmatodendrosis in CA1 astrocytes. These findings indicate that HSP25-AKT-mediated DRP1 S637 hyper-phosphorylation may lead to aberrant mitochondrial elongation, which may result in autophagic astroglial degeneration. Therefore, our findings suggest that the dysregulation of HSP25-AKT-DRP1-mediated mitochondrial dynamics may play an important role in clasmatodendrosis, which would have implications for the development of novel therapies against various neurological diseases related to astroglial degeneration.
Collapse
|
23
|
Cai B, Gong L, Zhu Y, Kong L, Ju X, Li X, Yang X, Zhou H, Li Y. Identification of Gossypol Acetate as an Autophagy Modulator with Potent Anti-tumor Effect against Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2589-2599. [PMID: 35180345 DOI: 10.1021/acs.jafc.1c06399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Autophagy, an evolutionarily conserved process, is intricately involved in many aspects of human health and a variety of human diseases, including cancer. Discovery of small-molecule autophagy modulators with potent anticancer effect would be of great significance. To this end, a natural product library consisting of 170 natural compounds were screened as autophagy modulators with potent cytotoxicity in our present study. Among these compounds, gossypol acetate (GAA), the mostly used medicinal form of gossypol, was identified. GAA effectively increased the number of autophagic puncta in GFP-LC3B-labeled 293T cells and significantly decreased cell viability in different cancer cells. In A549 cells, GAA at concentrations below 10 μM triggered caspase-independent cell death via targeting autophagy, as evidenced by elevated LC3 conversion and decreased p62/SQSTM1 levels. Knocking down of LC3 significantly attenuated GAA-induced cell death. Mechanistically, GAA at low concentrations induced autophagy through targeting AMPK-mTORC1-ULK1 signaling. Interestingly, high concentrations of GAA induced LC3 conversion, p62 accumulation, and yellow autophagosome formation, indicating that GAA at high concentrations blocked autophagic flux. Mechanistically, GAA decreased intracellular ATP level and suppressed lysosome activity. Exogenous ATP partially reversed the inhibitory effect of GAA on autophagy, suggesting that decreased ATP level and lysosome activity might be involved in the blocking of autophagy flux by GAA. Collectively, our present study reveals the mechanisms by which GAA modulates autophagy and illustrates whether autophagy regulation by GAA is functionally involved in GAA-induced cancer cell death.
Collapse
Affiliation(s)
- Bicheng Cai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
- Institute of Shenzhen Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China
| | - Liang Gong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Yiying Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Lingmei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Xiaoman Ju
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Xue Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, China
| | - Hongyu Zhou
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500 Yunnan, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Yan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| |
Collapse
|
24
|
Chen Y, He Y, Wei X, Jiang DS. Targeting regulated cell death in aortic aneurysm and dissection therapy. Pharmacol Res 2022; 176:106048. [PMID: 34968685 DOI: 10.1016/j.phrs.2021.106048] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023]
Abstract
Regulated cell death (RCD) is a basic biological phenomenon associated with cell and tissue homeostasis. Recent studies have enriched our understanding of RCD, and many novel cell death types, such as ferroptosis and pyroptosis, have been discovered and defined. Aortic aneurysm and dissection (AAD) is a life-threatening condition, but the pathogenesis remains largely unclear. A series of studies have indicated that the death of smooth muscle cells, endothelial cells and inflammatory cells participates in the development of AAD and that corresponding interventions could alleviate disease progression. Many treatments against cell death have been used to impede the process of AAD in vitro and in vivo, which provides strategies to protect against this condition. In this review, we focus on various types of regulated cell death and provide a framework of their roles in AAD, and the information contributes to further exploration of the molecular mechanisms of AAD.
Collapse
Affiliation(s)
- Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi He
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
25
|
Guerreiro VA, Carvalho D, Freitas P. Obesity, Adipose Tissue, and Inflammation Answered in Questions. J Obes 2022; 2022:2252516. [PMID: 35321537 PMCID: PMC8938152 DOI: 10.1155/2022/2252516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/19/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022] Open
Abstract
Background. Obesity is a global health problem of epidemic proportions, which is characterized by increased adipose tissue (AT) mass and significant repercussions in different body apparati and systems. AT is a special connective tissue, which contains several types of cells, in addition to adipocytes, and is a highly active endocrine and immune organ, which directly modulates many processes, including energy balance, metabolism, and inflammation. Summary. In this paper, the authors list and attempt to answer in a brief and simple way several questions regarding the complex relationships between obesity, adipose tissue, and inflammation, with the objective to provide an easy way to understand the main changes that occur in this pathological state. The questions are the following: Is adipose tissue only made up of adipocytes? Are adipocytes just a reservoir of free fatty acids? Do different types of fatty tissue exist? If so, which types? Can we further subcategorize the types of adipose tissue? Is it possible to form new adipocytes during adulthood? What is the role of inflammation? What is the role of macrophages? Are macrophages central mediators of obesity-induced adipose tissue inflammation and insulin resistance? What causes macrophage infiltration into adipose tissue? What is the role of hypoxia in AT alterations? Is there cross talk between adipocytes and immune cells? What other changes occur in AT in obesity? Does metabolically healthy obesity really exist? Is this a benign condition? Key messages. Obesity is a complex disease with numerous metabolic consequences, which are mainly the result of dysfunction that occurs in the adipose tissue of patients with this pathology. Understanding the pathophysiology of AT and the changes that occur in obesity would contribute to a better approach to patients with obesity, with the inherent medical implications that could result from this.
Collapse
Affiliation(s)
- Vanessa A. Guerreiro
- Department of Endocrinology Diabetes and Metabolism, Centro Hospitalar e Universitário de São João, Porto 4200-319, Portugal
- Faculty of Medicine, Universidade do Porto, Porto 4200-319, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| | - Davide Carvalho
- Department of Endocrinology Diabetes and Metabolism, Centro Hospitalar e Universitário de São João, Porto 4200-319, Portugal
- Faculty of Medicine, Universidade do Porto, Porto 4200-319, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| | - Paula Freitas
- Department of Endocrinology Diabetes and Metabolism, Centro Hospitalar e Universitário de São João, Porto 4200-319, Portugal
- Faculty of Medicine, Universidade do Porto, Porto 4200-319, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| |
Collapse
|
26
|
Li J, Cheng X, Fu D, Liang Y, Chen C, Deng W, He L. Autophagy of Spinal Microglia Affects the Activation of Microglia through the PI3K/AKT/mTOR Signaling Pathway. Neuroscience 2021; 482:77-86. [PMID: 34902496 DOI: 10.1016/j.neuroscience.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022]
Abstract
Delayed paralysis occurs within some patients suffered from ischemic spinal cord injury (ISCI) due to the aorta occlusion during the repair surgery of thoracic and thoracoabdominal aortic aneurysms. Although mild hypothermia has been reported to improve ISCI and prolong the tolerance of rats to ISCI without inducing immediate paralysis, the mechanism remains unclear. Herein, the study revealed that the mild hypothermia treatment indeed partially improved the ISCI in rats caused by cross-clamping at the descending aorta. ISCI induced the excessive activation of microglia and moderate autophagy in the spinal cord tissues of rats, while mild hypothermia significantly induced autophagy and reversed the excessive activation of microglia in the spinal cord tissues of rats. In OGD-stimulated mouse microglia BV-2 cells, the excessive activation of microglia and moderate autophagy were also observed; in the rapamycin-treated OGD model in BV-2 cells, autophagy was significantly enhanced whereas the excessive activation of microglia was reversed. In both in vivo ISCI model in rats and in vitro OGD model in BV-2 cells, the PI3K/AKT/mTOR pathway showed to be inhibited, whereas the PI3K/AKT/mTOR pathway was further inhibited by mild hypothermia in ISCI rats or rapamycin treatment in OGD-stimulated BV-2 cells. In conclusion, enhanced autophagy might be the mechanism of inhibited microglia activation by hypothermia treatment in ISCI rats and by rapamycin treatment in OGD-stimulated BV-2 cells. Autophagy could be enhanced through inhibiting the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jingjuan Li
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Xin Cheng
- Department of Nephrology, The Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Dan Fu
- Department of Pediatrics, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Yi Liang
- Department of Anesthesiology, Graduate College, Guilin Medical University, Guilin, Guangxi 541001, China
| | - Cai Chen
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Wei Deng
- Department of Anesthesiology, Graduate College, Guilin Medical University, Guilin, Guangxi 541001, China
| | - Liang He
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China.
| |
Collapse
|
27
|
Martens MD, Karch J, Gordon JW. The molecular mosaic of regulated cell death in the cardiovascular system. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166297. [PMID: 34718119 DOI: 10.1016/j.bbadis.2021.166297] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/07/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Cell death is now understood to be a highly regulated process that contributes to normal development and tissue homeostasis, alongside its role in the etiology of various pathological conditions. Through detailed molecular analysis, we have come to know that all cells do not always die in the same way, and that there are at least 7 processes involved, including: apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, and autophagy-mediated cell death. These processes act as pieces in the mosaic of cardiomyocyte cell death, which come together depending on context and stimulus. This review details each individual process, as well as highlights how they come together to produce various cardiac pathologies. By knowing how the pieces go together we can aim towards the development of efficacious therapeutics, which will enable us to prevent cardiomyocyte loss in the face of stress, both reducing mortality and improving quality of life.
Collapse
Affiliation(s)
- Matthew D Martens
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Canada
| | - Jason Karch
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Canada.
| |
Collapse
|
28
|
Cardioprotective effect of MLN4924 on ameliorating autophagic flux impairment in myocardial ischemia-reperfusion injury by Sirt1. Redox Biol 2021; 46:102114. [PMID: 34454165 PMCID: PMC8406034 DOI: 10.1016/j.redox.2021.102114] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Neddylation is essential for cardiomyocyte survival in the presence of oxidative stress, and it participates in autophagy regulation. However, whether MLN4924-an inhibitor of neddylation-exerts cardioprotective effects against myocardial ischemia/reperfusion (MI/R) remains unknown. In the present study, MLN4924 exerted strong cardioprotective effects, demonstrated by significantly elevated cell viability, a decreased LDH leakage rate, and improved cell morphology following H2O2-induced injury in vitro. MLN4924 also markedly decreased the serum myocardial zymogram level, ameliorated cardiac histopathological alterations, and alleviated left ventricular contractile dysfunction, thus limiting the cardiac infarct size in vivo compared with those in MI/R mice. Amazingly, such action of MLN4924 was abrogated by a combined treatment with the autophagic flux inhibitor, chloroquine. The mRFP-GFP-LC3 assay illustrated that MLN4924 restored the defective autophagic flux via enhancing the autolysosome formation. Notably, the expression levels of Rab7 and Atg5 were markedly up-regulated in MLN4924 treated cells and mice subjected to H2O2 or MI/R, respectively, while knockdown of Sirt1 in cells and heart tissue largely blocked such effect and induced autophagosome accumulation by inhibiting its fusion with lysosomes. Transmission electron microscopic analysis, histopathological assay and TUNEL detection of the heart tissues showed that the absence of Sirt1 blocked the cardioprotective effect of MLN4924 by further exacerbating the impaired autophagic flux during MI/R injury in vivo. Taken together, MLN4924 exhibited the strong cardioprotective action via restoring the impaired autophagic flux in H2O2-induced injury in vitro and in MI/R mice. Our work implicated that Sirt1 played a critical role in autophagosome clearance, likely through up-regulating Rab7 in MI/R.
Collapse
|
29
|
Zhang B, Fan Y, Cao P, Tan K. Multifaceted roles of HSF1 in cell death: A state-of-the-art review. Biochim Biophys Acta Rev Cancer 2021; 1876:188591. [PMID: 34273469 DOI: 10.1016/j.bbcan.2021.188591] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
Cell death is a common and active process that is involved in various biological processes, including organ development, morphogenesis, maintaining tissue homeostasis and eliminating potentially harmful cells. Abnormal regulation of cell death significantly contributes to tumor development, progression and chemoresistance. The mechanisms of cell death are complex and involve not only apoptosis and necrosis but also their cross-talk with other types of cell death, such as autophagy and the newly identified ferroptosis. Cancer cells are chronically exposed to various stresses, such as lack of oxygen and nutrients, immune responses, dysregulated metabolism and genomic instability, all of which lead to activation of heat shock factor 1 (HSF1). In response to heat shock, oxidative stress and proteotoxic stresses, HSF1 upregulates transcription of heat shock proteins (HSPs), which act as molecular chaperones to protect normal cells from stresses and various diseases. Accumulating evidence suggests that HSF1 regulates multiple types of cell death through different signaling pathways as well as expression of distinct target genes in cancer cells. Here, we review the current understanding of the potential roles and molecular mechanism of HSF1 in regulating apoptosis, autophagy and ferroptosis. Deciphering HSF1-regulated signaling pathways and target genes may help in the development of new targeted anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Bingwei Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
30
|
Role of Oxidative Stress in Reperfusion following Myocardial Ischemia and Its Treatments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6614009. [PMID: 34055195 PMCID: PMC8149218 DOI: 10.1155/2021/6614009] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/21/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Myocardial ischemia is a disease with high morbidity and mortality, for which reperfusion is currently the standard intervention. However, the reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MI/RI). Oxidative stress is one of the most important pathological mechanisms in reperfusion injury, which causes apoptosis, autophagy, inflammation, and some other damage in cardiomyocytes through multiple pathways, thus causing irreversible cardiomyocyte damage and cardiac dysfunction. This article reviews the pathological mechanisms of oxidative stress involved in reperfusion injury and the interventions for different pathways and targets, so as to form systematic treatments for oxidative stress-induced myocardial reperfusion injury and make up for the lack of monotherapy.
Collapse
|
31
|
Gomez-Gutierrez JG, Bhutiani N, McNally MW, Chuong P, Yin W, Jones MA, Zeiderman MR, Grizzle WE, McNally LR. The neutral red assay can be used to evaluate cell viability during autophagy or in an acidic microenvironment in vitro. Biotech Histochem 2021; 96:302-310. [PMID: 32744455 PMCID: PMC7861123 DOI: 10.1080/10520295.2020.1802065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Harsh conditions within the tumor microenvironment, such as hypoxia and extracellular acidic pH (pHe), inactivate some chemotherapies, which results in limited or no cytotoxicity. Standard MTT, ATPlite and protease assays that are used to determine the potency of newly developed drugs often give erroneous results when applied under hypoxic or acidic conditions. Therefore, development of a cytotoxicity assay that does not yield false positive or false negative results under circumstances of both hypoxia and acidic pHe is needed. We evaluated currently used cell viability assays as well as neutral red staining to assess viability of ovarian and pancreatic cancer cells grown in an acidic pHe microenvironment after treatment with carboplatin, gemcitabine or chloroquine. We validated cell viability using western blotting of pro-caspase-9 and cleaved-caspase-9, and LC3-I and - II. Standard cell viability assays indicated cell viability accurately at pHe 7.4, but was not correlated with induction of apoptosis or autophagy at acidic pHe. By contrast, our modified neutral red assay detected cell viability accurately over a range of pHe as demonstrated by its correlation with induction of apoptosis and autophagy. Neutral red staining is effective for evaluating the effect of chemotherapeutic agents on cell viability under acidic pHe or hypoxic conditions.
Collapse
Affiliation(s)
| | - Neal Bhutiani
- Department of Surgery, University of Louisville, Louisville, Kentucky
| | - Molly W McNally
- Department of Surgery, University of Oklahoma, Oklahoma City, Oklahoma
| | - Phillip Chuong
- Department of Surgery, University of Louisville, Louisville, Kentucky
| | - Wenyuan Yin
- Department of Surgery, University of Louisville, Louisville, Kentucky
| | | | | | - William E Grizzle
- Department of Pathology, University of Alabama Birmingham, Birmingham, Alabama
| | - Lacey R. McNally
- Department of Surgery, University of Oklahoma, Oklahoma City, Oklahoma
| |
Collapse
|
32
|
CDDO-Me Attenuates Astroglial Autophagy via Nrf2-, ERK1/2-SP1- and Src-CK2-PTEN-PI3K/AKT-Mediated Signaling Pathways in the Hippocampus of Chronic Epilepsy Rats. Antioxidants (Basel) 2021; 10:antiox10050655. [PMID: 33922531 PMCID: PMC8145743 DOI: 10.3390/antiox10050655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Clasmatodendrosis is an autophagic astroglial death showing extensive swollen cell bodies with vacuoles and disintegrated/beaded processes. This astroglial degeneration is closely relevant to the synchronous epileptiform discharges. However, the underlying molecular mechanisms and the roles of clasmatodendrosis in spontaneous seizure activity are still unknown. The 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; RTA 402) is one of the activators for nuclear factor-erythroid 2-related factor 2 (Nrf2) that is a redox-sensitive transcription factor. In the present study, we explored the effects of CDDO-Me on clasmatodendrosis in chronic epilepsy rats, which could prevent epilepsy-related complications. In the present study, clasmatodendritic astrocytes showed reduced Nrf2 expression and its nuclear accumulation, which were restored by CDDO-Me. CDDO-Me also abrogated heat shock protein 25 (HSP25) upregulation in clasmatodendritic astrocytes by regulating extracellular signal-related kinases 1/2 (ERK1/2)-specificity protein 1 (SP1)- and Src-casein kinase 2 (CK2)-phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-phosphatidylinositol-3-kinase (PI3K)-AKT-glycogen synthase kinase 3β (GSK3β)-bax-interacting factor 1 (Bif-1)-mediated signaling pathways in chronic epilepsy rats. In addition, CDDO-Me ameliorated spontaneous seizure duration, but not seizure frequency and behavioral seizure severity. Therefore, our findings suggest that clasmatodendrosis may affect seizure duration in chronic epilepsy rats, and that CDDO-Me may attenuate autophagic astroglial degeneration by regulating various signaling pathways.
Collapse
|
33
|
Exploitation of a novel phenothiazine derivative for its anti-cancer activities in malignant glioblastoma. Apoptosis 2021; 25:261-274. [PMID: 32036474 DOI: 10.1007/s10495-020-01594-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glioblastoma remains the most malignant of all primary adult brain tumours with poor patient survival and limited treatment options. This study adopts a drug repurposing approach by investigating the anti-cancer activity of a derivative of the antipsychotic drug phenothiazine (DS00329) in malignant U251 and U87 glioblastoma cells. Results from MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and clonogenic assays showed that DS00329 inhibited short-term glioblastoma cell viability and long-term survival while sparing non-cancerous cells. Western blot analysis with an antibody to γH2AX showed that DS00329 induced DNA damage and flow cytometry and western blotting confirmed that it triggered a G1 cell cycle arrest which correlated with decreased levels in Cyclin A, Cyclin B, Cyclin D1 and cyclin dependent kinase 2 and an increase in levels of the cyclin dependent kinase inhibitor p21. DS00329 treated glioblastoma cells exhibited morphological and molecular markers typical of apoptotic cells such as membrane blebbing and cell shrinkage and an increase in levels of cleaved PARP. Flow cytometry with annexin V-FITC/propidium iodide staining confirmed that DS00329 induced apoptotic cell death in glioblastoma cells. We also show that DS00329 treatment of glioblastoma cells led to an increase in the autophagosome marker LC3-II and autophagy inhibition studies using bafilomycin A1 and wortmannin, showed that DS00329-induced-autophagy was a pro-death mechanism. Furthermore, DS00329 treatment of glioblastoma cells inhibited the phosphatidylinositol 3'-kinase/Akt cell survival pathway. Our findings suggest that DS00329 may be an effective treatment for glioblastoma and provide a rationale for further exploration and validation of the use of phenothiazines and their derivatives in the treatment of glioblastoma.
Collapse
|
34
|
Adacan K, Obakan Yerlİkaya P. Epibrassinolide activates AKT to trigger autophagy with polyamine metabolism in SW480 and DLD-1 colon cancer cell lines. ACTA ACUST UNITED AC 2021; 44:417-426. [PMID: 33402868 PMCID: PMC7759188 DOI: 10.3906/biy-2005-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/18/2020] [Indexed: 11/29/2022]
Abstract
Epibrassinolide (EBR), a plant-derived polyhydroxylated derivative of 5α-cholestane, structurally shows similarities to animal steroid hormones. According to the present study, EBR treatment triggered a significant stress response via activating ER stress, autophagy, and apoptosis in cancer cells. EBR could also increase Akt phosphorylation in vitro. While the activation of Akt resulted in cellular metabolic activation in normal cells to proceed with cell survival, a rapid stress response was induced in cancer cells to reduce survival. Therefore, Akt as a mediator of cellular survival and death decision pathways is a crucial target in cancer cells. In this study, we determined that EBR induces stress responses through activating Akt, which reduced the mTOR complex I (mTORC1) activation in SW480 and DLD-1 colon cancer cells. As a consequence, EBR triggered macroautophagy and led to lipidation of LC3 most efficiently in SW480 cells. The cotreatment of spermidine (Spd) with EBR increased lipidation of LC3 synergistically in both cell lines. We also found that EBR promoted polyamine catabolism in SW480 cells. The retention of polyamine biosynthesis was remarkable following EBR treatment. We suggested that EBR-mediated Akt activation might determine the downstream cellular stress responses to induce autophagy related to polyamines.
Collapse
Affiliation(s)
- Kaan Adacan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, İstanbul Kültür University, İstanbul Turkey
| | - Pınar Obakan Yerlİkaya
- Department of Molecular Biology and Genetics, Science and Literature Faculty, İstanbul Kültür University, İstanbul Turkey
| |
Collapse
|
35
|
de la Torre P, Fernández-de la Torre M, Flores AI. Premature senescence of placental decidua cells as a possible cause of miscarriage produced by mycophenolic acid. J Biomed Sci 2021; 28:3. [PMID: 33397374 PMCID: PMC7780668 DOI: 10.1186/s12929-020-00704-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Successful pregnancy is supported by a healthy maternal-fetal interface (i.e., the decidual tissues) which holds the conceptus and safeguards it against stressors from the beginning of pregnancy. Any disturbance of this interface can presumably lead to the loss of pregnancy. The use of the immunosuppressive drug mycophenolic acid (MPA) should be discontinued in pregnancy given its abortive and embryotoxic effects. Direct teratogenic effects have been observed in mammalian embryos cultured in MPA, but the underlying mechanisms of abortion by MPA are less understood. METHODS Decidual stromal cells isolated from human placentas are cultured in the presence of clinically relevant doses of MPA. Data regarding the effects of MPA on the proliferation and viability of decidua cultures are first analysed and then, molecular pathways contributing to these effects are unravelled. RESULTS MPA treatment of decidual stromal cells results in loss of proliferation capacity and a decrease in the viability of decidua cultures. The molecular pathways involved in the effects of MPA on decidual stromal cells are a reduction in pre-rRNA synthesis and subsequent disruption of the nucleolus. The nucleolar stress stabilizes p53, which in turn, leads to a p21-mediated cell cycle arrest in late S and G2 phases, preventing the progression of the decidua cells into the mitosis. Furthermore, MPA does not induce apoptosis but activate mechanisms of autophagy and senescence in decidual stromal cells. CONCLUSION The irreversible growth arrest of decidua cells, whose role in the maintenance of the pregnancy microenvironment is known, may be one cause of miscarriage in MPA treated pregnant women.
Collapse
Affiliation(s)
- Paz de la Torre
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n 28041, Madrid, Spain
| | - Miguel Fernández-de la Torre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n 28041, Madrid, Spain
| | - Ana I Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n 28041, Madrid, Spain.
| |
Collapse
|
36
|
Jiffry J, Thavornwatanayong T, Rao D, Fogel EJ, Saytoo D, Nahata R, Guzik H, Chaudhary I, Augustine T, Goel S, Maitra R. Oncolytic Reovirus (pelareorep) Induces Autophagy in KRAS-mutated Colorectal Cancer. Clin Cancer Res 2020; 27:865-876. [PMID: 33168658 DOI: 10.1158/1078-0432.ccr-20-2385] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To explore the effects of pelareorep on autophagy in multiple models of colorectal cancer, including patient-derived peripheral blood mononuclear cells (PBMCs). EXPERIMENTAL DESIGN HCT116 [KRAS mutant (mut)] and Hke3 [KRAS wild-type (WT)] cells were treated with pelareorep (multiplicity of infection, 5) and harvested at 6 and 9 hours. LC3 A/B expression was determined by immunofluorescence and flow cytometry; five autophagic proteins were analyzed by Western blotting. The expression of 88 autophagy genes was determined by qRT-PCR. Syngeneic mouse models, CT26/Balb-C (KRAS mut) and MC38/C57B6 (KRAS WT), were developed and treated with pelareorep (10 × 106 plaque-forming unit/day) intraperitoneally. Protein and RNA were extracted from harvested tumor tissues. PBMCs from five experimental and three control patients were sampled at 0 (pre) and 48 hours, and on days 8 and 15. The gene expression normalized to "pre" was determined using 2-ΔΔC t method. RESULTS Pelareorep induced significant upregulation of LC3 A/B in HCT116 as compared with Hke3 cells by immunofluorescence (3.24 × and 8.67 ×), flow cytometry (2.37 × and 2.58 ×), and autophagosome formation (2.02 × and 1.57 ×), at 6 and 9 hours, respectively; all P < 0.05. Western blot analysis showed an increase in LC3 A/B (2.38 × and 6.82 ×) and Beclin1 (1.17 × and 1.24 ×) at 6 and 9 hours, ATG5 (2.4 ×) and P-62 (1.52 ×) at 6 hours, and VPS-34 (1.39 ×) at 9 hours (all P < 0.05). Induction of 13 transcripts in cell lines (>4 ×; 6 and 9 hours; P < 0.05), 12 transcripts in CT26 (qRT-PCR), and 14 transcripts in human PBMCs (P < 0.05) was observed. LC3 A/B, RICTOR, and RASD1 expression was upregulated in all three model systems. CONCLUSIONS Pelareorep hijacks host autophagic machinery in KRAS-mut conditions to augment its propagation and preferential oncolysis of the cancer cells.
Collapse
Affiliation(s)
| | | | - Devika Rao
- Montefiore Medical Center, Bronx, New York
| | - Elisha J Fogel
- Department of Biology, Yeshiva University, New York, New York
| | | | | | - Hillary Guzik
- Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Sanjay Goel
- Albert Einstein College of Medicine, Bronx, New York. .,Montefiore Medical Center, Bronx, New York
| | - Radhashree Maitra
- Albert Einstein College of Medicine, Bronx, New York. .,Montefiore Medical Center, Bronx, New York.,Department of Biology, Yeshiva University, New York, New York
| |
Collapse
|
37
|
Boz Z, Hu M, Yu Y, Huang XF. N-acetylcysteine prevents olanzapine-induced oxidative stress in mHypoA-59 hypothalamic neurons. Sci Rep 2020; 10:19185. [PMID: 33154380 PMCID: PMC7644715 DOI: 10.1038/s41598-020-75356-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022] Open
Abstract
Olanzapine is a second-generation antipsychotic (AP) drug commonly prescribed for the treatment of schizophrenia. Recently, olanzapine has been found to cause brain tissue volume loss in rodent and primate studies; however, the underlying mechanism remains unknown. Abnormal autophagy and oxidative stress have been implicated to have a role in AP-induced neurodegeneration, while N-acetylcysteine (NAC) is a potent antioxidant, shown to be beneficial in the treatment of schizophrenia. Here, we investigate the role of olanzapine and NAC on cell viability, oxidative stress, mitochondrial mass and mitophagy in hypothalamic cells. Firstly, cell viability was assessed in mHypoA-59 and mHypoA NPY/GFP cells using an MTS assay and flow cytometric analyses. Olanzapine treated mHypoA-59 cells were then assessed for mitophagy markers and oxidative stress; including quantification of lysosomes, autophagosomes, LC3B-II, p62, superoxide anion (O2–) and mitochondrial mass. NAC (10 mM) was used to reverse the effects of olanzapine (100 µM) on O2−, mitochondrial mass and LC3B-II. We found that olanzapine significantly impacted cell viability in mHypoA-59 hypothalamic cells in a dose and time-dependent manner. Olanzapine inhibited mitophagy, instigated oxidative stress and prompted mitochondrial abnormalities. NAC was able to mitigate olanzapine-induced effects. These findings suggest that high doses of olanzapine may cause neurotoxicity of hypothalamic neurons via increased production of reactive oxygen species (ROS), mitochondrial damage and mitophagy inhibition. This could in part explain data suggesting that APs may reduce brain volume.
Collapse
Affiliation(s)
- Zehra Boz
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yinghua Yu
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.,Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
38
|
Xu W, Ocak U, Gao L, Tu S, Lenahan CJ, Zhang J, Shao A. Selective autophagy as a therapeutic target for neurological diseases. Cell Mol Life Sci 2020; 78:1369-1392. [PMID: 33067655 PMCID: PMC7904548 DOI: 10.1007/s00018-020-03667-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
The neurological diseases primarily include acute injuries, chronic neurodegeneration, and others (e.g., infectious diseases of the central nervous system). Autophagy is a housekeeping process responsible for the bulk degradation of misfolded protein aggregates and damaged organelles through the lysosomal machinery. Recent studies have suggested that autophagy, particularly selective autophagy, such as mitophagy, pexophagy, ER-phagy, ribophagy, lipophagy, etc., is closely implicated in neurological diseases. These forms of selective autophagy are controlled by a group of important proteins, including PTEN-induced kinase 1 (PINK1), Parkin, p62, optineurin (OPTN), neighbor of BRCA1 gene 1 (NBR1), and nuclear fragile X mental retardation-interacting protein 1 (NUFIP1). This review highlights the characteristics and underlying mechanisms of different types of selective autophagy, and their implications in various forms of neurological diseases.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Umut Ocak
- Department of Emergency Medicine, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, 16310, Bursa, Turkey.,Department of Emergency Medicine, Bursa City Hospital, 16110, Bursa, Turkey
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | | | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Brain Research Institute, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
39
|
P2 × 7 Receptor Inhibits Astroglial Autophagy via Regulating FAK- and PHLPP1/2-Mediated AKT-S473 Phosphorylation Following Kainic Acid-Induced Seizures. Int J Mol Sci 2020; 21:ijms21186476. [PMID: 32899862 PMCID: PMC7555659 DOI: 10.3390/ijms21186476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022] Open
Abstract
Recently, we have reported that blockade/deletion of P2X7 receptor (P2X7R), an ATP-gated ion channel, exacerbates heat shock protein 25 (HSP25)-mediated astroglial autophagy (clasmatodendrosis) following kainic acid (KA) injection. In P2X7R knockout (KO) mice, prolonged astroglial HSP25 induction exerts 5′ adenosine monophosphate-activated protein kinase/unc-51 like autophagy activating kinase 1-mediated autophagic pathway independent of mammalian target of rapamycin (mTOR) activity following KA injection. Sustained HSP25 expression also enhances AKT-serine (S) 473 phosphorylation leading to astroglial autophagy via glycogen synthase kinase-3β/bax interacting factor 1 signaling pathway. However, it is unanswered how P2X7R deletion induces AKT-S473 hyperphosphorylation during autophagic process in astrocytes. In the present study, we found that AKT-S473 phosphorylation was increased by enhancing activity of focal adhesion kinase (FAK), independent of mTOR complex (mTORC) 1 and 2 activities in isolated astrocytes of P2X7R knockout (KO) mice following KA injection. In addition, HSP25 overexpression in P2X7R KO mice acted as a chaperone of AKT, which retained AKT-S473 phosphorylation by inhibiting the pleckstrin homology domain and leucine-rich repeat protein phosphatase (PHLPP) 1- and 2-binding to AKT. Therefore, our findings suggest that P2X7R may be a fine-tuner of AKT-S473 activity during astroglial autophagy by regulating FAK phosphorylation and HSP25-mediated inhibition of PHLPP1/2-AKT binding following KA treatment.
Collapse
|
40
|
Nobiletin Ameliorates NLRP3 Inflammasome-Mediated Inflammation Through Promoting Autophagy via the AMPK Pathway. Mol Neurobiol 2020; 57:5056-5068. [PMID: 32833187 DOI: 10.1007/s12035-020-02071-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
Multiple lines of evidence have shown that neuroinflammation and autophagy are highly involved in the process of depression. Nobiletin (NOB) displays neuroprotective effects and anti-depressant-like effects. Given the evidence that NOB exerts anti-inflammatory effects and regulates autophagy, we investigate the anti-neuroinflammatory properties and the effect of regulating the autophagy of NOB and subsequently uncover the potential anti-depressant mechanisms of NOB. The behavioral changes of rats were observed after prolonged lipopolysaccharide (LPS) treatment and NOB administration. Rat hippocampus and BV2 cells treated by LPS and NOB were evaluated. The methods of real-time PCR analysis, Western blot, immunostaining, and adenovirus transfection were employed to determine neuroinflammation, autophagic markers, and nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) activation. Our study showed LPS enhanced the expression of pro-inflammatory cytokines and NLRP3 inflammasome activation but inhibited autophagy in both rat hippocampus and BV2 cells. NOB significantly improved the behavioral deficits and ameliorated the neuroinflammation induced by LPS in rats. Furthermore, NOB promoted autophagy and attenuated NLRP3 inflammasome activation induced by LPS, involving in the process the adenosine monophosphate-activated protein kinase (AMPK) pathway. Neuroprotective and anti-depressant actions of NOB relied on its effects of promoting autophagy and suppressing the activation of NLRP3, in which process of AMPK pathway may be involved.
Collapse
|
41
|
Rost-Roszkowska M, Poprawa I, Chajec Ł, Chachulska-Żymełka A, Wilczek G, Wilczek P, Student S, Skowronek M, Nadgórska-Socha A, Leśniewska M. Influence of soil contaminated with cadmium on cell death in the digestive epithelium of soil centipede Lithobius forficatus (Myriapoda, Chilopoda). THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1757168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- M. Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - I. Poprawa
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Ł. Chajec
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - A. Chachulska-Żymełka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - G. Wilczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - P. Wilczek
- Bioengineering Laboratory, Heart Prosthesis Institute, Zabrze, Poland
| | - S. Student
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - M. Skowronek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - A. Nadgórska-Socha
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - M. Leśniewska
- Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
42
|
Tao Y, Qiu T, Yao X, Jiang L, Wang N, Jia X, Wei S, Wang Z, Pei P, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X. Autophagic-CTSB-inflammasome axis modulates hepatic stellate cells activation in arsenic-induced liver fibrosis. CHEMOSPHERE 2020; 242:124959. [PMID: 31669990 DOI: 10.1016/j.chemosphere.2019.124959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Long-term exposure to arsenic can cause liver injury and fibrosis. The activation of hepatic stellate cells (HSCs) plays an essential role in the process of liver fibrosis. We found that NaAsO2 caused liver damage and fibrosis in vivo, accompanied by excessive collagen deposition and HSCs activation. In addition, NaAsO2 upregulated autophagy flux, elevated the level of cytoplasmic cathepsin B (CTSB), and activated the NOD-like receptors containing pyrin domain 3 (NLRP3) inflammasome in a subtle way. Consistent with these findings in vivo, we demonstrated that NaAsO2-induced activation of HSCs depended on CTSB-mediated NLRP3 inflammasome activation in HSC-t6 cells and rats primary HSCs. Moreover, inhibition of autophagy decreased the cytoplasmic CTSB and alleviated the activation of the NLRP3 inflammasome, thereby attenuating the NaAsO2-induced HSCs activation. In summary, these results indicated that NaAsO2 induced HSCs activation via autophagic-CTSB-NLRP3 inflammasome pathway. These findings may provide a novel insight into the potential mechanism of NaAsO2-induced liver fibrosis.
Collapse
Affiliation(s)
- Ye Tao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Tianming Qiu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Ningning Wang
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Xue Jia
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Sen Wei
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Zhidong Wang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Pei Pei
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Jingyuan Zhang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Yuhan Zhu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Guang Yang
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Xiaofang Liu
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Shuang Liu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China
| | - Xiance Sun
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China; Global Health Research Center, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|
43
|
Evans TG, Kültz D. The cellular stress response in fish exposed to salinity fluctuations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:421-435. [DOI: 10.1002/jez.2350] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Tyler G. Evans
- Department of Biological Sciences California State University East Bay Hayward California
| | - Dietmar Kültz
- Department of Animal Sciences University of California Davis Meyer Hall Davis California
| |
Collapse
|
44
|
Wang P, Feng YB, Wang L, Li Y, Fan C, Song Q, Yu SY. Interleukin-6: Its role and mechanisms in rescuing depression-like behaviors in rat models of depression. Brain Behav Immun 2019; 82:106-121. [PMID: 31394209 DOI: 10.1016/j.bbi.2019.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/27/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022] Open
Abstract
Neuronal injury within specific brain regions is considered a critical risk factor in the pathophysiology of depression. However, the underlying mechanisms of this process, and thus the potential for development of novel therapeutic strategies in the treatment of depression, remain largely unknown. Here, we report that Il-6 protects against neuronal anomalies related with depression, in part, by suppressing oxidative stress and consequent autophagic and apoptotic hyperactivity. Specifically, we show that IL-6 is downregulated within the CA1 hippocampus in two animal models of depression and upregulated by antidepressants. Increasing levels of IL-6 in the CA1 region result in pleiotropic protective actions including reductions in oxidative stress and modulation of autophagy, anti-immuno-inflammatory activation and anti-apoptotic effects in CA1 neurons, all of which are associated with the rescue of depression-like behaviors. In contrast, IL-6 downregulation exacerbates neuronal anomalies within the CA1 region and facilitates the genesis of depression phenotypes in rats. Interestingly, in addition to attenuating oxidative damage, the antioxidant, N-acetylcysteine (NAC), is also associated with significantly decreased neuronal deficits and the display of depressive behaviors in rats. These results suggest that IL-6 may exert neuroprotection within CA1 neurons via pleiotropic mechanisms and may serve as a potential therapeutic target for the treatment of depression.
Collapse
Affiliation(s)
- Peng Wang
- Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China
| | - Ya-Bo Feng
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwuweiqi Road 423#, Jinan, Shandong Province 250012, PR China
| | - Liyan Wang
- Morphological Experimental Center, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China
| | - Ye Li
- Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China
| | - Cuiqin Fan
- Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China
| | - Qiqi Song
- Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China
| | - Shu Yan Yu
- Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China; Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China.
| |
Collapse
|
45
|
Prodigiosin stimulates endoplasmic reticulum stress and induces autophagic cell death in glioblastoma cells. Apoptosis 2019; 23:314-328. [PMID: 29721785 DOI: 10.1007/s10495-018-1456-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prodigiosin, a secondary metabolite isolated from marine Vibrio sp., has antimicrobial and anticancer properties. This study investigated the cell death mechanism of prodigiosin in glioblastoma. Glioblastoma multiforme (GBM) is an aggressive primary cancer of the central nervous system. Despite treatment, or standard therapy, the median survival of glioblastoma patients is about 14.6 month. The results of the present study clearly showed that prodigiosin significantly reduced the cell viability and neurosphere formation ability of U87MG and GBM8401 human glioblastoma cell lines. Moreover, prodigiosin with fluorescence signals was detected in the endoplasmic reticulum and found to induce excessive levels of autophagy. These findings were confirmed by observation of LC3 puncta formation and acridine orange staining. Furthermore, prodigiosin caused cell death by activating the JNK pathway and decreasing the AKT/mTOR pathway in glioblastoma cells. Moreover, we found that the autophagy inhibitor 3-methyladenine reversed prodigiosin induced autophagic cell death. These findings of this study suggest that prodigiosin induces autophagic cell death and apoptosis in glioblastoma cells.
Collapse
|
46
|
Manu KA, Cao PHA, Chai TF, Casey PJ, Wang M. p21cip1/waf1 Coordinate Autophagy, Proliferation and Apoptosis in Response to Metabolic Stress. Cancers (Basel) 2019; 11:cancers11081112. [PMID: 31382612 PMCID: PMC6721591 DOI: 10.3390/cancers11081112] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cells possess metabolic properties that are different from benign cells. These unique characteristics have become attractive targets that are being actively investigated for cancer therapy. p21cip1/waf1, also known as Cyclin-Dependent Kinase inhibitor 1A, is encoded by the CDKN1A gene. It is a major p53 target gene involved in cell cycle progression that has been extensively evaluated. To date, p21 has been reported to regulate various cell functions, both dependent and independent of p53. Besides regulating the cell cycle, p21 also modulates apoptosis, induces senescence, and maintains cellular quiescence in response to various stimuli. p21 transcription is induced in response to stresses, including those from oxidative and chemotherapeutic treatment. A recent study has shown that in response to metabolic stresses such as nutrient and energy depletion, p21 expression is induced to regulate various cell functions. Despite the biological significance, the mechanism of p21 regulation in cancer adaptation to metabolic stress is underexplored and thus represents an exciting field. This review focuses on the recent development of p21 regulation in response to metabolic stress and its impact in inducing cell cycle arrest and death in cancer cells.
Collapse
Affiliation(s)
- Kanjoormana Aryan Manu
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Pham Hong Anh Cao
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Tin Fan Chai
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore.
| |
Collapse
|
47
|
Rost-Roszkowska MM, Vilimová J, Tajovský K, Chachulska-Żymełka A, Sosinka A, Kszuk-Jendrysik M, Ostróżka A, Kaszuba F. Autophagy and Apoptosis in the Midgut Epithelium of Millipedes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1004-1016. [PMID: 31106722 DOI: 10.1017/s143192761900059x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The process of autophagy has been detected in the midgut epithelium of four millipede species: Julus scandinavius, Polyxenus lagurus, Archispirostreptus gigas, and Telodeinopus aoutii. It has been examined using transmission electron microscopy (TEM), which enabled differentiation of cells in the midgut epithelium, and some histochemical methods (light microscope and fluorescence microscope). While autophagy appeared in the cytoplasm of digestive, secretory, and regenerative cells in J. scandinavius and A. gigas, in the two other species, T. aoutii and P. lagurus, it was only detected in the digestive cells. Both types of macroautophagy, the selective and nonselective processes, are described using TEM. Phagophore formation appeared as the first step of autophagy. After its blind ends fusion, the autophagosomes were formed. The autophagosomes fused with lysosomes and were transformed into autolysosomes. As the final step of autophagy, the residual bodies were detected. Autophagic structures can be removed from the midgut epithelium via, e.g., atypical exocytosis. Additionally, in P. lagurus and J. scandinavius, it was observed as the neutralization of pathogens such as Rickettsia-like microorganisms. Autophagy and apoptosis ca be analyzed using TEM, while specific histochemical methods may confirm it.
Collapse
Affiliation(s)
- M M Rost-Roszkowska
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - J Vilimová
- Department of Zoology,Charles University, Faculty of Science,Viničná 7, 128 44 Prague 2,Czech Republic
| | - K Tajovský
- Institute of Soil Biology, Biology Centre CAS,Na Sádkách 7, 370 05 České Budějovice,Czech Republic
| | - A Chachulska-Żymełka
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - A Sosinka
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - M Kszuk-Jendrysik
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - A Ostróżka
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - F Kaszuba
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| |
Collapse
|
48
|
Wang S, Wang J, Yang L, Guo R, Huang E, Yang H, Zhang Y, Sun L, Song R, Chen J, Tian Y, Zhao B, Guo Q, Lu H. Swainsonine induces autophagy via PI3K/AKT/mTOR signaling pathway to injure the renal tubular epithelial cells. Biochimie 2019; 165:131-140. [PMID: 31356846 DOI: 10.1016/j.biochi.2019.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/22/2019] [Indexed: 11/29/2022]
Abstract
Swainsonine is a major toxic ingredients of locoweed plants, ingestion of these plants may cause locoism in livestock characterized by extensive cellular vacuolar degeneration of multiple tissues. However, so far, the mechanisms responsible for vacuolar degeneration induced by SW are not known. In this study, we investigated the role of autophagy in SW-induced TCMK-1 cells using Western blotting, transmission electron microscopy, immunofluorescent microscopy and qRT-PCR. The results showed that SW treatment increased the levels of LC3-II. The co-localization of LC3-II and lysosomal protein LAMP-2 results suggested that SW treatment does not interfere with fusion between autophagosome and lysosome. TEM results indicated that SW induced aggregation of the lysosome around the autophagosome. In addition, SW treatment suppressed p-PI3K, p-Akt, p-mTOR, p-p70S6K and p-4EBP1 level. In conclusion, SW induced autophagy via pI3K/AKT/mTOR signaling pathway and revealed the role of autophagy in causing the SW toxicity characterized by the vacuolar degeneration.
Collapse
Affiliation(s)
- Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinglong Wang
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, 850002, China
| | - Lin Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rong Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Enxia Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Runjie Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jingshu Chen
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingyun Guo
- Key Laboratory of Agricultural Integrated Pest Management, Xining, Qinghai, 810016, China
| | - Hao Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
49
|
Tang H, Zhang X, Zhang W, Fan L, Wang H, Tan WS, Zhao L. Insight into the roles of tyrosine on rCHO cell performance in fed-batch cultures. Appl Microbiol Biotechnol 2019; 103:6483-6494. [PMID: 31190239 DOI: 10.1007/s00253-019-09921-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/01/2022]
Abstract
Tyrosine (Tyr), as one of the least soluble amino acids, is essential to monoclonal antibody (mAb) production in recombinant Chinese hamster ovary (rCHO) cell cultures since its roles on maintaining the specific productivity (qmAb) and avoiding Tyr sequence variants. To understand the effects of Tyr on cell performance and its underlying mechanisms, rCHO cell-producing mAbs were cultivated at various cumulative Tyr addition concentrations (0.6 to 5.5 mM) in fed-batch processes. Low Tyr concentrations gave a much lower peak viable cell density (VCD) during the growth phase and also induced rapid cell death and pH decrease during the production phase, resulting in a low efficient fed-batch process. Autophagy was initiated following the inhibition of mTOR under the Tyr starvation condition. Excessive autophagy subsequently induced autophagic cell death, which was found as the major type of cell death in this study. Additionally, the results obtained here demonstrate that the decrease in culture pH under the Tyr starvation condition was associated with the autophagy and such pH drop might be attributed to the lysosome acidification and cell lysis.
Collapse
Affiliation(s)
- Hongping Tang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xintao Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weijian Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Li Fan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haibin Wang
- Zhejiang Hisun Pharmaceutical Co., Ltd., Fuyang, Zhejiang, 311404, Hangzhou, China
| | - Wen-Song Tan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Liang Zhao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
50
|
Crocin induces anti-ischemia in middle cerebral artery occlusion rats and inhibits autophagy by regulating the mammalian target of rapamycin. Eur J Pharmacol 2019; 857:172424. [PMID: 31150648 DOI: 10.1016/j.ejphar.2019.172424] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 01/06/2023]
Abstract
Crocin, an active compound found in Gardenia jasminoides Ellis, has been shown to possess neuron-protective properties, but its potential mechanisms of action still remain poorly understood. In this study, the anti-ischemic effect and underlying mechanism of action of crocin were investigated in male rats with right middle cerebral artery occlusion/reperfusion. Computed tomography and magnetic resonance imaging were used to evaluate the area of infarction 24 h after reperfusion. Neurological scores were employed to evaluate nerve injury. Direct 2,3,5-triphenyltetrazolium chloride staining was used to calculate the infarct ratio 120 h after reperfusion. Finally, HT22 cells and Western blot were used to study the underlying mechanisms. Crocin showed a decreased infarct volume and neurological score in vivo, while the expression of LC3-II/I and AMP-activated protein kinase was remarkably down-regulated with increased levels of p62 and mammalian target of rapamycin (mTOR) expression. However, rapamycin significantly inhibited mTOR, which can impact the anti-ischemic effect of crocin in vitro. These results suggest that crocin may elicit an anti-ischemic effect probably through the mTOR pathway.
Collapse
|