1
|
Li CC, Ramesh S, Liu TY, Wang TF, Kuo WW, Kuo CH, Chang YM, Hsieh DJY, Chen MC, Huang CY. Overexpression of cardiac-specific IGF-IIRα accelerates the development of liver dysfunction through STZ-induced diabetic hepatocyte damage in transgenic rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:2804-2812. [PMID: 35993117 DOI: 10.1002/tox.23638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/07/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
This study reports the effect of cardiac-specific insulin-like growth factor-II receptor α (IGF-IIRα) overexpression on the development of liver dysfunction in transgenic rats via STZ-induced diabetic hepatocyte damage. The cardio-hepatic syndrome comprises a number of heart and liver illnesses in which an acute or chronic disease in one organ can lead to acute or chronic disease in the other. However, the molecular mechanism involved in such a set of conditions is unclear. In this study, we developed a transgenic rat model with cardiac-specific overexpression of IGF-IIRα, which is a supplementary splicing variant of insulin-like growth factor-II receptor (IGF-IIR), expressed in pathological hearts, to investigate the relationship between late fetal gene expression in diabetic hearts and their influence on diabetic hepatopathy. STZ (55 mg/kg) was intraperitoneally delivered into IGF-IIR overexpressed transgenic (TG) and non-transgenic (NTG) animal models developed in Sprague-Dawley (SD) rats after an overnight fast. The relationship among IGF-IIRα overexpression and hepatocyte damages have been determined based on the complexity of damage in the liver. Our findings revealed that overexpression of the cardiac-specific IGF-IIRα enhances diabetes-induced morphological alterations and hepatic inflammation in the livers. The diabetic transgenic rats demonstrated the development of pathological conditions such as thick collagen fiber deposition, bridging fibrosis, and elevation of α-SMA and MMP1 related liver fibrosis mechanisms. Our data suggest that IGF-IIRα overexpression in the heart during a pathological state may worsen diabetic hepatopathy in rats.
Collapse
Affiliation(s)
- Chi-Cheng Li
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Microbiology, PRIST Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Tzu-Yang Liu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tso-Fu Wang
- School of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Chinese Medicine Department, E-DA Hospital, Kaohsiung, Taiwan
- 1PT Biotechnology Co., Ltd., Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
2
|
Lim SM, Choi BO, Oh SI, Choi WJ, Oh KW, Nahm M, Xue Y, Choi JH, Choi JY, Kim YE, Chung KW, Fu XD, Ki CS, Kim SH. Patient fibroblasts-derived induced neurons demonstrate autonomous neuronal defects in adult-onset Krabbe disease. Oncotarget 2018; 7:74496-74509. [PMID: 27780934 PMCID: PMC5342682 DOI: 10.18632/oncotarget.12812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/14/2016] [Indexed: 01/29/2023] Open
Abstract
Krabbe disease (KD) is an autosomal recessive neurodegenerative disorder caused by defective β-galactosylceramidase (GALC), a lysosomal enzyme responsible for cleavage of several key substrates including psychosine. Accumulation of psychosine to the cytotoxic levels in KD patients is thought to cause dysfunctions in myelinating glial cells based on a comprehensive study of demyelination in KD. However, recent evidence suggests myelin-independent neuronal death in the murine model of KD, thus indicating defective GALC in neurons as an autonomous mechanism for neuronal cell death in KD. These observations prompted us to generate induced neurons (iNeurons) from two adult-onset KD patients carrying compound heterozygous mutations (p.[K563*];[L634S]) and (p.[N228_S232delinsTP];[G286D]) to determine the direct contribution of autonomous neuronal toxicity to KD. Here we report that directly converted KD iNeurons showed not only diminished GALC activity and increased psychosine levels, as expected, but also neurite fragmentation and abnormal neuritic branching. The lysosomal-associated membrane proteins 1 (LAMP1) was expressed at higher levels than controls, LAMP1-positive vesicles were significantly enlarged and fragmented, and mitochondrial morphology and its function were altered in KD iNeurons. Strikingly, we demonstrated that psychosine was sufficient to induce neurite defects, mitochondrial fragmentation, and lysosomal alterations in iNeurons derived in healthy individuals, thus establishing the causal effect of the cytotoxic GALC substrate in KD and the autonomous neuronal toxicity in KD pathology.
Collapse
Affiliation(s)
- Su Min Lim
- Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea.,Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology and Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seong-Il Oh
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Won Jun Choi
- Department of Neurology, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| | - Ki-Wook Oh
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea.,Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Minyeop Nahm
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jae Hyeok Choi
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Ji Young Choi
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | | | - Ki Wha Chung
- Department of Biological Sciences, Gongju National University, Gongju, Republic of Korea
| | - Xiang-Dong Fu
- Department of Cellular Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea.,Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|