1
|
Sun Y, Woodson SA. Disassembly of unstable RNA structures by an E. coli DEAD-box chaperone accelerates ribosome assembly. Nucleic Acids Res 2025; 53:gkaf104. [PMID: 39988318 PMCID: PMC11840561 DOI: 10.1093/nar/gkaf104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
Ribosome synthesis in bacteria is coupled with transcription of the pre-ribosomal RNA (pre-rRNA), which must fold and assemble with 20 or more ribosomal proteins. In vitro, the Escherichia coli pre-16S rRNA misfolds during transcription, delaying stable binding of ribosomal protein uS4 that nucleates assembly of the 16S 5' domain. Using single-molecule fluorescence microscopy, we show that the DEAD-box protein CsdA (DeaD) strongly accelerates uS4 binding by facilitating proper folding of the nascent rRNA. Unstable RNA structures are unfolded by CsdA, whereas stable RNA structures resist unwinding. We show that CsdA unfolding becomes less frequent as more ribosomal proteins add to the complex. The results demonstrate that disassembly of unstable, nascent RNA-protein complexes by chaperones fuels the search for native structure. We propose that general chaperones create a gradient of disassembly that steepens the hierarchy of proper protein addition until late assembly intermediates escape unwinding and commit to 30S maturation.
Collapse
Affiliation(s)
- Yunsheng Sun
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States
| |
Collapse
|
2
|
Hien EDM, Chauvier A, St-Pierre P, Lafontaine DA. Structural Characterization of the Cotranscriptional Folding of the Thiamin Pyrophosphate Sensing thiC Riboswitch in Escherichia coli. Biochemistry 2024; 63:1608-1620. [PMID: 38864595 DOI: 10.1021/acs.biochem.3c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Riboswitches are RNA-regulating elements that mostly rely on structural changes to modulate gene expression at various levels. Recent studies have revealed that riboswitches may control several regulatory mechanisms cotranscriptionally, i.e., during the transcription elongation of the riboswitch or early in the coding region of the regulated gene. Here, we study the structure of the nascent thiamin pyrophosphate (TPP)-sensing thiC riboswitch in Escherichia coli by using biochemical and enzymatic conventional probing approaches. Our chemical (in-line and lead probing) and enzymatic (nucleases S1, A, T1, and RNase H) probing data provide a comprehensive model of how TPP binding modulates the structure of the thiC riboswitch. Furthermore, by using transcriptional roadblocks along the riboswitch sequence, we find that a certain portion of nascent RNA is needed to sense TPP that coincides with the formation of the P5 stem loop. Together, our data suggest that conventional techniques may readily be used to study cotranscriptional folding of nascent RNAs.
Collapse
Affiliation(s)
- Elsa D M Hien
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Adrien Chauvier
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Patrick St-Pierre
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
3
|
Bédard ASV, Hien EDM, Lafontaine DA. Riboswitch regulation mechanisms: RNA, metabolites and regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194501. [PMID: 32036061 DOI: 10.1016/j.bbagrm.2020.194501] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
Riboswitches are RNA sensors that have been shown to modulate the expression of downstream genes by altering their structure upon metabolite binding. Riboswitches are unique among cellular regulators in that metabolite detection is strictly performed using RNA interactions with the sensed metabolite and in which no regulatory protein is needed to mediate the interaction. However, recent studies have shed light on riboswitch control mechanisms relying on protein regulators to harness metabolite binding for the mediation of gene expression, thereby increasing the range of cellular factors involved in riboswitch regulation. The interaction between riboswitches and proteins adds another level of evolutionary pressure as riboswitches must maintain key residues for metabolite detection, structural switching and protein binding sites. Here, we review regulatory mechanisms involving Escherichia coli riboswitches that have recently been shown to rely on regulatory proteins. We also discuss the implication of such protein-based riboswitch regulatory mechanisms for genetic regulation.
Collapse
Affiliation(s)
- Anne-Sophie Vézina Bédard
- Department of biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Elsa D M Hien
- Department of biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Daniel A Lafontaine
- Department of biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada.
| |
Collapse
|
4
|
Chauvier A, Cabello-Villegas J, Walter NG. Probing RNA structure and interaction dynamics at the single molecule level. Methods 2019; 162-163:3-11. [PMID: 30951833 DOI: 10.1016/j.ymeth.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023] Open
Abstract
RNA structures and their dynamic fluctuations lie at the heart of understanding key biological process such as transcription, splicing, translation and RNA decay. While conventional bulk assays have proven to identify and characterize key pathway intermediates, the generally dynamic nature of RNA structures renders the information obtained from time and ensemble averaging techniques necessarily lacking in critical details. Here we detail Single-Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS), a method that readily monitors structural fluctuations of single RNA molecules through the repetitive interaction of fluorescent probes with an unlabeled, surface-immobilized RNA target of virtually any length and in any biological context. In addition, we demonstrate the broad applicability of SiM-KARTS by kinetically fingerprinting the binding of cognate tRNA ligand to single immobilized T-box riboswitch molecules. SiM-KARTS represents a valuable tool for probing biologically relevant structure and interaction features of potentially many diverse RNA metabolic pathways.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Javier Cabello-Villegas
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Bastet L, Chauvier A, Singh N, Lussier A, Lamontagne AM, Prévost K, Massé E, Wade JT, Lafontaine DA. Translational control and Rho-dependent transcription termination are intimately linked in riboswitch regulation. Nucleic Acids Res 2017; 45:7474-7486. [PMID: 28520932 PMCID: PMC5499598 DOI: 10.1093/nar/gkx434] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Riboswitches are regulatory elements that control gene expression by altering RNA structure upon the binding of specific metabolites. Although Bacillus subtilis riboswitches have been shown to control premature transcription termination, less is known about regulatory mechanisms employed by Escherichia coli riboswitches, which are predicted to regulate mostly at the level of translation initiation. Here, we present experimental evidence suggesting that the majority of known E. coli riboswitches control transcription termination by using the Rho transcription factor. In the case of the thiamin pyrophosphate-dependent thiM riboswitch, we find that Rho-dependent transcription termination is triggered as a consequence of translation repression. Using in vitro and in vivo assays, we show that the Rho-mediated regulation relies on RNA target elements located at the beginning of thiM coding region. Gene reporter assays indicate that relocating Rho target elements to a different gene induces transcription termination, demonstrating that such elements are modular domains controlling Rho. Our work provides strong evidence that translationally regulating riboswitches also regulate mRNA levels through an indirect control mechanism ensuring tight control of gene expression.
Collapse
Affiliation(s)
- Laurène Bastet
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Adrien Chauvier
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Navjot Singh
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Antony Lussier
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Anne-Marie Lamontagne
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Karine Prévost
- Department of Biochemistry, Faculty of Medicine and Health Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Eric Massé
- Department of Biochemistry, Faculty of Medicine and Health Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
- Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | - Daniel A. Lafontaine
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
6
|
Lussier A, Bastet L, Chauvier A, Lafontaine DA. A kissing loop is important for btuB riboswitch ligand sensing and regulatory control. J Biol Chem 2015; 290:26739-51. [PMID: 26370077 DOI: 10.1074/jbc.m115.684134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 12/18/2022] Open
Abstract
RNA-based genetic regulation is exemplified by metabolite-binding riboswitches that modulate gene expression through conformational changes. Crystal structures show that the Escherichia coli btuB riboswitch contains a kissing loop interaction that is in close proximity to the bound ligand. To analyze the role of the kissing loop interaction in the riboswitch regulatory mechanism, we used RNase H cleavage assays to probe the structure of nascent riboswitch transcripts produced by the E. coli RNA polymerase. By monitoring the folding of the aptamer, kissing loop, and riboswitch expression platform, we established the conformation of each structural component in the absence or presence of bound adenosylcobalamin. We found that the kissing loop interaction is not essential for ligand binding. However, we showed that kissing loop formation improves ligand binding efficiency and is required to couple ligand binding to the riboswitch conformational changes involved in regulating gene expression. These results support a mechanism by which the btuB riboswitch modulates the formation of a tertiary structure to perform metabolite sensing and regulate gene expression.
Collapse
Affiliation(s)
- Antony Lussier
- From the Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Laurène Bastet
- From the Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Adrien Chauvier
- From the Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Daniel A Lafontaine
- From the Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
7
|
Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch. Proc Natl Acad Sci U S A 2012; 109:3323-8. [PMID: 22331895 DOI: 10.1073/pnas.1113086109] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Riboswitches are cis-acting elements that regulate gene expression by affecting transcriptional termination or translational initiation in response to binding of a metabolite. A typical riboswitch is made of an upstream aptamer domain and a downstream expression platform. Both domains participate in the folding and structural rearrangement in the absence or presence of its cognate metabolite. RNA polymerase pausing is a fundamental property of transcription that can influence RNA folding. Here we show that pausing plays an important role in the folding and conformational rearrangement of the Escherichia coli btuB riboswitch during transcription by the E. coli RNA polymerase. This riboswitch consists of an approximately 200 nucleotide, coenzyme B12 binding aptamer domain and an approximately 40 nucleotide expression platform that controls the ribosome access for translational initiation. We found that transcriptional pauses at strategic locations facilitate folding and structural rearrangement of the full-length riboswitch, but have minimal effect on the folding of the isolated aptamer domain. Pausing at these regulatory sites blocks the formation of alternate structures and plays a chaperoning role that couples folding of the aptamer domain and the expression platform. Pausing at strategic locations may be a general mechanism for coordinated folding and conformational rearrangements of riboswitch structures that underlie their response to environmental cues.
Collapse
|
8
|
Abstract
RNA folds during transcription in the cell. Compared to most in vitro studies where the focus is generally on Mg(2+)-initiated refolding of fully synthesized transcripts, cotranscriptional RNA folding studies better replicate how RNA folds in a cellular environment. Unique aspects of cotranscriptional folding include the 5'- to 3'-polarity of RNA, the transcriptional speed, pausing properties of the RNA polymerase, the effect of the transcriptional complex and associated factors, and the effect of RNA-binding proteins. Identifying strategic pause sites can reveal insights on the folding pathway of the nascent transcript. Structural mapping of the paused transcription complexes identifies important folding intermediates along these pathways. Oligohybridization assays and the appearance of the catalytic activity of a ribozyme either in trans or in cis can be used to monitor cotranscriptional folding under a wide range of conditions. In our laboratory, these methodologies have been applied to study the folding of three highly conserved RNAs (RNase P, SRP, and tmRNA), several circularly permuted forms of a bacterial RNase P RNA, a riboswitch (thiM), and an aptamer-activated ribozyme (glmS).
Collapse
Affiliation(s)
- Terrence N Wong
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
9
|
Cisplatin and siRNA interference with structure and function of Wnt-5a mRNA: design and in vitro evaluation of targeting AU-rich elements in the 3′ UTR. J Biol Inorg Chem 2007; 13:385-99. [DOI: 10.1007/s00775-007-0327-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 11/15/2007] [Indexed: 12/20/2022]
|
10
|
Folding of noncoding RNAs during transcription facilitated by pausing-induced nonnative structures. Proc Natl Acad Sci U S A 2007; 104:17995-8000. [PMID: 17986617 DOI: 10.1073/pnas.0705038104] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA folding in the cell occurs during transcription. Expedient RNA folding must avoid the formation of undesirable structures as the nascent RNA emerges from the RNA polymerase. We show that efficient folding during transcription of three conserved noncoding RNAs from Escherichia coli, RNase P RNA, signal-recognition particle RNA, and tmRNA is facilitated by their cognate polymerase pausing at specific locations. These pause sites are located between the upstream and downstream portions of all of the native long-range helices in these noncoding RNAs. In the paused complexes, the nascent RNAs form labile structures that sequester these upstream portions in a manner to possibly guide folding. Both the pause sites and the secondary structure of the nonnative portions of the paused complexes are phylogenetically conserved among gamma-proteobacteria. We propose that specific pausing-induced structural formation is a general strategy to facilitate the folding of long-range helices. This polymerase-based mechanism may result in portions of noncoding RNA sequences being evolutionarily conserved for efficient folding during transcription.
Collapse
|
11
|
Ohki Y, Ikawa Y, Shiraishi H, Inoue T. Mispaired P3 region in the hierarchical folding pathway of the Tetrahymena ribozyme. Genes Cells 2002; 7:851-60. [PMID: 12167162 DOI: 10.1046/j.1365-2443.2002.00567.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The Tetrahymena group I ribozyme folds into a complex three-dimensional structure for performing catalytic reactions. The catalysis depends on its catalytic core consisting of two helical domains, P4-P6 and P3-P7, connected by single stranded regions. In the folding process, most of this ribozyme folds in a hierarchical manner in which a kinetically stable intermediate determines the overall folding rate. RESULTS Although the nature of this intermediate has not yet been elucidated, a mispaired P3 stem (alt-P3) appears a likely candidate. To examine the effects of the alt-P3 structure on the kinetic and thermodynamic properties of the active structure of the ribozyme or its P3-P7 domain formation, we prepared and analysed variant ribozymes in which relative stabilities of the original P3 and alt-P3 structure were altered systematically. CONCLUSION The results indicate that the alt-P3 structure is not the major rate-limiting factor in the folding process.
Collapse
Affiliation(s)
- Yasushi Ohki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
12
|
Oe Y, Ikawa Y, Shiraishi H, Inoue T. Relationship between the self-splicing activity and the solidity of the master domain of the Tetrahymena group I ribozyme. Biochem Biophys Res Commun 2002; 291:1225-31. [PMID: 11883948 DOI: 10.1006/bbrc.2002.6609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The highly conserved P3-P7 domain of the Group I intron ribozymes is known to contain essential elements, such as the binding site for the cofactor guanosine, required for conducting the splicing reaction. We investigated the domain of the Tetrahymena intron ribozyme and its variants in order to clarify the relationship between its stability and function. We found that the destabilization of the P3-P7 domain facilitates the active structure formation at high magnesium ion concentrations where the formation is retarded for the wild type. The destabilized domain also increases K(GTP)(m) although this can be compensated by increasing the concentration of Mg(2+), indicating that the stable domain is required for establishing a tight guanosine binding site. The results suggest that the stability of the domain affects the rate-limiting step in the RNA folding pathway and also regulates the efficiency of the splicing reaction.
Collapse
Affiliation(s)
- Yoshihiko Oe
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
13
|
Ohki Y, Ikawa Y, Shiraishi H, Inoue T. A deteriorated triple-helical scaffold accelerates formation of the Tetrahymena ribozyme active structure. FEBS Lett 2001; 493:95-100. [PMID: 11287003 DOI: 10.1016/s0014-5793(01)02279-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Tetrahymena group I ribozyme requires a hierarchical folding process to form its correct three-dimensional structure. Ribozyme activity depends on the catalytic core consisting of two domains, P4-P6 and P3-P7, connected by a triple-helical scaffold. The folding proceeds in the following order: (i) fast folding of the P4-P6 domain, (ii) slow folding of the P3-P7 domain, and (iii) structure rearrangement to form the active ribozyme structure. The third step is believed to directly determine the conformation of the active catalytic domain, but as yet the precise mechanisms remain to be elucidated. To investigate the folding kinetics of this step, we analyzed mutant ribozymes having base substitution(s) in the triple-helical scaffold and found that disruption of the scaffold at A105G results in modest slowing of the P3-P7 folding (1.9-fold) and acceleration of step (iii) by 5.9-fold. These results suggest that disruption or destabilization of the scaffold is a normal component in the formation process of the active structure of the wild type ribozyme.
Collapse
Affiliation(s)
- Y Ohki
- Graduate School of Biostudies, Kyoto University, 606-8502, Kyoto, Japan
| | | | | | | |
Collapse
|
14
|
Treiber DK, Williamson JR. Concerted kinetic folding of a multidomain ribozyme with a disrupted loop-receptor interaction. J Mol Biol 2001; 305:11-21. [PMID: 11114243 DOI: 10.1006/jmbi.2000.4253] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The free energy landscape for the folding of large, multidomain RNAs is rugged, and kinetically trapped, misfolded intermediates are a hallmark of RNA folding reactions. Here, we examine the role of a native loop-receptor interaction in determining the ruggedness of the energy landscape for folding of the Tetrahymena ribozyme. We demonstrate a progressive smoothing of the energy landscape for ribozyme folding as the strength of the loop-receptor interaction is reduced. Remarkably, with the most severe mutation, global folding is more rapid than for the wild-type ribozyme and proceeds in a concerted fashion without the accumulation of long-lived kinetic intermediates. The results demonstrate that a complex interplay between native tertiary interactions, divalent ion concentration, and non-native secondary structure determines the ruggedness of the energy landscape. Furthermore, the results suggest that kinetic folding transitions involving large regions of highly structured RNAs can proceed in a concerted fashion, in the absence of significant stable, preorganized tertiary structure.
Collapse
Affiliation(s)
- D K Treiber
- Department of Molecular Biology and the Skaggs Institute for Chemical Biology MB33, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | |
Collapse
|