1
|
Mendoza PA, Silva P, Díaz J, Arriagada C, Canales J, Cerda O, Torres VA. Calpain2 mediates Rab5-driven focal adhesion disassembly and cell migration. Cell Adh Migr 2017; 12:185-194. [PMID: 29099266 DOI: 10.1080/19336918.2017.1377388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The early endosome protein Rab5 was recently shown to promote cell migration by enhancing focal adhesion disassembly through mechanisms that remain elusive. Focal adhesion disassembly is associated to proteolysis of talin, in a process that requires calpain2. Since calpain2 has been found at vesicles and endosomal compartments, we hypothesized that Rab5 stimulates calpain2 activity, leading to enhanced focal adhesion disassembly in migrating cells. We observed that calpain2 co-localizes with EEA1-positive early endosomes and co-immunoprecipitates with EEA1 and Rab5 in A549 lung carcinoma cells undergoing spreading, whereas Rab5 knock-down decreased the accumulation of calpain2 at early endosomal-enriched fractions. In addition, Rab5 silencing decreased calpain2 activity, as shown by cleavage of the fluorogenic substrate tBOC-LM-CMAC and the endogenous substrate talin. Accordingly, Rab5 promoted focal adhesion disassembly in a calpain2-dependent manner, as expression of GFP-Rab5 accelerated focal adhesion disassembly in nocodazole-synchronized cells, whereas pharmacological inhibition of calpain2 with N-acetyl-Leu-Leu-Met prevented both focal adhesion disassembly and cell migration induced by Rab5. In summary, these data uncover Rab5 as a novel regulator of calpain2 activity and focal adhesion proteolysis leading to cell migration.
Collapse
Affiliation(s)
- Pablo A Mendoza
- a Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile , Santiago , Chile.,b Molecular Pathology Laboratory , Institute of Biochemistry and Microbiology, Sciences Faculty, Universidad Austral de Chile , Valdivia , Chile
| | - Patricio Silva
- a Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile , Santiago , Chile.,c Faculty of Health Sciences, Universidad Central de Chile , Santiago , Chile
| | - Jorge Díaz
- a Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile , Santiago , Chile.,d Advanced Center for Chronic Diseases (ACCDiS) , Universidad de Chile , Santiago , Chile
| | - Cecilia Arriagada
- a Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile , Santiago , Chile
| | - Jimena Canales
- e Programa de Biología Celular y Molecular , Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Oscar Cerda
- e Programa de Biología Celular y Molecular , Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile , Santiago , Chile.,f Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD) , Universidad de Chile , Santiago , Chile
| | - Vicente A Torres
- a Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile , Santiago , Chile.,d Advanced Center for Chronic Diseases (ACCDiS) , Universidad de Chile , Santiago , Chile
| |
Collapse
|
2
|
Zhang J, Fonovic M, Suyama K, Bogyo M, Scott MP. Rab35 controls actin bundling by recruiting fascin as an effector protein. Science 2009; 325:1250-4. [PMID: 19729655 DOI: 10.1126/science.1174921] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Actin filaments are key components of the eukaryotic cytoskeleton that provide mechanical structure and generate forces during cell shape changes, growth, and migration. Actin filaments are dynamically assembled into higher-order structures at specified locations to regulate diverse functions. The Rab family of small guanosine triphosphatases is evolutionarily conserved and mediates intracellular vesicle trafficking. We found that Rab35 regulates the assembly of actin filaments during bristle development in Drosophila and filopodia formation in cultured cells. These effects were mediated by the actin-bundling protein fascin, which directly associated with active Rab35. Targeting Rab35 to the outer mitochondrial membrane triggered actin recruitment, demonstrating a role for an intracellular trafficking protein in localized actin assembly.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
3
|
Hagiwara M, Shirai Y, Nomura R, Sasaki M, Kobayashi KI, Tadokoro T, Yamamoto Y. Caveolin-1 activates Rab5 and enhances endocytosis through direct interaction. Biochem Biophys Res Commun 2008; 378:73-8. [PMID: 19013132 DOI: 10.1016/j.bbrc.2008.10.172] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 12/14/2022]
Abstract
Caveolin-1, a constitutive protein of the caveolae, is implicated in processes of vesicular transport during caveolae-mediated endocytosis. However, the molecular mechanisms of caveolae-mediated endocytosis are not yet clearly defined. Here, we show the physiological role of the Rab5-caveolin-1 interaction during caveolae-mediated endocytosis. Rab5 was found in caveolae-enriched fractions and Rab5 directly bound to caveolin-1. Furthermore, binding sites of Rab5 to caveolin-1 were identified in the scaffold (SD), transmembrane (TM), and C-terminus (CC) domains, and the Rab5 binding domain of caveolin-1 was required for CTXB uptake. Subsequently, we performed a GST-R5BD pull-down assay to determine whether the Rab5 binding domain of caveolin-1 is involved in Rab5 activity or not. The results showed that overexpression of the Rab5 binding domain of caveolin-1 increase the amount of Rab5-GTP in Cos-1 cells. These findings imply that caveolin-1 controls the Rab5 activity during the caveolae-mediated endocytosis.
Collapse
Affiliation(s)
- Makoto Hagiwara
- Department of Agricultural Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Beard M, Satoh A, Shorter J, Warren G. A cryptic Rab1-binding site in the p115 tethering protein. J Biol Chem 2005; 280:25840-8. [PMID: 15878873 DOI: 10.1074/jbc.m503925200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small GTPases and coiled-coil proteins of the golgin family help to tether COPI vesicles to Golgi membranes. At the cis-side of the Golgi, the Rab1 GTPase binds directly to each of three coiled-coil proteins: p115, GM130, and as now shown, Giantin. Rab1 binds to a coiled-coil region within the tail domain of p115 and this binding is inhibited by the C-terminal, acidic domain of p115. Furthermore, GM130 and Giantin bind to the acidic domain of p115 and stimulate p115 binding to Rab1, suggesting that p115 binding to Rab1 is regulated. Regulation of this interaction by proteins such as GM130 and Giantin may control the membrane recruitment of p115 by Rab1.
Collapse
Affiliation(s)
- Matthew Beard
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
5
|
Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem 2005; 280:25060-70. [PMID: 15878861 DOI: 10.1074/jbc.m501599200] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial fusion in higher eukaryotes requires at least two essential GTPases, Mitofusin 1 and Mitofusin 2 (Mfn2). We have created an activated mutant of Mfn2, which shows increased rates of nucleotide exchange and decreased rates of hydrolysis relative to wild type Mfn2. Mitochondrial fusion is stimulated dramatically within heterokaryons expressing this mutant, demonstrating that hydrolysis is not requisite for the fusion event, and supporting a role for Mfn2 as a signaling GTPase. Although steady-state mitochondrial fusion required the conserved intermembrane space tryptophan residue, this requirement was overcome within the context of the hydrolysis-deficient mutant. Furthermore, the punctate localization of Mfn2 is lost in the dominant active mutants, indicating that these sites are functionally controlled by changes in the nucleotide state of Mfn2. Upon staurosporine-stimulated cell death, activated Bax is recruited to the Mfn2-containing puncta; however, Bax activation and cytochrome c release are inhibited in the presence of the dominant active mutants of Mfn2. The dominant active form of Mfn2 also protected the mitochondria against free radical-induced permeability transition. In contrast to staurosporine-induced outer membrane permeability transition, pore opening induced through the introduction of free radicals was dependent upon the conserved intermembrane space residue. This is the first evidence that Mfn2 is a signaling GTPase regulating mitochondrial fusion and that the nucleotide-dependent activation of Mfn2 concomitantly protects the organelle from permeability transition. The data provide new insights into the critical relationship between mitochondrial membrane dynamics and programmed cell death.
Collapse
Affiliation(s)
- Margaret Neuspiel
- University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | |
Collapse
|
6
|
Stein MP, Cao C, Tessema M, Feng Y, Romero E, Welford A, Wandinger-Ness A. Interaction and functional analyses of human VPS34/p150 phosphatidylinositol 3-kinase complex with Rab7. Methods Enzymol 2005; 403:628-49. [PMID: 16473626 DOI: 10.1016/s0076-6879(05)03055-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Rab7 GTPase is a key regulator of late endocytic membrane transport and autophagy. Rab7 exerts temporal and spatial control over late endocytic membrane transport through interactions with various effector proteins. Among Rab7 effectors, the hVPS34/p150 phosphatidylinositol (PtdIns) 3-kinase complex serves to regulate late endosomal phosphatidylinositol signaling that is important for protein sorting and intraluminal vesicle sequestration. In this chapter, reagents and methods for the characterization of the interactions and regulation of the Rab7/hVPS34/p150 complex are described. Using these methods we demonstrate the requirement for activated Rab7 in the regulation of hVPS34/p150 PtdIns 3-kinase activity on late endosomes in vivo.
Collapse
|
7
|
Lu L, Hong W. Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol Biol Cell 2003; 14:3767-81. [PMID: 12972563 PMCID: PMC196566 DOI: 10.1091/mbc.e03-01-0864] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A cellular role and the mechanism of action for small GTPase Arl1 have been defined. Arl1-GTP interacts with the GRIP domains of Golgin-97 and Golgin-245, a process dependent on conserved residues of the GRIP domains that are important for Golgi targeting. The switch II region of Arl1 confers the specificity of this interaction. Arl1-GTP mediates Golgi recruitment of Golgin-97 in a switch II-dependent manner, whereas tethering Arl1-GTP onto endosomes can mediate endosomal targeting of Golgin-97. Golgin-97 and Golgin-245 are dissociated from the Golgi when Arl1 is knocked-down by its siRNA. Arl1-GTP thus functions to recruit Golgin-97 and Golgin-245 onto the Golgi via interacting with their GRIP domains.
Collapse
Affiliation(s)
- Lei Lu
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | |
Collapse
|