1
|
Helmbrecht V, Reichelt R, Grohmann D, Orsi WD. Simulated early Earth geochemistry fuels a hydrogen-dependent primordial metabolism. Nat Ecol Evol 2025; 9:769-778. [PMID: 40307408 PMCID: PMC12066356 DOI: 10.1038/s41559-025-02676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/07/2025] [Indexed: 05/02/2025]
Abstract
Molecular hydrogen is the electron donor for the ancient exergonic reductive acetyl-coenzyme A pathway (acetyl-CoA pathway), which is used by hydrogenotrophic methanogenic archaea. How the presence of iron-sulfides influenced the acetyl-CoA pathway under primordial early Earth geochemistry is still poorly understood. Here we show that the iron-sulfides mackinawite (FeS) and greigite (Fe3S4), which formed in chemical garden experiments simulating geochemical conditions of the early Archaean eon (4.0-3.6 billion years ago), produce abiotic H2 in sufficient quantities to support hydrogenotrophic growth of the hyperthermophilic methanogen Methanocaldococcus jannaschii. Abiotic H2 from iron-sulfide formation promoted CO2 fixation and methanogenesis and induced overexpression of genes encoding the acetyl-CoA pathway. We demonstrate that H2 from iron-sulfide precipitation under simulated early Earth hydrothermal geochemistry fuels a H2-dependent primordial metabolism.
Collapse
Affiliation(s)
- Vanessa Helmbrecht
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Reichelt
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Dina Grohmann
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - William D Orsi
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany.
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
2
|
Wells M, Basu P, Stolz JF. The physiology and evolution of microbial selenium metabolism. Metallomics 2021; 13:6261189. [PMID: 33930157 DOI: 10.1093/mtomcs/mfab024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Selenium is an essential trace element whose compounds are widely metabolized by organisms from all three domains of life. Moreover, phylogenetic evidence indicates that selenium species, along with iron, molybdenum, tungsten, and nickel, were metabolized by the last universal common ancestor of all cellular lineages, primarily for the synthesis of the 21st amino acid selenocysteine. Thus, selenium metabolism is both environmentally ubiquitous and a physiological adaptation of primordial life. Selenium metabolic reactions comprise reductive transformations both for assimilation into macromolecules and dissimilatory reduction of selenium oxyanions and elemental selenium during anaerobic respiration. This review offers a comprehensive overview of the physiology and evolution of both assimilatory and dissimilatory selenium metabolism in bacteria and archaea, highlighting mechanisms of selenium respiration. This includes a thorough discussion of our current knowledge of the physiology of selenocysteine synthesis and incorporation into proteins in bacteria obtained from structural biology. Additionally, this is the first comprehensive discussion in a review of the incorporation of selenium into the tRNA nucleoside 5-methylaminomethyl-2-selenouridine and as an inorganic cofactor in certain molybdenum hydroxylase enzymes. Throughout, conserved mechanisms and derived features of selenium metabolism in both domains are emphasized and discussed within the context of the global selenium biogeochemical cycle.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
3
|
|
4
|
Gonnet M, Erauso G, Prieur D, Le Romancer M. pAMT11, a novel plasmid isolated from a Thermococcus sp. strain closely related to the virus-like integrated element TKV1 of the Thermococcus kodakaraensis genome. Res Microbiol 2010; 162:132-43. [PMID: 21144896 DOI: 10.1016/j.resmic.2010.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 10/05/2010] [Indexed: 10/18/2022]
Abstract
A novel extrachromosomal element that we called pAMT11 was discovered in a deep-sea vent isolate belonging to the hyperthermophilic euryarchaeal order Thermococcales. It consists of a double-stranded DNA of 20,534bp which encodes 30 putative open reading frames (ORFs) of which six could be assigned to a putative function on the basis of sequence similarity to known genes or to protein domain families. Most of the ORFs of pAMT1 showed homology and synteny with a genomic island of Thermococcus kodakaraensis KOD1. This region, named TKV1, was previously described as a "virus-like integrated element" and assumed to integrate into the host chromosome by a site-specific recombination mechanism similar to that of Sulfolobus solfataricus virus 1. While most of the genes shared by pAMT11 and TKV1 encode putative membrane proteins presumably involved in virus particle formation, attempts to induce production of virus particles by mitomycin treatment of AMT11 cultures failed, suggesting that pAMT11 may represent the genome of a defective virus or a plasmid. Genomes of mobile elements usually contain two regions: a core of conserved genes mainly involved in replication, maintenance or spreading of the genetic element, and a variable set of accessory genes. Surprisingly, genes presumably implied in the replication process are quite divergent between TKV1 and pAMT11. Indeed, TKV1 possesses a MCM-like protein that may function as a replication initiator, while pAMT11 encodes a putative non-conventional protein distantly related to the Rep protein previously described in a small plasmid of Pyrococcus sp. strain JT1, assumed to replicate by a rolling-circle (RC) mechanism. However, in the case of pAMT11, this mode of plasmid replication could not be experimentally proven and is questionable given the lack of significant similarities with any other members of the RC-Rep superfamily and its unusual large size compared to other RC plasmids.
Collapse
Affiliation(s)
- Mathieu Gonnet
- Unité d'Epidémiologie Animale, UR356, INRA centre de Clermont-Ferrand Theix, Route de Theix, 63122 Saint Genès Champanelle, France.
| | | | | | | |
Collapse
|
5
|
Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20847933 PMCID: PMC2933860 DOI: 10.1155/2010/453642] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 01/21/2023]
Abstract
Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to put this knowledge into the context of their unique energy metabolism.
Collapse
|
6
|
Helgadóttir S, Rosas-Sandoval G, Söll D, Graham DE. Biosynthesis of phosphoserine in the Methanococcales. J Bacteriol 2006; 189:575-82. [PMID: 17071763 PMCID: PMC1797378 DOI: 10.1128/jb.01269-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanococcus maripaludis and Methanocaldococcus jannaschii produce cysteine for protein synthesis using a tRNA-dependent pathway. These methanogens charge tRNA(Cys) with l-phosphoserine, which is also an intermediate in the predicted pathways for serine and cystathionine biosynthesis. To establish the mode of phosphoserine production in Methanococcales, cell extracts of M. maripaludis were shown to have phosphoglycerate dehydrogenase and phosphoserine aminotransferase activities. The heterologously expressed and purified phosphoglycerate dehydrogenase from M. maripaludis had enzymological properties similar to those of its bacterial homologs but was poorly inhibited by serine. While bacterial enzymes are inhibited by micromolar concentrations of serine bound to an allosteric site, the low sensitivity of the archaeal protein to serine is consistent with phosphoserine's position as a branch point in several pathways. A broad-specificity class V aspartate aminotransferase from M. jannaschii converted the phosphohydroxypyruvate product to phosphoserine. This enzyme catalyzed the transamination of aspartate, glutamate, phosphoserine, alanine, and cysteate. The M. maripaludis homolog complemented a serC mutation in the Escherichia coli phosphoserine aminotransferase. All methanogenic archaea apparently share this pathway, providing sufficient phosphoserine for the tRNA-dependent cysteine biosynthetic pathway.
Collapse
Affiliation(s)
- Sunna Helgadóttir
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
7
|
Rother M, Boccazzi P, Bose A, Pritchett MA, Metcalf WW. Methanol-dependent gene expression demonstrates that methyl-coenzyme M reductase is essential in Methanosarcina acetivorans C2A and allows isolation of mutants with defects in regulation of the methanol utilization pathway. J Bacteriol 2005; 187:5552-9. [PMID: 16077099 PMCID: PMC1196066 DOI: 10.1128/jb.187.16.5552-5559.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanosarcina acetivorans C2A is able to convert several substrates to methane via at least four distinct methanogenic pathways. A common step in each of these pathways is the reduction of methyl-coenzyme M (CoM) to methane catalyzed by methyl-CoM reductase (MCR). Because this enzyme is used in each of the known pathways, the mcrBDCGA operon, which encodes MCR, is expected to be essential. To validate this prediction, a system for conditional gene inactivation was developed. A heterologous copy of the mcrBDCGA operon was placed under the control of the highly regulated mtaC1 promoter, which directs the expression of genes involved in methanol utilization, and recombined onto the M. acetivorans chromosome. This allowed for disruption of the endogenous mcr operon in the presence of methanol. Because the PmtaC1 promoter is transcribed only during growth on methanol, mcrBDCGA was rendered methanol dependent and the strain was unable to grow in trimethylamine media, strongly suggesting that mcrBDCGA is essential. Upon prolonged incubation, suppressed mutants which expressed mcrBDCGA constitutively could be selected. Expression analysis of PmtaC1::uidA gene fusions in several isolated suppressed mutants suggests that they carry trans-active mutations leading to deregulation of all genes under control of this promoter. Subsequently, proteome analysis of one such suppressed mutant revealed that all known proteins derived from mtaC1 promoter-dependent expression were constitutively expressed in this mutant. This genetic system can therefore be employed for the testing of essential genes and for the identification of genes under a common regulatory mechanism by making regulatory mutations phenotypically selectable.
Collapse
Affiliation(s)
- Michael Rother
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
8
|
Tsoka S, Simon D, Ouzounis CA. Automated metabolic reconstruction for Methanococcus jannaschii. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:223-9. [PMID: 15810431 PMCID: PMC2685575 DOI: 10.1155/2004/324925] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present the computational prediction and synthesis of the metabolic pathways in Methanococcus jannaschii from its genomic sequence using the PathoLogic software. Metabolic reconstruction is based on a reference knowledge base of metabolic pathways and is performed with minimal manual intervention. We predict the existence of 609 metabolic reactions that are assembled in 113 metabolic pathways and an additional 17 super-pathways consisting of one or more component pathways. These assignments represent significantly improved enzyme and pathway predictions compared with previous metabolic reconstructions, and some key metabolic reactions, previously missing, have been identified. Our results, in the form of enzymatic assignments and metabolic pathway predictions, form a database (MJCyc) that is accessible over the World Wide Web for further dissemination among members of the scientific community.
Collapse
Affiliation(s)
- Sophia Tsoka
- Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, UK.
| | | | | |
Collapse
|
9
|
Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, Hackett M, Haydock AK, Kang A, Land ML, Levy R, Lie TJ, Major TA, Moore BC, Porat I, Palmeiri A, Rouse G, Saenphimmachak C, Söll D, Van Dien S, Wang T, Whitman WB, Xia Q, Zhang Y, Larimer FW, Olson MV, Leigh JA. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 2004; 186:6956-69. [PMID: 15466049 PMCID: PMC522202 DOI: 10.1128/jb.186.20.6956-6969.2004] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L- and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most intein-containing proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.
Collapse
Affiliation(s)
- E L Hendrickson
- University of Washington, Dept. of Microbiology, Box 357242, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Major TA, Burd H, Whitman WB. Abundance of 4Feâ4S motifs in the genomes of methanogens and other prokaryotes. FEMS Microbiol Lett 2004; 239:117-23. [PMID: 15451109 DOI: 10.1016/j.femsle.2004.08.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 08/18/2004] [Accepted: 08/19/2004] [Indexed: 11/22/2022] Open
Abstract
The abundance of 4Fe-4S motifs of the form CX2CX2CX3C was analyzed in the open reading frames (ORFs) of 120 prokaryotic genomes. The abundance of ORFs containing the CX2CX2CX3C motif or isORFs correlated (r=0.82) with methanogenesis (p=0.0001), archaea (p=0.0173), anaerobiosis (p<0.0001) and genome size (p<0.0001). Optimal growth temperature (hyperthermophily) did not correlate with the number of isORFs (p=0.6283). Large numbers of CX2CX2CX3C motifs may be associated with unique physiologies: methanogenic archaea contained the greatest number of CX2CX2CX3C motifs found among the prokaryotic groups; however, only about 15% of the motifs were in genes directly involved in methanogenesis. Large numbers of CX2CX2CX3C motifs may also be associated with generalists such as Desulfitobacterium hafniense, which is an anaerobic bacterium containing multiple reductases.
Collapse
Affiliation(s)
- Tiffany A Major
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | | | | |
Collapse
|
11
|
Abstract
Whereas the process of DNA replication is fundamentally conserved in the three domains of life, the archaeal system is closer to that of eukarya than bacteria. In the time since the complete genome sequences of several members of the archaeal domain became available, there has been a burst of research on archaeal DNA replication. These studies have led to both expected and surprising findings. This review summarizes the search for origins of replication in archaea, and our current knowledge of initiation, the process by which replication origins are recognized, the DNA molecule is unwound and the replicative helicase is loaded onto the DNA in preparation for DNA synthesis. The similarities and differences of the initiation process in archea, bacteria and eukarya are also summarized.
Collapse
Affiliation(s)
- Lori M Kelman
- Montgomery College, 20200 Observation Drive, Germantown, MD 20876, USA.
| | | |
Collapse
|
12
|
Mallick P, Boutz DR, Eisenberg D, Yeates TO. Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds. Proc Natl Acad Sci U S A 2002; 99:9679-84. [PMID: 12107280 PMCID: PMC124975 DOI: 10.1073/pnas.142310499] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disulfide bonds have only rarely been found in intracellular proteins. That pattern is consistent with the chemically reducing environment inside the cells of well-studied organisms. However, recent experiments and new calculations based on genomic data of archaea provide striking contradictions to this pattern. Our results indicate that the intracellular proteins of certain hyperthermophilic archaea, especially the crenarchaea Pyrobaculum aerophilum and Aeropyrum pernix, are rich in disulfide bonds. This finding implicates disulfide bonding in stabilizing many thermostable proteins and points to novel chemical environments inside these microbes. These unexpected results illustrate the wealth of biochemical insights available from the growing reservoir of genomic data.
Collapse
Affiliation(s)
- Parag Mallick
- Department of Chemistry and Biochemistry and Department of Energy Center for Genomics and Proteomics, Molecular Biology Institute, and Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | |
Collapse
|
13
|
Daugherty M, Vonstein V, Overbeek R, Osterman A. Archaeal shikimate kinase, a new member of the GHMP-kinase family. J Bacteriol 2001; 183:292-300. [PMID: 11114929 PMCID: PMC94878 DOI: 10.1128/jb.183.1.292-300.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shikimate kinase (EC 2.7.1.71) is a committed enzyme in the seven-step biosynthesis of chorismate, a major precursor of aromatic amino acids and many other aromatic compounds. Genes for all enzymes of the chorismate pathway except shikimate kinase are found in archaeal genomes by sequence homology to their bacterial counterparts. In this study, a conserved archaeal gene (gi1500322 in Methanococcus jannaschii) was identified as the best candidate for the missing shikimate kinase gene by the analysis of chromosomal clustering of chorismate biosynthetic genes. The encoded hypothetical protein, with no sequence similarity to bacterial and eukaryotic shikimate kinases, is distantly related to homoserine kinases (EC 2.7.1.39) of the GHMP-kinase superfamily. The latter functionality in M. jannaschii is assigned to another gene (gi591748), in agreement with sequence similarity and chromosomal clustering analysis. Both archaeal proteins, overexpressed in Escherichia coli and purified to homogeneity, displayed activity of the predicted type, with steady-state kinetic parameters similar to those of the corresponding bacterial kinases: K(m,shikimate) = 414 +/- 33 microM, K(m,ATP) = 48 +/- 4 microM, and k(cat) = 57 +/- 2 s(-1) for the predicted shikimate kinase and K(m,homoserine) = 188 +/- 37 microM, K(m,ATP) = 101 +/- 7 microM, and k(cat) = 28 +/- 1 s(-1) for the homoserine kinase. No overlapping activity could be detected between shikimate kinase and homoserine kinase, both revealing a >1,000-fold preference for their own specific substrates. The case of archaeal shikimate kinase illustrates the efficacy of techniques based on reconstruction of metabolism from genomic data and analysis of gene clustering on chromosomes in finding missing genes.
Collapse
Affiliation(s)
- M Daugherty
- Integrated Genomics Inc., Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|