1
|
Tomiyama R, So M, Yamaguchi K, Miyanoiri Y, Sakurai K. The residual structure of acid-denatured β 2 -microglobulin is relevant to an ordered fibril morphology. Protein Sci 2023; 32:e4487. [PMID: 36321362 PMCID: PMC9793977 DOI: 10.1002/pro.4487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
β2 -Microglobulin (β2m) forms amyloid fibrils in vitro under acidic conditions. Under these conditions, the residual structure of acid-denatured β2m is relevant to seeding and fibril extension processes. Disulfide (SS) bond-oxidized β2m has been shown to form rigid, ordered fibrils, whereas SS bond-reduced β2m forms curvy, less-ordered fibrils. These findings suggest that the presence of an SS bond affects the residual structure of the monomer, which subsequently influences the fibril morphology. To clarify this process, we herein performed NMR experiments. The results obtained revealed that oxidized β2m contained a residual structure throughout the molecule, including the N- and C-termini, whereas the residual structure of the reduced form was localized and other regions had a random coil structure. The range of the residual structure in the oxidized form was wider than that of the fibril core. These results indicate that acid-denatured β2m has variable conformations. Most conformations in the ensemble cannot participate in fibril formation because their core residues are hidden by residual structures. However, when hydrophobic residues are exposed, polypeptides competently form an ordered fibril. This conformational selection phase may be needed for the ordered assembly of amyloid fibrils.
Collapse
Affiliation(s)
- Ryosuke Tomiyama
- Graduate School of Biology‐oriented Science and TechnologyKindai UniversityWakayamaJapan
| | - Masatomo So
- Institute for Protein ResearchOsaka UniversityOsakaJapan,Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and InformaticsOsaka UniversitySuitaJapan
| | | | - Kazumasa Sakurai
- Graduate School of Biology‐oriented Science and TechnologyKindai UniversityWakayamaJapan,High Pressure Protein Research Center, Institute of Advanced TechnologyKindai UniversityWakayamaJapan
| |
Collapse
|
2
|
Comparative Assessment of NMR Probes for the Experimental Description of Protein Folding Pathways with High-Pressure NMR. BIOLOGY 2021; 10:biology10070656. [PMID: 34356511 PMCID: PMC8301334 DOI: 10.3390/biology10070656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022]
Abstract
Multidimensional NMR intrinsically provides multiple probes that can be used for deciphering the folding pathways of proteins: NH amide and CαHα groups are strategically located on the backbone of the protein, while CH3 groups, on the side-chain of methylated residues, are involved in important stabilizing interactions in the hydrophobic core. Combined with high hydrostatic pressure, these observables provide a powerful tool to explore the conformational landscapes of proteins. In the present study, we made a comparative assessment of the NH, CαHα, and CH3 groups for analyzing the unfolding pathway of ∆+PHS Staphylococcal Nuclease. These probes yield a similar description of the folding pathway, with virtually identical thermodynamic parameters for the unfolding reaction, despite some notable differences. Thus, if partial unfolding begins at identical pressure for these observables (especially in the case of backbone probes) and concerns similar regions of the molecule, the residues involved in contact losses are not necessarily the same. In addition, an unexpected slight shift toward higher pressure was observed in the sequence of the scenario of unfolding with CαHα when compared to amide groups.
Collapse
|
3
|
Kitahara R, Oyama K, Kawamura T, Mitsuhashi K, Kitazawa S, Yasunaga K, Sagara N, Fujimoto M, Terauchi K. Pressure accelerates the circadian clock of cyanobacteria. Sci Rep 2019; 9:12395. [PMID: 31455816 PMCID: PMC6712028 DOI: 10.1038/s41598-019-48693-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/07/2019] [Indexed: 11/10/2022] Open
Abstract
Although organisms are exposed to various pressure and temperature conditions, information remains limited on how pressure affects biological rhythms. This study investigated how hydrostatic pressure affects the circadian clock (KaiA, KaiB, and KaiC) of cyanobacteria. While the circadian rhythm is inherently robust to temperature change, KaiC phosphorylation cycles that were accelerated from 22 h at 1 bar to 14 h at 200 bars caused the circadian-period length to decline. This decline was caused by the pressure-induced enhancement of KaiC ATPase activity and allosteric effects. Because ATPase activity was elevated in the CI and CII domains of KaiC, while ATP hydrolysis had negative activation volumes (ΔV≠), both domains played key roles in determining the period length of the KaiC phosphorylation cycle. The thermodynamic contraction of the structure of the active site during the transition state might have positioned catalytic residues and lytic water molecules favourably to facilitate ATP hydrolysis. Internal cavities might represent sources of compaction and structural rearrangement in the active site. Overall, the data indicate that pressure differences could alter the circadian rhythms of diverse organisms with evolved thermotolerance, as long as enzymatic reactions defining period length have a specific activation volume.
Collapse
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan. .,Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Katsuaki Oyama
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takahiro Kawamura
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Keita Mitsuhashi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Soichiro Kitazawa
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kazuhiro Yasunaga
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Natsuno Sagara
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Megumi Fujimoto
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kazuki Terauchi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.,College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
4
|
Sakurai K, Maeno A, Lee YH, Akasaka K. Conformational Properties Relevant to the Amyloidogenicity of β 2-Microglobulin Analyzed Using Pressure- and Salt-Dependent Chemical Shift Data. J Phys Chem B 2019; 123:836-844. [PMID: 30604603 DOI: 10.1021/acs.jpcb.8b11408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
β2-Microglobulin (β2m) is associated with dialysis-related amyloidosis. In vitro experiments have shown that β2m forms amyloid fibrils at acidic pHs in the presence of moderate concentrations of salt. Previous studies suggested that acid-denatured β2m has a hydrophobic residual structure, and the exposure of the hydrophobic residues enhances the association with seeds or other β2m monomers. However, the nature of the residual structure relevant to its amyloidogenicity remains to be investigated. To understand the structural properties of acid-denatured β2m and the role of salt, we investigated pressure- and salt concentration-dependent conformational changes by nuclear magnetic resonance spectroscopy and other methods. Here, pressure was utilized to characterize the conformers existing in a conformational equilibrium at ambient pressure. The obtained pressure- and salt concentration-dependent chemical shift data were simultaneously subjected to principal component analysis to characterize individual conformational change events. Unexpectedly, the addition of salt induced an expansion of the β2m molecule, which likely resulted from the exclusion of the N-terminal region from the hydrophobic cluster region. The dissected chemical shift patterns for the salt-induced conformational change and other experimental data indicated that this conformational change caused a rigidification in the intrinsic hydrophobic cluster, leading to the observed amyloidogenicity.
Collapse
Affiliation(s)
- Kazumasa Sakurai
- High Pressure Protein Research Center, Institute of Advanced Technology , Kindai University , 930 Nishimitani , Kinokawa, Wakayama 649-6493 , Japan.,Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita, Osaka 565-0871 , Japan
| | - Akihiro Maeno
- Laboratory of Medical Chemistry , Kansai Medical University , 2-5-1 Shin-machi , Hirakata , Osaka 573-1010 , Japan
| | - Young-Ho Lee
- Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita, Osaka 565-0871 , Japan.,Protein Structure Research Group, Division of Bioconvergence Analysis , Korea Basic Science Institute , Cheongju , Chungcheongbuk-do 28119 , South Korea
| | - Kazuyuki Akasaka
- Kyoto Prefectural University of Medicine , 465 Kajii-cho , Kamigyo-ku, Kyoto 602-8566 , Japan
| |
Collapse
|
5
|
Kitazawa S, Aoshima Y, Wakamoto T, Kitahara R. Water-Protein Interactions Coupled with Protein Conformational Transition. Biophys J 2018; 115:981-987. [PMID: 30146267 PMCID: PMC6139601 DOI: 10.1016/j.bpj.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022] Open
Abstract
Conformational fluctuations of proteins are crucially important for their functions. However, changes in the location and dynamics of hydrated water in many proteins accompanied by the conformational transition have not been fully understood. Here, we used phase-modulated clean chemical exchange NMR approach to investigate pressure-induced changes in water-to-amide proton exchange occurring at sub-second time scale. With the transition of ubiquitin from its native conformation (N1) to an alternative conformation (N2) at 250 MPa, proton exchange rates of residues 32-35, 40-41, and 71, which are located at the C-terminal side of the protein, were significantly increased. These observations can be explained by the destabilization of the hydrogen bonds in the backbone and partial exposure of those amide groups to solvent in N2. We conclude that phase-modulated clean chemical exchange NMR approach coupled with pressure perturbation will be a useful tool for investigations of more open and hydrated protein structures.
Collapse
Affiliation(s)
| | - Yu Aoshima
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takuro Wakamoto
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | |
Collapse
|
6
|
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem Rev 2016; 116:6516-51. [PMID: 26807783 PMCID: PMC6407618 DOI: 10.1021/acs.chemrev.5b00562] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
Collapse
Affiliation(s)
- Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
7
|
Abstract
Protein cavities or voids are observed as defects in atomic packing. Cavities have long been suggested to play important roles in protein dynamics and function, but the underlying origin and mechanism remains elusive. Here, recent studies about the cavities characterized by high-pressure NMR spectroscopy have been reviewed. Analysis of the pressure-dependent chemical shifts showed both linear and nonlinear response of proteins to pressure. The linear response corresponded to compression within the native ensemble, while the nonlinear response indicated the involvement of low-lying excited states that were different from the native state. The finding of non-linear pressure shifts in various proteins suggested that the existence of the low-lying excited states was common for globular proteins. However, the absolute nonlinear coefficient values varied significantly from protein to protein, and showed a good correlation with the density of cavities. Extensive studies on hen lysozyme as a model system showed that the cavity hydration and water penetration into the interior of proteins was an origin of the conformational transition to the excited states. The importance of cavities for protein function and evolution has also been explained. In addition to these "equilibrium" cavities, there are also "transient" cavities formed in the interior of the protein structure, as manifested by the ring flip motions of aromatic rings. The significance of transient cavities, reflecting an intrinsic dynamic nature within the native state, has also been discussed.
Collapse
|
8
|
Akasaka K, Maeno A, Murayama T, Tachibana H, Fujita Y, Yamanaka H, Nishida N, Atarashi R. Pressure-assisted dissociation and degradation of "proteinase K-resistant" fibrils prepared by seeding with scrapie-infected hamster prion protein. Prion 2015; 8:314-8. [PMID: 25482603 DOI: 10.4161/pri.32081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The crucial step for the fatal neurodegenerative prion diseases involves the conversion of a normal cellular protein, PrP(C), into a fibrous pathogenic form, PrP(Sc), which has an unusual stability against heat and resistance against proteinase K digestion. A successful challenge to reverse the reaction from PrP(Sc) into PrP(C) is considered valuable, as it would give a key to dissolving the complex molecular events into thermodynamic and kinetic analyses and may also provide a means to prevent the formation of PrP(Sc) from PrP(C) eventually in vivo. Here we show that, by applying pressures at kbar range, the "proteinase K-resistant" fibrils (rHaPrP(res)) prepared from hamster prion protein (rHaPrP [23-231]) by seeding with brain homogenate of scrapie-infected hamster, becomes easily digestible. The result is consistent with the notion that rHaPrP(res) fibrils are dissociated into rHaPrP monomers under pressure and that the formation of PrP(Sc) from PrP(C) is thermodynamically controlled. Moreover, the efficient degradation of prion fibrils under pressure provides a novel means of eliminating infectious PrP(Sc) from various systems of pathogenic concern.
Collapse
Affiliation(s)
- Kazuyuki Akasaka
- a Graduate School of Biology-Oriented Science and Technology ; Kinki University ; Kinokawa , Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Maeno A, Sindhikara D, Hirata F, Otten R, Dahlquist FW, Yokoyama S, Akasaka K, Mulder FAA, Kitahara R. Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme. Biophys J 2015; 108:133-45. [PMID: 25564860 DOI: 10.1016/j.bpj.2014.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/02/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022] Open
Abstract
Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins are manifested by their corresponding amino acid sequences, the natural rules for molecular design and their corresponding interplay remain obscure. In this study, we focused on the role of internal cavities of proteins in conformational dynamics. We investigated the pressure-induced responses from the cavity-enlarged L99A mutant of T4 lysozyme, using high-pressure NMR spectroscopy. The signal intensities of the methyl groups in the (1)H/(13)C heteronuclear single quantum correlation spectra, particularly those around the enlarged cavity, decreased with the increasing pressure, and disappeared at 200 MPa, without the appearance of new resonances, thus indicating the presence of heterogeneous conformations around the cavity within the ground state ensemble. Above 200 MPa, the signal intensities of >20 methyl groups gradually decreased with the increasing pressure, without the appearance of new resonances. Interestingly, these residues closely matched those sensing a large conformational change between the ground- and high-energy states, at atmospheric pressure. (13)C and (1)H NMR line-shape simulations showed that the pressure-induced loss in the peak intensity could be explained by the increase in the high-energy state population. In this high-energy state, the aromatic side chain of F114 gets flipped into the enlarged cavity. The accommodation of the phenylalanine ring into the efficiently packed cavity may decrease the partial molar volume of the high-energy state, relative to the ground state. We suggest that the enlarged cavity is involved in the conformational transition to high-energy states and in the volume fluctuation of the ground state.
Collapse
Affiliation(s)
- Akihiro Maeno
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, Kinokawa, Wakayama, Japan; RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Daniel Sindhikara
- College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Fumio Hirata
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Renee Otten
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts
| | - Frederick W Dahlquist
- Department of Chemistry and Biochemistry and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara California
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama, Japan; Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Akasaka
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, Kinokawa, Wakayama, Japan; RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Frans A A Mulder
- Department of Chemistry and Interdisciplinary Nanoscience Center iNANO, University of Aarhus, Aarhus C, Denmark
| | - Ryo Kitahara
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan; College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan.
| |
Collapse
|
10
|
Abstract
The combination of high-resolution NMR spectroscopy with pressure perturbation, known as variable-pressure NMR spectroscopy or simply high pressure NMR spectroscopy, is a relatively recent accomplishment, but is a technique expanding rapidly with high promise in future. The importance of the method is that it allows, for the first time in history, a systematic means of detecting and analyzing the structures and thermodynamic stability of high-energy sub-states in proteins. High-energy sub-states have been only vaguely known so far, as normally their populations are too low to be detected by conventional spectroscopic techniques including NMR spectroscopy. By now, however, high pressure NMR spectroscopy has established unequivocally that high-energy conformers are universally present in proteins in equilibrium with their stable folded counterparts. This chapter describes briefly the techniques of high pressure NMR spectroscopy and its unique and novel aspects as a method to explore protein structure in its high-energy paradigm with illustrative examples. It is now well established that high pressure NMR spectroscopy is a method to study intrinsic fluctuations of proteins, rather than those forced by pressure, by detecting structural changes amplified by pressure. Extension of the method to other bio-macromolecular systems is considered fairly straightforward.
Collapse
Affiliation(s)
- Kazuyuki Akasaka
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, 930 Nishimitani, Kinokawa, 649-6493, Japan,
| |
Collapse
|
11
|
Kitahara R. High-Pressure NMR Spectroscopy Reveals Functional Sub-states of Ubiquitin and Ubiquitin-Like Proteins. Subcell Biochem 2015; 72:199-214. [PMID: 26174383 DOI: 10.1007/978-94-017-9918-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-pressure nuclear magnetic resonance (NMR) spectroscopy has revealed that ubiquitin has at least two high-energy states--an alternatively folded state N2 and a locally disordered state I--between the basic folded state N1 and totally unfolded U state. The high-energy states are conserved among ubiquitin-like post-translational modifiers, ubiquitin, NEDD8, and SUMO-2, showing the E1-E2-E3 cascade reaction. It is quite intriguing that structurally similar high-energy states are evolutionally conserved in the ubiquitin-like modifiers, and the thermodynamic stabilities vary among the proteins. To investigate atomic details of the high-energy states, a Q41N mutant of ubiquitin was created as a structural model of N2, which is 71% populated even at atmospheric pressure. The convergent structure of the "pure" N2 state was obtained by nuclear Overhauser effect (NOE)-based structural analysis of the Q41N mutant at 2.5 kbar, where the N2 state is 97% populated. The N2 state of ubiquitin is closely similar to the conformation of the protein bound to the ubiquitin-activating enzyme E1. The recognition of E1 by ubiquitin is best explained by conformational selection rather than by induced-fit motion.
Collapse
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan,
| |
Collapse
|
12
|
Silva JL, Oliveira AC, Vieira TCRG, de Oliveira GAP, Suarez MC, Foguel D. High-Pressure Chemical Biology and Biotechnology. Chem Rev 2014; 114:7239-67. [DOI: 10.1021/cr400204z] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jerson L. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Andrea C. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Tuane C. R. G. Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Guilherme A. P. de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Marisa C. Suarez
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
13
|
Kitahara R, Hata K, Li H, Williamson MP, Akasaka K. Pressure-induced chemical shifts as probes for conformational fluctuations in proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:35-58. [PMID: 23611314 DOI: 10.1016/j.pnmrs.2012.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/18/2012] [Indexed: 06/02/2023]
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | | | | | | | | |
Collapse
|
14
|
Kitazawa S, Kameda T, Yagi-Utsumi M, Sugase K, Baxter NJ, Kato K, Williamson MP, Kitahara R. Solution Structure of the Q41N Variant of Ubiquitin as a Model for the Alternatively Folded N2 State of Ubiquitin. Biochemistry 2013; 52:1874-85. [DOI: 10.1021/bi301420m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Soichiro Kitazawa
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Tomoshi Kameda
- Computational Biology Research
Center (CBRC), Advanced Industrial Science and Technology (AIST), 2-43 Aomi, Koto, Tokyo 135-0064, Japan
| | - Maho Yagi-Utsumi
- Okazaki Institute for Integrative
Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical
Sciences, Nagoya City University, Nagoya
467-8603, Japan
| | - Kenji Sugase
- Structure
and Function Group,
Division of Structural Biomolecular Science, Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka 618-8503,
Japan
| | - Nicola J. Baxter
- Department of Molecular
Biology and
Biotechnology, University of Sheffield,
Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Koichi Kato
- Okazaki Institute for Integrative
Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical
Sciences, Nagoya City University, Nagoya
467-8603, Japan
| | - Michael P. Williamson
- Department of Molecular
Biology and
Biotechnology, University of Sheffield,
Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| |
Collapse
|
15
|
Akasaka K, Kitahara R, Kamatari YO. Exploring the folding energy landscape with pressure. Arch Biochem Biophys 2013; 531:110-5. [DOI: 10.1016/j.abb.2012.11.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 11/29/2022]
|
16
|
Fourme R, Girard E, Akasaka K. High-pressure macromolecular crystallography and NMR: status, achievements and prospects. Curr Opin Struct Biol 2012; 22:636-42. [PMID: 22959123 DOI: 10.1016/j.sbi.2012.07.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/08/2012] [Accepted: 07/09/2012] [Indexed: 10/27/2022]
Abstract
Biomacromolecules are thermodynamic entities that exist in general as an equilibrium mixture of the basic folded state and various higher-energy substates including all functionally relevant ones. Under physiological conditions, however, the higher-energy substates are usually undetectable on spectroscopy, as their equilibrium populations are extremely low. Hydrostatic pressure gives a general solution to this problem. As proteins generally have smaller partial molar volumes in higher-energy states than in the basic folded state, pressure can shift the equilibrium toward the former substantially, and allows their direct detection and analysis with X-ray crystallography or NMR spectroscopy at elevated pressures. These techniques are now mature, and their status and selected applications are presented with future prospects.
Collapse
Affiliation(s)
- Roger Fourme
- Synchrotron Soleil, BP48 Saint Aubin, 91192 Gif sur Yvette, France.
| | | | | |
Collapse
|
17
|
Kitahara R, Simorellis A, Hata K, Maeno A, Yokoyama S, Koide S, Akasaka K. A delicate interplay of structure, dynamics, and thermodynamics for function: a high pressure NMR study of outer surface protein A. Biophys J 2012; 102:916-26. [PMID: 22385863 PMCID: PMC3283806 DOI: 10.1016/j.bpj.2011.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 11/23/2011] [Accepted: 12/01/2011] [Indexed: 10/28/2022] Open
Abstract
Outer surface protein A (OspA) is a crucial protein in the infection of Borrelia burgdorferi causing Lyme disease. We studied conformational fluctuations of OspA with high-pressure (15)N/(1)H two-dimensional NMR along with high-pressure fluorescence spectroscopy. We found evidence within folded, native OspA for rapid local fluctuations of the polypeptide backbone in the nonglobular single layer β-sheet connecting the N- and C-terminal domains with τ << ms, which may give the two domains certain independence in mobility and thermodynamic stability. Furthermore, we found that folded, native OspA is in equilibrium (τ >> ms) with a minor conformer I, which is almost fully disordered and hydrated for the entire C-terminal part of the polypeptide chain from β8 to the C-terminus. Conformer I is characterized with ΔG(0) = 32 ± 9 kJ/mol and ΔV(0) = -140 ± 40 mL/mol, populating only ∼0.001% at 40°C at 0.1 MPa, pH 5.9. Because in the folded conformer the receptor binding epitope of OspA is buried in the C-terminal domain, its transition into conformer I under in vivo conditions may be critical for the infection of B. burgdorferi. The formation and stability of the peculiar conformer I are apparently supported by a large packing defect or cavity located in the C-terminal domain.
Collapse
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
- RIKEN SPring-8 Center, Hyogo, Japan
| | | | - Kazumi Hata
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
- RIKEN SPring-8 Center, Hyogo, Japan
| | - Akihiro Maeno
- RIKEN SPring-8 Center, Hyogo, Japan
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, Wakayama, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Kazuyuki Akasaka
- RIKEN SPring-8 Center, Hyogo, Japan
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, Wakayama, Japan
| |
Collapse
|
18
|
Cavity hydration as a gateway to unfolding: An NMR study of hen lysozyme at high pressure and low temperature. Biophys Chem 2011; 156:24-30. [DOI: 10.1016/j.bpc.2011.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 01/25/2011] [Indexed: 11/18/2022]
|
19
|
Girard E, Fourme R, Ciurko R, Joly J, Bouis F, Legrand P, Jacobs J, Dhaussy AC, Ferrer JL, Mezouar M, Kahn R. Macromolecular crystallography at high pressure with pneumatic diamond anvil cells handled by a six-axis robotic arm. J Appl Crystallogr 2010. [DOI: 10.1107/s0021889810016146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A new pneumatic diamond anvil cell has been constructed, generating continuous pressure and temperature variations in the range 0–2.5 GPa and 293–393 K. The cell is designed mainly for high-pressure macromolecular crystallography and should facilitate pressure and temperature annealing of the sample. The analysis is reported of several diffraction data sets of tetragonal hen egg-white lysozyme crystals loaded either in the new cell or in a currently used membrane-based cell. These experiments were performed on beamline FIP-BM30A at the ESRF, Grenoble, a macromolecular crystallography beamline on a bending magnet. Cells were handled and automatically centred by a six-axis robotic arm that was used as a goniometer for data collection by the oscillation method.
Collapse
|
20
|
Fourme R, Girard E, Kahn R, Dhaussy AC, Ascone I. Advances in High-Pressure Biophysics: Status and Prospects of Macromolecular Crystallography. Annu Rev Biophys 2009; 38:153-71. [DOI: 10.1146/annurev.biophys.050708.133700] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A survey of the main interests of high pressure for molecular biophysics highlights the possibility of exploring the whole conformational space using pressure perturbation. A better understanding of fundamental mechanisms responsible for the effects of high pressure on biomolecules requires high-resolution molecular information. Thanks to recent instrumental and methodological progress taking advantage of the remarkable adaptation of the crystalline state to hydrostatic compression, pressure-perturbed macromolecular crystallography is now a full-fledged technique applicable to a variety of systems, including large assemblies. This versatility is illustrated by selected applications, including DNA fragments, a tetrameric protein, and a viral capsid. Binding of compressed noble gases to proteins is commonly used to solve the phase problem, but standard macromolecular crystallography would also benefit from the transfer of experimental procedures developed for high-pressure studies. Dedicated short-wavelength synchrotron radiation beamlines are unarguably required to fully exploit the various facets of high-pressure macromolecular crystallography.
Collapse
Affiliation(s)
- Roger Fourme
- Synchrotron-SOLEIL, BP48 Saint Aubin, 91192 Gif sur Yvette, France
| | - Eric Girard
- Synchrotron-SOLEIL, BP48 Saint Aubin, 91192 Gif sur Yvette, France
- Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF-PSB, 38027 Grenoble, France
| | - Richard Kahn
- Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF-PSB, 38027 Grenoble, France
| | | | - Isabella Ascone
- Synchrotron-SOLEIL, BP48 Saint Aubin, 91192 Gif sur Yvette, France
| |
Collapse
|
21
|
Maeno A, Matsuo H, Akasaka K. The pressure-temperature phase diagram of hen lysozyme at low pH. Biophysics (Nagoya-shi) 2009; 5:1-9. [PMID: 27857574 PMCID: PMC5036640 DOI: 10.2142/biophysics.5.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 01/20/2009] [Indexed: 12/01/2022] Open
Abstract
The equilibrium unfolding of hen lysozyme at pH 2 was studied as a function of pressure (0.1~700MPa) and temperature (−10°C~50°C) using Trp fluorescence as monitor supplemented by variable pressure 1H NMR spectroscopy (0.1~400MPa). The unfolding profiles monitored by the two methods allowed the two-state equilibrium analysis between the folded (N) and unfolded (U) conformers. The free energy differences ΔG (=GU–GN) were evaluated from changes in the wavelength of maximum fluorescence intensity (λmax) as a function of pressure and temperature. The dependence of ΔG on temperature exhibits concave curvatures against temperature, showing positive heat capacity changes (ΔCp=CpU–CpN= 1.8–1.9 kJ mol−1 deg−1) at all pressures studied (250~400 MPa), while the temperature TS for maximal ΔG increased from about 10°C at 250MPa to about 40°C at 550MPa. The dependence of ΔG on pressure gave negative volume changes (ΔV=VU–VN) upon unfolding at all temperatures studied (−86~−17 mlmol−1 for −10°C~50°C), which increase significantly with increasing temperature, giving a positive expansivity change (Δα~1.07mlmol−1 deg−1). A phase-diagram between N and U (for ΔG=0) is drawn of hen lysozyme at pH 2 on the pressure-temperature plane. Finally, a three-dimensional free energy landscape (ΔG) is presented on the p-T plane.
Collapse
Affiliation(s)
- Akihiro Maeno
- Graduate School of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hiroshi Matsuo
- Niigata Industrial Creation Organization, 5-1 Bandaijima, Chuo-ku, Niigata 950-0078, Japan; High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Kazuyuki Akasaka
- Graduate School of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| |
Collapse
|
22
|
Sasaki K, Gaikwad J, Hashiguchi S, Kubota T, Sugimura K, Kremer W, Kalbitzer HR, Akasaka K. Reversible monomer-oligomer transition in human prion protein. Prion 2008; 2:118-22. [PMID: 19158507 DOI: 10.4161/pri.2.3.7148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The structure and the dissociation reaction of oligomers Pr(Poligo) from reduced human prion huPrP(C)(23-231) have been studied by (1)H-NMR and tryptophan fluorescence spectroscopy at varying pressure, along with circular dichroism and atomic force microscopy. The 1H-NMR and fluorescence spectral feature of the oligomer is consistent with the notion that the N-terminal residues including all seven Trp residues, are free and mobile, while residues 105 approximately 210, comprising the AGAAAAGA motif and S1-Loop-HelixA-Loop-S2-Loop-HelixC, are engaged in intra- and/ or inter-molecular interactions. By increasing pressure to 200 MPa, the oligomers tend to dissociate into monomers which may be identified with PrP(C*), a rare metastable form of PrP(C) stabilized at high pressure (Kachel et al., BMC Struct Biol 6:16). The results strongly suggest that the oligomeric form PrP(oligo) is in dynamic equilibrium with the monomeric forms via PrP(C*), namely huPrP(C)[left arrow over right arrow]huPrP(C*)[left arrow over right arrow]huPrP(oligo).
Collapse
Affiliation(s)
- Ken Sasaki
- High Pressure Protein Research Center, Institute of Advanced Technology and Graduate School of Biology-Oriented Science and Technology, Kinki University, Kinokawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kitahara R, Yamaguchi Y, Sakata E, Kasuya T, Tanaka K, Kato K, Yokoyama S, Akasaka K. Evolutionally conserved intermediates between ubiquitin and NEDD8. J Mol Biol 2006; 363:395-404. [PMID: 16979187 DOI: 10.1016/j.jmb.2006.07.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/24/2006] [Accepted: 07/27/2006] [Indexed: 11/19/2022]
Abstract
The investigation of common structural motifs provides additional information on why proteins conserve similar topologies yet may have non-conserved amino acid sequences. Proteins containing the ubiquitin superfold have similar topologies, although the sequence conservation is rather poor. Here, we present novel similarities and differences between the proteins ubiquitin and NEDD8. They have 57% identical sequence, almost identical backbone topology and similar functional strategy, although their physiological functions are mutually different. Using variable pressure NMR spectroscopy, we found that the two proteins have similar conformational fluctuation in the evolutionary conserved enzyme-binding region and contain a structurally similar locally disordered conformer (I) in equilibrium with the basic folded conformer (N). A notable difference between the two proteins is that the equilibrium population of I is far greater for NEDD8 (DeltaG(0)(NI)<5 kJ/mol) than for ubiquitin (DeltaG(0)(NI)=15.2(+/-1.0) kJ/mol), and that the tendency for overall unfolding (U) is also far higher for NEDD8 (DeltaG(0)(NU)=11.0(+/-1.5) kJ/mol) than for ubiquitin (DeltaG(0)(NU)=31.3(+/-4.7) kJ/mol). These results suggest that the marked differences in thermodynamic stabilities of the locally disordered conformer (I) and the overall unfolding species (U) are a key to determine the functional differences of the two structurally similar proteins in physiology.
Collapse
Affiliation(s)
- Ryo Kitahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-chou, Sayo-gun, Hyogo, 679-5148, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kitahara R, Okuno A, Kato M, Taniguchi Y, Yokoyama S, Akasaka K. Cold denaturation of ubiquitin at high pressure. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44 Spec No:S108-13. [PMID: 16826551 DOI: 10.1002/mrc.1820] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cold-induced conformational transition of ubiquitin was studied at pH 4.5 under a constant pressure of 2 kbar using variable pressure one-dimensional 1H and two-dimensional 15N/1H NMR spectroscopy as well as IR spectroscopy. Although a tendency for preferential stabilization of a peculiar locally disordered and partially hydrated conformer I, identical with that previously found with variable-pressure NMR at 0 degrees C, is recognized, the transition of the folded conformer N to the unfolded conformer U occurs largely cooperatively with decreasing temperature, reaching near completion at - 21 degrees C. NMR spectral features as well as the analysis of NMR relaxation parameters indicate that the polypeptide chain is almost fully unfolded, fairly well-hydrated and floppy at - 21 degrees C, whereas the IR spectrum shows a substantial decrease of the beta-sheet. The Gibbs energy change from the folded state (a mixture of N and I) to the unfolded state at 2 kbar obtained from the 1H NMR data is fitted well with a single DeltaCp value of 2.43 +/- 0.13 (kJ/K mol) for the entire temperature range between - 21 and 90 degrees C, covering both the cold denaturation and heat denaturation, showing that the two denatured states actually belong to a single thermodynamic phase of the protein. The DeltaCp value determined at 2 kbar is substantially smaller than the DeltaCp determined at 1 bar (3.8-5.8 (kJ/Kmol), which is consistent with the fact that the denaturation takes place from a mixture of N and I at 2 kbar rather than from pure N at 1 bar.
Collapse
Affiliation(s)
- Ryo Kitahara
- RIKEN SPring-8 Center, RIKEN Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Kazuyuki Akasaka
- School of biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa-shi, Wakayama 649-6493, Japan.
| |
Collapse
|
26
|
Li H, Akasaka K. Conformational fluctuations of proteins revealed by variable pressure NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:331-45. [PMID: 16448868 DOI: 10.1016/j.bbapap.2005.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 12/12/2005] [Accepted: 12/13/2005] [Indexed: 11/19/2022]
Abstract
With the high-resolution variable-pressure NMR spectroscopy, one can study conformational fluctuations of proteins in a much wider conformational space than hitherto explored by NMR and other spectroscopic techniques. This is because a protein in solution generally exists as a dynamic mixture of conformers mutually differing in partial molar volume, and pressure can select the population of a conformer according to its relative volume. In this review, we describe how variable-pressure NMR can be used to probe conformational fluctuations of proteins in a wide conformational space from the folded to the fully unfolded structures, with actual examples. Furthermore, the newly emerging technique "NMR snapshots" expresses amply fluctuating protein structures as changes in atomic coordinates. Finally, the concept of conformational fluctuation is extended to include intermolecular association leading to amyloidosis.
Collapse
Affiliation(s)
- Hua Li
- RIKEN Genomic Sciences Center, Yokohama 230-0045, Japan
| | | |
Collapse
|
27
|
Peterson RW, Wand AJ. Self contained high pressure cell, apparatus and procedure for the preparation of encapsulated proteins dissolved in low viscosity fluids for NMR spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2005; 76:1-7. [PMID: 16508692 PMCID: PMC1343520 DOI: 10.1063/1.2038087] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The design of a sample cell for high performance nuclear magnetic resonance (NMR) at elevated pressure is described. The cell has been optimized for the study of encapsulated proteins dissolved in low viscosity fluids but is suitable for more general NMR spectroscopy of biomolecules at elevated pressure. The NMR cell is comprised of an alumina toughened zirconia tube mounted on a self-sealing non-magnetic metallic valve. The cell has several advantages including relatively low cost, excellent NMR performance, high pressure tolerance, chemical inertness and a relatively large active volume. Also described is a low volume sample preparation device which allows for the preparation of samples under high hydrostatic pressure and their subsequent transfer to the NMR cell.
Collapse
|
28
|
Kuwata K. An emerging concept of biomolecular dynamics and function: applications of NMR & MRI. Magn Reson Med Sci 2005; 1:27-31. [PMID: 16037665 DOI: 10.2463/mrms.1.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A new concept of protein dynamics has emerged quite recently, and a crucial link between protein dynamics and function has been largely established using recent NMR techniques in the solution state. Protein structure is governed by the thermodynamic principle and may not necessarily be unique in the solution state. Enzyme catalysis, protein folding or allosteric transition occurs on the microsecond to millisecond time scale, implying that in order to prepare the specific nuclear coordinate for the electronic state transition, a protein must rearrange its nuclear coordinates substantially, and this process may generally take a long period of time almost comparable to that of protein folding. Protein coordinates optimized for the electronic reaction may form an energy state--which may be called an "excited state"--that is thermodynamically distinct from the native state. In contrast, the native state is called a "ground state." Relevant NMR techniques developed recently may also have useful application to MRI, since the critical time scale of various reactions in a living system is also around micro- to milliseconds.
Collapse
Affiliation(s)
- Kazuo Kuwata
- Department of Physiology, School of Medicine, Gifu University, Japan.
| |
Collapse
|
29
|
Möglich A, Koch B, Gronwald W, Hengstenberg W, Brunner E, Kalbitzer HR. Solution structure of the active-centre mutant I14A of the histidine-containing phosphocarrier protein from Staphylococcus carnosus. ACTA ACUST UNITED AC 2005; 271:4815-24. [PMID: 15606769 DOI: 10.1111/j.1432-1033.2004.04447.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-pressure NMR experiments performed on the histidine-containing phosphocarrier protein (HPr) from Staphylococcus carnosus have shown that residue Ile14, which is located in the active-centre loop, exhibits a peculiarly small pressure response. In contrast, the rest of the loop shows strong pressure effects as is expected for typical protein interaction sites. To elucidate the structural role of this residue, the mutant protein HPr(I14A), in which Ile14 is replaced by Ala, was produced and studied by solution NMR spectroscopy. On the basis of 1406 structural restraints including 20 directly detected hydrogen bonds, 49 1H(N)-15N, and 25 1H(N)-1Halpha residual dipolar couplings, a well resolved three-dimensional structure could be determined. The overall fold of the protein is not influenced by the mutation but characteristic conformational changes are introduced into the active-centre loop. They lead to a displacement of the ring system of His15 and a distortion of the N-terminus of the first helix, which supports the histidine ring. In addition, the C-terminal helix is bent because the side chain of Leu86 located at the end of this helix partly fills the hydrophobic cavity created by the mutation. Xenon, which is known to occupy hydrophobic cavities, causes a partial reversal of the mutation-induced structural effects. The observed structural changes explain the reduced phosphocarrier activity of the mutant and agree well with the earlier suggestion that Ile14 represents an anchoring point stabilizing the active-centre loop in its correct conformation.
Collapse
Affiliation(s)
- Andreas Möglich
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Kamatari YO, Yokoyama S, Tachibana H, Akasaka K. Pressure-jump NMR Study of Dissociation and Association of Amyloid Protofibrils. J Mol Biol 2005; 349:916-21. [PMID: 15907935 DOI: 10.1016/j.jmb.2005.04.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 04/01/2005] [Accepted: 04/05/2005] [Indexed: 11/28/2022]
Abstract
The dissociation and reassociation processes of amyloid protofibrils initiated by pressure-jump have been monitored with real-time (1)H NMR spectroscopy using an intrinsically denatured disulfide-deficient variant of hen lysozyme. Upon pressure-jump up to 2 kbar, the matured protofibrils grown over several months become fully dissociated into monomers within a few days. Upon pressure-jump down to 30 bar, the dissociated monomers immediately start reassociating. The association and dissociation cycle can be repeated reproducibly by alternating pressure, establishing a notion that the protofibril formation is simply a slow kinetic process toward thermodynamic equilibrium. The outstanding simplicity and effectiveness of pressure in controlling the protofibril formation opens a new route for investigating mechanisms of amyloid fibril-forming reactions. The noted variation in the pressure-induced dissociation rate with the progress of the association reaction suggests multiple mechanisms for the elongation of the protofibril. The disulfide-deficient hen lysozyme offers a particularly simple model system for thermodynamic and kinetic studies of protofibril formation as well as for screening drugs for amyloidosis.
Collapse
Affiliation(s)
- Yuji O Kamatari
- Structural and Molecular Biology Laboratory, RIKEN Harima Institute/Spring-8, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | | | | | |
Collapse
|
31
|
Kitahara R, Yokoyama S, Akasaka K. NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar-3 kbar. J Mol Biol 2005; 347:277-85. [PMID: 15740740 DOI: 10.1016/j.jmb.2005.01.052] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Revised: 01/08/2005] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
Conformational fluctuation plays a key role in protein function, but we know little about the associated structural changes. Here we present a general method for elucidating, at the atomic level, a large-scale shape change of a protein molecule in solution undergoing conformational fluctuation. The method utilizes the intimate relationship between conformation and partial molar volume and determines three-dimensional structures of a protein at different pressures using variable pressure NMR technique, whereby NOE distance and torsion angle constraints are used to create average coordinates. Ubiquitin (pH 4.6 at 20 degrees C) was chosen as the first target, for which structures were determined at 30 bar and at 3 kbar, giving "NMR snapshots" of a fluctuating protein structure at atomic resolution. The result reveals that the helix swings in and out by >3 angstroms with a simultaneous reorientation of the C-terminal segment, providing an "open" conformer suitable for enzyme recognition. Spin relaxation analysis indicates that this fluctuation occurs in the ten microsecond time range with activation volumes -4.2(+/-3.2) and 18.5(+/-3.0) ml/mol for the "closed-to-open" and the "open-to-closed" transitions, respectively.
Collapse
Affiliation(s)
- Ryo Kitahara
- Structural and Molecular Biology Laboratory, RIKEN Harima Institute at Spring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
| | | | | |
Collapse
|
32
|
Hattori M, Li H, Yamada H, Akasaka K, Hengstenberg W, Gronwald W, Kalbitzer HR. Infrequent cavity-forming fluctuations in HPr from Staphylococcus carnosus revealed by pressure- and temperature-dependent tyrosine ring flips. Protein Sci 2005; 13:3104-14. [PMID: 15557257 PMCID: PMC2287304 DOI: 10.1110/ps.04877104] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Infrequent structural fluctuations of a globular protein is seldom detected and studied in detail. One tyrosine ring of HPr from Staphylococcus carnosus, an 88-residue phosphocarrier protein with no disulfide bonds, undergoes a very slow ring flip, the pressure and temperature dependence of which is studied in detail using the on-line cell high-pressure nuclear magnetic resonance technique in the pressure range from 3 MPa to 200 MPa and in the temperature range from 257 K to 313 K. The ring of Tyr6 is buried sandwiched between a beta-sheet and alpha-helices (the water-accessible area is less than 0.26 nm2), its hydroxyl proton being involved in an internal hydrogen bond. The ring flip rates 10(1)-10(5) s(-1) were determined from the line shape analysis of H(delta1, delta2) and H(epsilon1,epsilon2) of Tyr6, giving an activation volume DeltaV++ of 0.044 +/- 0.008 nm3 (27 mL mol(-1)), an activation enthalpy DeltaH++ of 89 +/- 10 kJ mol(-1), and an activation entropy DeltaS++ of 16 +/- 2 JK(-1) mol(-1). The DeltaV++) and DeltaH++ values for HPr found previously for Tyr and Phe ring flips of BPTI and cytochrome c fall within the range of DeltaV(double dagger) of 28 to 51 mL mol(-1) and DeltaH++ of 71 to 155 kJ mol(-1). The fairly common DeltaV++ and DeltaH++ values are considered to represent the extra space or cavity required for the ring flip and the extra energy required to create a cavity, respectively, in the core part of a globular protein. Nearly complete cold denaturation was found to take place at 200 MPa and 257 K independently from the ring reorientation process.
Collapse
Affiliation(s)
- Mineyuki Hattori
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Niraula TN, Konno T, Li H, Yamada H, Akasaka K, Tachibana H. Pressure-dissociable reversible assembly of intrinsically denatured lysozyme is a precursor for amyloid fibrils. Proc Natl Acad Sci U S A 2004; 101:4089-93. [PMID: 15016916 PMCID: PMC394761 DOI: 10.1073/pnas.0305798101] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although a diversity of proteins is known to form amyloid fibers, their common mechanisms are not clear. Here, we show that an intrinsically unfolded protein (U), represented by a disulfide-deficient variant of hen lysozyme with no tertiary structure, forms an amyloid-like fibril after prolonged incubation. Using variable pressure NMR along with sedimentation velocity, circular dichroism, and fluorescence measurements, we show that, before the fibril formation, the protein forms a pressure-dissociable, soluble assemblage (U'(n)) with a sedimentation coefficient of 17 S and a rich intermolecular beta-sheet structure. The reversible assemblage is characterized with a Gibbs energy for association of -23.3 +/- 0.8 kJ.mol(-1) and a volume increase of 52.7 +/- 11.3 ml.mol(-1) per monomer unit, and involves preferential interaction of hydrophobic residues in the initial association step. These results indicate that amyloid fibril formation can proceed from an intrinsically denatured protein and suggest a scheme N <==>U <==>U'(n)-->fibril as a common mechanism of fibril formation in amyloidogenic proteins, where two-way arrows represent reversible processes, one-way arrow represents an irreversible process, and N, U, and U'(n)represent, respectively, the native conformer, the unfolded monomeric conformer, and the soluble assemblage of unfolded conformers.
Collapse
Affiliation(s)
- Tara N Niraula
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Williamson MP, Akasaka K, Refaee M. The solution structure of bovine pancreatic trypsin inhibitor at high pressure. Protein Sci 2003; 12:1971-9. [PMID: 12930996 PMCID: PMC2323994 DOI: 10.1110/ps.0242103] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The solution structure of bovine pancreatic trypsin inhibitor (BPTI) at a pressure of 2 kbar is presented. The structure was calculated as a change from an energy-minimized low-pressure structure, using (1)H chemical shifts as restraints. The structure has changed by 0.24 A RMS, and has almost unchanged volume. The largest changes as a result of pressure are in the loop 10-16, which contains the active site of BPTI, and residues 38-42, which are adjacent to buried water molecules. Hydrogen bonds are compressed by 0.029 +/- 0.117 A, with the longer hydrogen bonds, including those to internal buried water molecules, being compressed more. The hydrophobic core is also compressed, largely from reduction of packing defects. The parts of the structure that have the greatest change are close to buried water molecules, thus highlighting the importance of water molecules as the nucleation sites for volume fluctuation of proteins in native conditions.
Collapse
Affiliation(s)
- Michael P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
35
|
Reinhard Arnold M, Robert Kalbitzer H, Kremer W. High-sensitivity sapphire cells for high pressure NMR spectroscopy on proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2003; 161:127-131. [PMID: 12713961 DOI: 10.1016/s1090-7807(02)00179-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
High pressure NMR spectroscopy is a most exciting method for studying the structural anisotropy and conformational dynamics of proteins. The restricted volume of the high pressure glass cells causes a poor signal to noise ratio which up to now renders the application of most of the multidimensional NMR experiments impossible. The method presented here using high strength single crystal sapphire cells doubles the signal-to-noise ratio and allows to perform high pressure NMR measurements more easily. As a first application the difference of partial molar volumes caused by cis-trans-isomerisation of a prolyl peptide bond in the tetrapeptide Gly-Gly-Pro-Ala could be determined as 0.25 ml mol(-1) at 305 K.
Collapse
Affiliation(s)
- Martin Reinhard Arnold
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, D-93040, Regensburg, Germany
| | | | | |
Collapse
|
36
|
Kitahara R, Akasaka K. Close identity of a pressure-stabilized intermediate with a kinetic intermediate in protein folding. Proc Natl Acad Sci U S A 2003; 100:3167-72. [PMID: 12629216 PMCID: PMC152264 DOI: 10.1073/pnas.0630309100] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atomic detailed structural study of a transiently existing folding intermediate is severely limited because of its short life. In ubiquitin, we found that a pressure-stabilized equilibrium conformer shares a common structural feature with the proline-trapped kinetic intermediate found in a pulse-labeling (1)H(2)H exchange NMR study [Briggs, M. S. & Roder, H. (1992) Proc. Natl. Acad. Sci. USA 89, 2017-2021]. The conformer is locally unfolded in the entire segment from residues 33 to 42 and in C-terminal residues 70-76. The close structural identity of an equilibrium intermediate stabilized under pressure with a transiently observed folding intermediate is likely to be general in terms of a folding funnel common to both experiments.
Collapse
Affiliation(s)
- Ryo Kitahara
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, Rokkodai-cho, Kobe 657-8501, Japan
| | | |
Collapse
|
37
|
Kitahara R, Royer C, Yamada H, Boyer M, Saldana JL, Akasaka K, Roumestand C. Equilibrium and pressure-jump relaxation studies of the conformational transitions of P13MTCP1. J Mol Biol 2002; 320:609-28. [PMID: 12096913 DOI: 10.1016/s0022-2836(02)00516-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conformational transitions of a small oncogene product, p13(MTCP1), have been studied by high-pressure fluorescence of the intrinsic tryptophan emission and high-pressure 1D and 2D 1H-15N NMR. While the unfolding transition monitored by fluorescence is cooperative, two kinds of NMR spectral changes were observed, depending on the pressure range. Below approximately 200 MPa, pressure caused continuous, non-linear shifts of many of the 15N and 1H signals, suggesting the presence of an alternate folded conformer(s) in rapid equilibrium (tau<<ms) with the basic native structure. Above approximately 200 MPa, pressure caused a sharp decrease in the intensity of the folded proteins signals, while the peaks corresponding to disordered structures increased, yielding a free energy of unfolding change of 6.0 kcal/mol and associated volume change of -100 ml/mol, in agreement with the fluorescence result. Differential scanning calorimetry also reveals two transitions between 21 and 65 degrees C, confirming the existence of an additional species under mildly denaturing conditions. We report here a real-time observation of pressure-jump unfolding kinetics by 2D NMR spectroscopy on P13MTCP1 made possible due to its very long relaxation times at high pressure revealed by fluorescence studies. Within the dead-time after the pressure-jump, the NMR spectra of the native conformer changed to those of the transient conformational species, identified in the equilibrium studies, demonstrating the equivalence between a transient species and an equilibrium excited state. After these rapid spectral changes, the intensities of all of the individual 15N-1H cross-peaks decreased gradually, and those of the disordered structure increased, consistent with the slow relaxation to the unfolded form at this pressure. Rate constants of unfolding monitored at individual amide sites within the beta-barrel were similar to those obtained from fluorescence and from side-chain protons in the hydrophobic core region, consistent with nearly cooperative unfolding. However, some heterogeneity in the apparent unfolding rate constants is apparent across the sequence and can be understood as non-uniform effects of pressure on the unfolding rate constant due to non-uniform hydration.
Collapse
Affiliation(s)
- Ryo Kitahara
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Niraula TN, Haraoka K, Ando Y, Li H, Yamada H, Akasaka K. Decreased thermodynamic stability as a crucial factor for familial amyloidotic polyneuropathy. J Mol Biol 2002; 320:333-42. [PMID: 12079390 DOI: 10.1016/s0022-2836(02)00425-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A single mutation in the wild-type transthyretin (WT TTR) such as V30M causes a familial amyloidotic polyneuropathy disease. Comparison of the three-dimensional crystal structures of WT and V30M does not tell much about the reason. High-pressure NMR revealed that at neutral pH both WT and V30M exist as equilibrium between the native tetramer and the dissociated/unfolded monomer. The native tetramer is highly stable in WT (deltaG(0)=104 kJ/mol at 37 degrees C, pH 7.1), but the stability is significantly reduced in V30M (deltadeltaG(0)=-18 kJ/mol), increasing the fraction of the unfolded monomer by a 1000-fold. Significant reduction of thermodynamic stability of WT TTR by mutation could be a crucial factor for familial amyloidotic polyneuropathy.
Collapse
Affiliation(s)
- Tara Nath Niraula
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|