1
|
Angulo J, Ardá A, Bertuzzi S, Canales A, Ereño-Orbea J, Gimeno A, Gomez-Redondo M, Muñoz-García JC, Oquist P, Monaco S, Poveda A, Unione L, Jiménez-Barbero J. NMR investigations of glycan conformation, dynamics, and interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:97-152. [PMID: 39645352 DOI: 10.1016/j.pnmrs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
Glycans are ubiquitous in nature, decorating our cells and serving as the initial points of contact with any visiting entities. These glycan interactions are fundamental to host-pathogen recognition and are related to various diseases, including inflammation and cancer. Therefore, understanding the conformations and dynamics of glycans, as well as the key features that regulate their interactions with proteins, is crucial for designing new therapeutics. Due to the intrinsic flexibility of glycans, NMR is an essential tool for unravelling these properties. In this review, we describe the key NMR parameters that can be extracted from the different experiments, and which allow us to deduce the necessary geometry and molecular motion information, with a special emphasis on assessing the internal motions of the glycosidic linkages. We specifically address the NMR peculiarities of various natural glycans, from histo-blood group antigens to glycosaminoglycans, and also consider the special characteristics of their synthetic analogues (glycomimetics). Finally, we discuss the application of NMR protocols to study glycan-related molecular recognition events, both from the carbohydrate and receptor perspectives, including the use of stable isotopes and paramagnetic NMR methods to overcome the inherent degeneracy of glycan chemical shifts.
Collapse
Affiliation(s)
- Jesús Angulo
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Angeles Canales
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - June Ereño-Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ana Gimeno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcos Gomez-Redondo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Paola Oquist
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ Norwich, UK
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Schubert M. Insights into Carbohydrate Recognition by 3D Structure Determination of Protein–Carbohydrate Complexes Using NMR. NMR IN GLYCOSCIENCE AND GLYCOTECHNOLOGY 2017:101-122. [DOI: 10.1039/9781782623946-00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This chapter provides an overview of protein–carbohydrate complex structures determined with NMR spectroscopy and deposited in the Protein Data Bank (PDB). These 14 structures include protein–carbohydrate interactions ranging from nanomolar to millimolar affinities. Two complexes are discussed in detail, one representing a tightly bound complex and one a weak but specific interaction. This review illustrates that NMR spectroscopy is a competitive method for three-dimensional structure determination of protein–carbohydrate complexes, especially in the case of weak interactions. The number of biological functions in which protein–carbohydrate interactions are involved is steadily growing. Essential functions of the immune system such as the distinction between self and non-self, or the resolution of inflammation, involve critical protein–carbohydrate recognition events. It is therefore expected that by providing atomic details, NMR spectroscopy can make a significant contribution in the near future to unexplored pathways of the immune system and of many other biological processes.
Collapse
Affiliation(s)
- Mario Schubert
- Department of Molecular Biology, University of Salzburg 5020 Salzburg Austria
| |
Collapse
|
3
|
Skrisovska L, Schubert M, Allain FHT. Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. JOURNAL OF BIOMOLECULAR NMR 2010; 46:51-65. [PMID: 19690964 DOI: 10.1007/s10858-009-9362-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 07/17/2009] [Indexed: 05/19/2023]
Abstract
In the last 15 years substantial advances have been made to place isotope labels in native and glycosylated proteins for NMR studies and structure determination. Key developments include segmental isotope labeling using Native Chemical Ligation, Expressed Protein Ligation and Protein Trans-Splicing. These advances are pushing the size limit of NMR spectroscopy further making larger proteins accessible for this technique. It is just emerging that segmental isotope labeling can be used to define inter-domain interactions in NMR structure determination. Labeling of post-translational modified proteins like glycoproteins remains difficult but some promising developments were recently achieved. Key achievements are segmental and site-specific labeling schemes that improve resonance assignment and structure determination of the glycan moiety. We adjusted the focus of this perspective article to concentrate on the NMR applications based on recent developments rather than on labeling methods themselves to illustrate the considerable potential for biomolecular NMR.
Collapse
Affiliation(s)
- Lenka Skrisovska
- Institute for Molecular Biology and Biophysics, ETH Zürich, Zurich, Switzerland
| | | | | |
Collapse
|