1
|
Cremonesi P, Ceccarani C, Curone G, Severgnini M, Pollera C, Bronzo V, Riva F, Addis MF, Filipe J, Amadori M, Trevisi E, Vigo D, Moroni P, Castiglioni B. Milk microbiome diversity and bacterial group prevalence in a comparison between healthy Holstein Friesian and Rendena cows. PLoS One 2018; 13:e0205054. [PMID: 30356246 PMCID: PMC6200206 DOI: 10.1371/journal.pone.0205054] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Dry and early lactation periods represent the most critical phases for udder health in cattle, especially in highly productive breeds, such as the Holstein Friesian (HF). On the other hand, some autochthonous cattle breeds, such as the Rendena (REN), have a lower prevalence of mastitis and other transition-related diseases. In this study, milk microbiota of 6 HF and 3 REN cows, all raised on the same farm under the same conditions, was compared. A special focus was placed on the transition period to define bacterial groups’ prevalence with a plausible effect on mammary gland health. Four time points (dry-off, 1 d, 7–10 d and 30 d after calving) were considered. Through 16S rRNA sequencing, we characterized the microbiota composition for 117 out of the 144 milk samples initially collected, keeping only the healthy quarters, in order to focus on physiological microbiome changes and avoid shifts due to suspected diseases. Microbial populations were very different in the two breeds along all the time points, with REN milk showing a significantly lower microbial biodiversity. The taxonomic profiles of both cosmopolitan and local breeds were dominated by Firmicutes, mostly represented by the Streptococcus genus, although in very different proportions (HF 27.5%, REN 68.6%). Large differences in HF and REN cows were, also, evident from the metabolic predictive analysis from microbiome data. Finally, only HF milk displayed significant changes in the microbial composition along the transition period, while REN maintained a more stable microbiota. In conclusion, in addition to the influence on the final characteristics of dairy products obtained from milk of the two breeds, differences in the milk microbiome might, also, have an impact on their mammary gland health.
Collapse
Affiliation(s)
- Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Lodi, Italy
- * E-mail:
| | - Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, (CNR), Segrate, Milan, Italy
- Dipartimento di Scienze della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, Milan, Italy
| | - Giulio Curone
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, (CNR), Segrate, Milan, Italy
| | - Claudia Pollera
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Valerio Bronzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Federica Riva
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Joel Filipe
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Massimo Amadori
- Laboratory of Cellular Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Daniele Vigo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, United States of America
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Lodi, Italy
| |
Collapse
|
2
|
Abstract
The complex physical and chemical conditions encountered in the gut present a range of physiological challenges to both the commensal microbiota and to pathogenic microorganisms attempting to colonise the gut. The innate immune system of the host, the host's diet and the microbial population present in the gut all contribute to the chemical complexity of the environment. The huge population of microorganisms in the gut also has a significant impact on the physicochemical properties of the gut environment. By focussing on some of the key physical and chemical stresses encountered by microorganisms in the gut, some of the molecular responses are described. Some promising new experimental approaches are outlined for studying the behaviour of microorganisms and their communities within the gut environment.
Collapse
Affiliation(s)
- Petra Louis
- Microbial Ecology Group, Gut Health Programme, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucks-burn, Aberdeen AB21 9SB, UK
| | - Conor P. O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|