1
|
Durand S, Guillier M. Transcriptional and Post-transcriptional Control of the Nitrate Respiration in Bacteria. Front Mol Biosci 2021; 8:667758. [PMID: 34026838 PMCID: PMC8139620 DOI: 10.3389/fmolb.2021.667758] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
In oxygen (O2) limiting environments, numerous aerobic bacteria have the ability to shift from aerobic to anaerobic respiration to release energy. This process requires alternative electron acceptor to replace O2 such as nitrate (NO3 -), which has the next best reduction potential after O2. Depending on the organism, nitrate respiration involves different enzymes to convert NO3 - to ammonium (NH4 +) or dinitrogen (N2). The expression of these enzymes is tightly controlled by transcription factors (TFs). More recently, bacterial small regulatory RNAs (sRNAs), which are important regulators of the rapid adaptation of microorganisms to extremely diverse environments, have also been shown to control the expression of genes encoding enzymes or TFs related to nitrate respiration. In turn, these TFs control the synthesis of multiple sRNAs. These results suggest that sRNAs play a central role in the control of these metabolic pathways. Here we review the complex interplay between the transcriptional and the post-transcriptional regulators to efficiently control the respiration on nitrate.
Collapse
Affiliation(s)
- Sylvain Durand
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Maude Guillier
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
2
|
Unden G, Klein R. Sensing of O 2 and nitrate by bacteria: alternative strategies for transcriptional regulation of nitrate respiration by O 2 and nitrate. Environ Microbiol 2020; 23:5-14. [PMID: 33089915 DOI: 10.1111/1462-2920.15293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Many bacteria are able to use O2 and nitrate as alternative electron acceptors for respiration. Strategies for regulation in response to O2 and nitrate can vary considerably. In the paradigmatic system of E. coli (and γ-proteobacteria), regulation by O2 and nitrate is established by the O2 -sensor FNR and the two-component system NarX-NarL (for nitrate regulation). Expression of narGHJI is regulated by the binding of FNR and NarL to the promoter. A similar strategy by individual regulation in response to O2 and nitrate is verified in many genera by the use of various types of regulators. Otherwise, in the soil bacteria Bacillus subtilis (Firmicutes) and Streptomyces (Actinobacteria), nitrate respiration is subject to anaerobic induction, without direct nitrate induction. In contrast, the NreA-NreB-NreC two-component system of Staphylococcus (Firmicutes) performs joint sensing of O2 and nitrate by interacting O2 and nitrate sensors. The O2 -sensor NreB phosphorylates the response regulator NreC to activate narGHJI expression. NreC-P transmits the signal for anaerobiosis to the promoter. The nitrate sensor NreA modulates NreB function by converting NreB in the absence of nitrate from the kinase to a phosphatase that dephosphorylates NreC-P. Thus, widely different strategies for coordinating the response to O2 and nitrate have evolved in bacteria.
Collapse
Affiliation(s)
- Gottfried Unden
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| | - Robin Klein
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| |
Collapse
|
3
|
Glucose-Induced Cyclic Lipopeptides Resistance in Bacteria via ATP Maintenance through Enhanced Glycolysis. iScience 2019; 21:135-144. [PMID: 31655254 PMCID: PMC6820274 DOI: 10.1016/j.isci.2019.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/20/2019] [Accepted: 10/01/2019] [Indexed: 01/28/2023] Open
Abstract
Cyclic lipopeptide (CLP) antibiotics have a mechanism that causes membrane malfunction. Thus mechanisms of bacterial resistance to CLPs are thought to modify cell surfaces. However, we found that bacterial resistance to CLPs was strongly related to energy metabolism. Using polymyxin B (PB) as a model of CLPs, we showed that PB causes malfunction of respiration and serious depletion of ATP, contributing to PB-induced cell death and carbon starvation. Glucose addition could maintain the intracellular ATP level and reverse the carbon starvation response resulting from PB treatment. Another study revealed that glycolysis was stimulated by the presence of PB and glucose. The mechanism underlying glucose-enabled CLPs' resistance suggests that glucose could maintain the ATP level in PB-treated bacteria by enhancing glycolysis. Similar results were observed in Staphylococcus aureus, where daptomycin resistance was enhanced by glucose. These findings provide insight into the mode of action of CLPs and resistance to these antibiotics. Glucose induces the drug resistance to CLPs CLPs significantly inhibit energy metabolism and result in ATP depletion Glucose maintains the intracellular ATP level in CLP-treated bacteria
Collapse
|
4
|
Exploring the Amino Acid Residue Requirements of the RNA Polymerase (RNAP) α Subunit C-Terminal Domain for Productive Interaction between Spx and RNAP of Bacillus subtilis. J Bacteriol 2017; 199:JB.00124-17. [PMID: 28484046 DOI: 10.1128/jb.00124-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/01/2017] [Indexed: 01/21/2023] Open
Abstract
Bacillus subtilis Spx is a global transcriptional regulator that is conserved among Gram-positive bacteria, in which Spx is required for preventing oxidatively induced proteotoxicity. Upon stress induction, Spx engages RNA polymerase (RNAP) through interaction with the C-terminal domain of the rpoA-encoded RNAP α subunit (αCTD). Previous mutational analysis of rpoA revealed that substitutions of Y263 in αCTD severely impaired Spx-activated transcription. Attempts to substitute alanine for αCTD R261, R268, R289, E255, E298, and K294 were unsuccessful, suggesting that these residues are essential. To determine whether these RpoA residues were required for productive Spx-RNAP interaction, we ectopically expressed the putatively lethal rpoA mutant alleles in the rpoAY263C mutant, where "Y263C" indicates the amino acid change that results from mutation of the allele. By complementation analysis, we show that Spx-bound αCTD amino acid residues are not essential for Spx-activated transcription in vivo but that R261A, E298A, and E255A mutants confer a partial defect in NaCl-stress induction of Spx-controlled genes. In addition, strains expressing rpoAE255A are defective in disulfide stress resistance and produce RNAP having a reduced affinity for Spx. The E255 residue corresponds to Escherichia coli αD259, which has been implicated in αCTD-σ70 interaction (σ70 R603, corresponding to R362 of B. subtilis σA). However, the combined rpoAE255A and sigAR362A mutations have an additive negative effect on Spx-dependent expression, suggesting the residues' differing roles in Spx-activated transcription. Our findings suggest that, while αCTD is essential for Spx-activated transcription, Spx is the primary DNA-binding determinant of the Spx-αCTD complex.IMPORTANCE Though extensively studied in Escherichia coli, the role of αCTD in activator-stimulated transcription is largely uncharacterized in Bacillus subtilis Here, we conduct phenotypic analyses of putatively lethal αCTD alanine codon substitution mutants to determine whether these residues function in specific DNA binding at the Spx-αCTD-DNA interface. Our findings suggest that multisubunit RNAP contact to Spx is optimal for activation while Spx fulfills the most stringent requirement of upstream promoter binding. Furthermore, several αCTD residues targeted for mutagenesis in this study are conserved among many bacterial species and thus insights on their function in other regulatory systems may be suggested herein.
Collapse
|
5
|
Mashruwala AA, Guchte AVD, Boyd JM. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus. eLife 2017; 6. [PMID: 28221135 PMCID: PMC5380435 DOI: 10.7554/elife.23845] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/20/2017] [Indexed: 01/25/2023] Open
Abstract
Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone. DOI:http://dx.doi.org/10.7554/eLife.23845.001 Millions of bacteria live on the human body. Generally these bacteria co-exist with us peacefully, but sometimes certain bacteria may enter the body and cause infections, such as gum disease or a bone infection called osteomyelitis. Many of these infections are thought to occur when the bacteria become able to form complex communities called biofilms. Bacteria living in a biofilm cooperate and make lifestyle choices as a community, so in this way, they behave like a single organism containing many cells. A sticky glue-like material called the matrix holds the bacteria in a biofilm together. This matrix protects the bacteria in the biofilm from both the human immune system and antibiotics, allowing infections to develop and making them difficult to treat. Previous research has shown that the supply and level of oxygen in infected tissues decreases as an infection gets worse. One bacterium that typically lives peacefully on our bodies, called Staphylococcus aureus, can sometimes cause serious biofilm-associated infections. S. aureus forms biofilms more readily when oxygen is in short supply, but it was not known how these biofilms form. Understanding how S. aureus forms biofilms could help scientists develop better treatments for bacterial infections. Most bacterial cells have a cell wall to provide them with structural support. Mashruwala et al. found that, when oxygen levels are low, S. aureus decreases the production of a type of sugar that makes up the cell wall. At the same time, the bacteria produce more of an enzyme that breaks down cell walls. Together, these processes cause some of the bacteria cells to break open. The contents of these broken cells, including their DNA, help form the matrix that will hold together and protect the other bacterial cells in the biofilm. The experiments also identified a protein called SrrAB that switches on the process that ruptures the cells when oxygen is low. The findings of Mashruwala et al. show how bacteria grown in the laboratory form biofilms when they are starved of oxygen. The next steps following on from this work are to find out whether the same thing happens when bacteria infect animals and whether drugs that block the rupturing of bacterial cells could be used to treat infections. DOI:http://dx.doi.org/10.7554/eLife.23845.002
Collapse
Affiliation(s)
- Ameya A Mashruwala
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| | - Adriana van de Guchte
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| |
Collapse
|
6
|
Toyoda K, Inui M. The extracytoplasmic function σ factor σ(C) regulates expression of a branched quinol oxidation pathway in Corynebacterium glutamicum. Mol Microbiol 2016; 100:486-509. [PMID: 26789738 DOI: 10.1111/mmi.13330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2016] [Indexed: 11/30/2022]
Abstract
Bacteria modify their expression of different terminal oxidases in response to oxygen availability. Corynebacterium glutamicum, a facultative anaerobic bacterium of the phylum Actinobacteria, possesses aa3 -type cytochrome c oxidase and cytochrome bd-type quinol oxidase, the latter of which is induced by oxygen limitation. We report that an extracytoplasmic function σ factor, σ(C) , is responsible for the regulation of this process. Chromatin immunoprecipitation with microarray analysis detected eight σ(C) -binding regions in the genome, facilitating the identification of a consensus promoter sequence for σ(C) recognition. The promoter sequences were found upstream of genes for cytochrome bd, heme a synthesis enzymes and uncharacterized membrane proteins, all of which were upregulated by sigC overexpression. However, one consensus promoter sequence found on the antisense strand upstream of an operon encoding the cytochrome bc1 complex conferred a σ(C) -dependent negative effect on expression of the operon. The σ(C) regulon was induced by cytochrome aa3 deficiency without modifying sigC expression, but not by bc1 complex deficiency. These findings suggest that σ(C) is activated in response to impaired electron transfer via cytochrome aa3 and not directly to a shift in oxygen levels. Our results reveal a new paradigm for transcriptional regulation of the aerobic respiratory system in bacteria.
Collapse
Affiliation(s)
- Koichi Toyoda
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Masayuki Inui
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0101, Japan
| |
Collapse
|
7
|
Schneider J, Mielich-Süss B, Böhme R, Lopez D. In vivo characterization of the scaffold activity of flotillin on the membrane kinase KinC of Bacillus subtilis. MICROBIOLOGY-SGM 2015; 161:1871-1887. [PMID: 26297017 DOI: 10.1099/mic.0.000137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Scaffold proteins are ubiquitous chaperones that bind to proteins and facilitate the physical interaction of the components of signal transduction pathways or multi-enzymic complexes. In this study, we used a biochemical approach to dissect the molecular mechanism of a membrane-associated scaffold protein, FloT, a flotillin-homologue protein that is localized in functional membrane microdomains of the bacterium Bacillus subtilis. This study provides unambiguous evidence that FloT physically binds to and interacts with the membrane-bound sensor kinase KinC. This sensor kinase activates biofilm formation in B. subtilis in response to the presence of the self-produced signal surfactin. Furthermore, we have characterized the mechanism by which the interaction of FloT with KinC benefits the activity of KinC. Two separate and synergistic effects constitute this mechanism: first, the scaffold activity of FloT promotes more efficient self-interaction of KinC and facilitates dimerization into its active form. Second, the selective binding of FloT to KinC prevents the occurrence of unspecific aggregation between KinC and other proteins that may generate dead-end intermediates that could titrate the activity of KinC. Flotillin proteins appear to play an important role in prokaryotes in promoting effective binding of signalling proteins with their correct protein partners.
Collapse
Affiliation(s)
- Johannes Schneider
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Benjamin Mielich-Süss
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Richard Böhme
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Daniel Lopez
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
- National Center for Biotechnology (CNB), Spanish Research Council (CSIC), Madrid 28050, Spain
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
8
|
Freyre-González JA, Treviño-Quintanilla LG, Valtierra-Gutiérrez IA, Gutiérrez-Ríos RM, Alonso-Pavón JA. Prokaryotic regulatory systems biology: Common principles governing the functional architectures of Bacillus subtilis and Escherichia coli unveiled by the natural decomposition approach. J Biotechnol 2012; 161:278-86. [PMID: 22728391 DOI: 10.1016/j.jbiotec.2012.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/21/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
Abstract
Escherichia coli and Bacillus subtilis are two of the best-studied prokaryotic model organisms. Previous analyses of their transcriptional regulatory networks have shown that they exhibit high plasticity during evolution and suggested that both converge to scale-free-like structures. Nevertheless, beyond this suggestion, no analyses have been carried out to identify the common systems-level components and principles governing these organisms. Here we show that these two phylogenetically distant organisms follow a set of common novel biologically consistent systems principles revealed by the mathematically and biologically founded natural decomposition approach. The discovered common functional architecture is a diamond-shaped, matryoshka-like, three-layer (coordination, processing, and integration) hierarchy exhibiting feedback, which is shaped by four systems-level components: global transcription factors (global TFs), locally autonomous modules, basal machinery and intermodular genes. The first mathematical criterion to identify global TFs, the κ-value, was reassessed on B. subtilis and confirmed its high predictive power by identifying all the previously reported, plus three potential, master regulators and eight sigma factors. The functionally conserved cores of modules, basal cell machinery, and a set of non-orthologous common physiological global responses were identified via both orthologous genes and non-orthologous conserved functions. This study reveals novel common systems principles maintained between two phylogenetically distant organisms and provides a comparison of their lifestyle adaptations. Our results shed new light on the systems-level principles and the fundamental functions required by bacteria to sustain life.
Collapse
Affiliation(s)
- Julio A Freyre-González
- Department of Molecular Microbiology, Institute for Biotechnology, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250 Cuernavaca, Morelos, México.
| | | | | | | | | |
Collapse
|
9
|
Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 2012; 16:819-52. [PMID: 22098259 PMCID: PMC3283443 DOI: 10.1089/ars.2011.4051] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 12/22/2022]
Abstract
Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | |
Collapse
|
10
|
Yu WB, Gao SH, Yin CY, Zhou Y, Ye BC. Comparative transcriptome analysis of Bacillus subtilis responding to dissolved oxygen in adenosine fermentation. PLoS One 2011; 6:e20092. [PMID: 21625606 PMCID: PMC3097244 DOI: 10.1371/journal.pone.0020092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/12/2011] [Indexed: 12/20/2022] Open
Abstract
Dissolved oxygen (DO) is an important factor for adenosine fermentation. Our previous experiments have shown that low oxygen supply in the growth period was optimal for high adenosine yield. Herein, to better understand the link between oxygen supply and adenosine productivity in B. subtilis (ATCC21616), we sought to systematically explore the effect of DO on genetic regulation and metabolism through transcriptome analysis. The microarrays representing 4,106 genes were used to study temporal transcript profiles of B. subtilis fermentation in response to high oxygen supply (agitation 700 r/min) and low oxygen supply (agitation 450 r/min). The transcriptome data analysis revealed that low oxygen supply has three major effects on metabolism: enhance carbon metabolism (glucose metabolism, pyruvate metabolism and carbon overflow), inhibit degradation of nitrogen sources (glutamate family amino acids and xanthine) and purine synthesis. Inhibition of xanthine degradation was the reason that low oxygen supply enhanced adenosine production. These provide us with potential targets, which can be modified to achieve higher adenosine yield. Expression of genes involved in energy, cell type differentiation, protein synthesis was also influenced by oxygen supply. These results provided new insights into the relationship between oxygen supply and metabolism.
Collapse
Affiliation(s)
- Wen-Bang Yu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shu-Hong Gao
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chun-Yun Yin
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Zhou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- * E-mail:
| |
Collapse
|
11
|
Increased fitness and alteration of metabolic pathways during Bacillus subtilis evolution in the laboratory. Appl Environ Microbiol 2011; 77:4105-18. [PMID: 21531833 DOI: 10.1128/aem.00374-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Five batch cultures of Bacillus subtilis were subjected to evolution in the laboratory for 6,000 generations under conditions repressing sporulation in complex liquid medium containing glucose. Between generations 1,000 and 2,000, variants with a distinct small-colony morphology arose and swept through four of the five populations that had been previously noted for their loss of sporulation (H. Maughan et al., Genetics 177:937-948, 2007). To better understand the nature of adaptation in these variants, individual strains were isolated from one population before (WN715) and after (WN716) the sweep. In addition to colony morphology, strains WN715 and WN716 differed in their motility, aerotaxis, and cell morphology. Competition experiments showed that strain WN716 had evolved a distinct fitness advantage over the ancestral strain and strain WN715 during growth and the transition to the postexponential growth phase, which was more pronounced when WN715 was present in the coculture. Microarray analyses revealed candidate genes in which mutations may have produced some of the observed phenotypes. For example, loss of motility in WN716 was accompanied by decreased transcription of all flagellar, motility, and chemotaxis genes on the microarray. Transcription of alsS and alsD was also lower in strain WN716, and the predicted loss of acetoin production and enhanced acetate production was confirmed by high-performance liquid chromatography (HPLC) analysis. The results suggested that the derived colony morphology of strain WN716 was associated with increased fitness, the alteration of several metabolic pathways, and the loss of a typical postexponential-phase response.
Collapse
|
12
|
Nakano MM, Lin A, Zuber CS, Newberry KJ, Brennan RG, Zuber P. Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase alpha subunit. PLoS One 2010; 5:e8664. [PMID: 20084284 PMCID: PMC2801614 DOI: 10.1371/journal.pone.0008664] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 12/19/2009] [Indexed: 12/20/2022] Open
Abstract
Background Spx, an ArsC (arsenate reductase) family member, is a global transcriptional regulator of the microbial stress response and is highly conserved amongst Gram-positive bacteria. Bacillus subtilis Spx protein exerts positive and negative control of transcription through its interaction with the C-terminal domain of the RNA polymerase (RNAP) α subunit (αCTD). Spx activates trxA (thioredoxin) and trxB (thioredoxin reductase) in response to thiol stress, and bears an N-terminal C10XXC13 redox disulfide center that is oxidized in active Spx. Methodology/Principal Findings The structure of mutant SpxC10S showed a change in the conformation of helix α4. Amino acid substitutions R60E and K62E within and adjacent to helix α4 conferred defects in Spx-activated transcription but not Spx-dependent repression. Electrophoretic mobility-shift assays showed αCTD interaction with trxB promoter DNA, but addition of Spx generated a supershifted complex that was disrupted in the presence of reductant (DTT). Interaction of αCTD/Spx complex with promoter DNA required the cis-acting elements -45AGCA-42 and -34AGCG-31 of the trxB promoter. The SpxG52R mutant, defective in αCTD binding, did not interact with the αCTD-trxB complex. SpxR60E not only failed to complex with αCTD-trxB, but also disrupted αCTD-trxB DNA interaction. Conclusions/Significance The results show that Spx and αCTD form a complex that recognizes the promoter DNA of an Spx-controlled gene. A conformational change during oxidation of Spx to the disulfide form likely alters the structure of Spx α helix α4, which contains residues that function in transcriptional activation and αCTD/Spx-promoter interaction. The results suggest that one of these residues, R60 of the α4 region of oxidized Spx, functions in αCTD/Spx-promoter contact but not in αCTD interaction.
Collapse
Affiliation(s)
- Michiko M. Nakano
- Department of Science & Engineering, School of Medicine, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Ann Lin
- Department of Science & Engineering, School of Medicine, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Cole S. Zuber
- Department of Science & Engineering, School of Medicine, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Kate J. Newberry
- Department of Biochemistry and Molecular Biology, University of Texas, M. D. Anderson Cancer Center, Texas, United States of America
| | - Richard G. Brennan
- Department of Biochemistry and Molecular Biology, University of Texas, M. D. Anderson Cancer Center, Texas, United States of America
| | - Peter Zuber
- Department of Science & Engineering, School of Medicine, Oregon Health & Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
13
|
Response of the oxygen sensor NreB to air in vivo: Fe-S-containing NreB and apo-NreB in aerobically and anaerobically growing Staphylococcus carnosus. J Bacteriol 2010; 192:86-93. [PMID: 19854899 DOI: 10.1128/jb.01248-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sensor kinase NreB from Staphylococcus carnosus contains an O(2)-sensitive [4Fe-4S](2+) cluster which is converted by O(2) to a [2Fe-2S](2+) cluster, followed by complete degradation and formation of Fe-S-less apo-NreB. NreB.[2Fe-2S](2+) and apoNreB are devoid of kinase activity. NreB contains four Cys residues which ligate the Fe-S clusters. The accessibility of the Cys residues to alkylating agents was tested and used to differentiate Fe-S-containing and Fe-S-less NreB. In a two-step labeling procedure, accessible Cys residues in the native protein were first labeled by iodoacetate. In the second step, Cys residues not labeled in the first step were alkylated with the fluorescent monobromobimane (mBBr) after denaturing of the protein. In purified (aerobic) apoNreB, most (96%) of the Cys residues were alkylated in the first step, but in anaerobic (Fe-S-containing) NreB only a small portion (23%) were alkylated. In anaerobic bacteria, a very small portion of the Cys residues of NreB (9%) were accessible to alkylation in the native state, whereas most (89%) of the Cys residues from aerobic bacteria were accessible. The change in accessibility allowed determination of the half-time (6 min) for the conversion of NreB x [4Fe-4S](2+) to apoNreB after the addition of air in vitro. Overall, in anaerobic bacteria most of the NreB exists as NreB x [4Fe-4S](2+), whereas in aerobic bacteria the (Fe-S-less) apoNreB is predominant and represents the physiological form. The number of accessible Cys residues was also determined by iodoacetate alkylation followed by mass spectrometry of Cys-containing peptides. The pattern of mass increases confirmed the results from the two-step labeling experiments.
Collapse
|
14
|
ResDE-dependent regulation of enterotoxin gene expression in Bacillus cereus: evidence for multiple modes of binding for ResD and interaction with Fnr. J Bacteriol 2009; 191:4419-26. [PMID: 19395489 DOI: 10.1128/jb.00321-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the food-borne pathogen Bacillus cereus F4430/73, the production of major virulence factors hemolysin BL (Hbl) and nonhemolytic enterotoxin (Nhe) is regulated through complex mechanisms. The two-component regulatory system ResDE is involved in the activation of hbl and nhe transcription. Here, the response regulator ResD and the sensor kinase ResE were overexpressed and purified, and autophosphorylation of ResE and transphosphorylation of ResD by ResE were demonstrated in vitro. ResD is mainly monomeric in solution, regardless of its phosphorylation state. ResD was shown to interact directly with promoter regions (p) of the enterotoxin regulator genes resDE, fnr, and plcR and the enterotoxin structural genes nhe and hbl, but with different affinities. Binding of ResD to pplcR, pnhe, and phbl was not dependent on the ResD phosphorylation status. In contrast, ResD phosphorylation significantly increased interactions between ResD and presDE and pfnr. Taken together, these results showed that phosphorylation of ResD results in a different target expression pattern. Furthermore, ResD and the redox activator Fnr were found to physically interact and simultaneously bind their target DNAs. We propose that unphosphorylated ResD acts as an antiactivator of Fnr, while phosphorylated ResD acts as a coactivator of Fnr. Finally, our findings represent the first molecular evidence of the role of ResDE as a sentinel system capable of sensing redox changes and coordinating a response that modulates B. cereus virulence.
Collapse
|
15
|
Wang E, Bauer MC, Rogstam A, Linse S, Logan DT, von Wachenfeldt C. Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex. Mol Microbiol 2008; 69:466-78. [PMID: 18485070 DOI: 10.1111/j.1365-2958.2008.06295.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transcription factor Rex has been implicated in regulation of the expression of genes important for fermentative growth and for growth under conditions of low oxygen tension in several Gram-positive bacteria. Rex senses the redox poise of the cell through changes in the NADH/NAD(+) ratio. The crystal structures of two essentially identical Rex proteins, from Thermus aquaticus and T. thermophilus, have previously been determined in complex with NADH. Here we present the crystal structure of the Rex protein from Bacillus subtilis, as well as extensive studies of its affinity for nucleotides and DNA, using surface plasmon resonance, isothermal titration calorimetry and electrophoretic mobility shift assays. We show that Rex has a very high affinity for NADH but that its affinity for NAD(+) is 20 000 times lower. However, the NAD(+) affinity is increased by a factor of 30 upon DNA binding, suggesting that there is a positive allosteric coupling between DNA binding and NAD(+) binding. The crystal structures of two pseudo-apo forms (from crystals soaked with NADH and cocrystallized with ATP) show a very different conformation from the previously determined Rex:NADH complexes, in which the N-terminal domains are splayed away from the dimer core. A mechanism is proposed whereby conformational changes in a C-terminal domain-swapped helix mediate the transition from a flexible DNA binding form to a locked NADH-bound form incapable of binding DNA.
Collapse
Affiliation(s)
- Ellen Wang
- Department of Molecular Biophysics, Center for Chemistry and Chemical Engineering, Lund University, SE-221 00, Lund, Sweden
| | | | | | | | | | | |
Collapse
|