1
|
Bourret RB, Silversmith RE. Measuring the Activities of Two-Component Regulatory System Phosphatases. Methods Enzymol 2018; 607:321-351. [PMID: 30149864 DOI: 10.1016/bs.mie.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two-component regulatory systems (TCSs) are used for signal transduction by organisms from all three phylogenetic domains of the living world. TCSs use transient protein phosphorylation and dephosphorylation reactions to convert stimuli into appropriate responses to changing environmental conditions. Phosphoryl groups flow from ATP to sensor kinases (which detect stimuli) to response regulators (which implement responses) to inorganic phosphate (Pi). The phosphorylation state of response regulators controls their output activity. The rate at which phosphoryl groups are removed from response regulators correlates with the timescale of the corresponding biological function. Dephosphorylation reactions are fastest in chemotaxis TCS and slower in other TCS. Response regulators catalyze their own dephosphorylation, but at least five types of phosphatases are known to enhance dephosphorylation of response regulators. In each case, the phosphatases are believed to stimulate the intrinsic autodephosphorylation reaction. We discuss in depth the properties of TCS (particularly the differences between chemotaxis and nonchemotaxis TCS) relevant to designing in vitro assays for TCS phosphatases. We describe detailed assay methods for chemotaxis TCS phosphatases using loss of 32P, change in intrinsic fluorescence as a result of dephosphorylation, or release of Pi. The phosphatase activities of nonchemotaxis TCS phosphatases are less well characterized. We consider how the properties of nonchemotaxis TCS affect assay design and suggest suitable modifications for phosphatases from nonchemotaxis TCS, with an emphasis on the Pi release method.
Collapse
Affiliation(s)
- Robert B Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States.
| | - Ruth E Silversmith
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Fis is a global regulator critical for modulation of virulence factor production and pathogenicity of Dickeya zeae. Sci Rep 2018; 8:341. [PMID: 29321600 PMCID: PMC5762655 DOI: 10.1038/s41598-017-18578-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/11/2017] [Indexed: 12/25/2022] Open
Abstract
Dickeya zeae is the causal agent of rice foot rot disease, which has recently become a great threat to rice planting countries and regions. The pathogen produces a family of phytotoxins named zeamines that is critical for bacterial virulence, but little is known about the signaling pathways and regulatory mechanisms that govern zeamine production. In this study, we showed that a conserved transcriptional regulator Fis is involved in the regulation of zeamine production in D. zeae strain EC1. Deletion mutants were markedly attenuated in the virulence against rice seed germination. Transcriptome and phenotype analyses showed that Fis is a potent global transcriptional regulator modulating various virulence traits, including production of extracellular enzymes and exopolysaccharides, swimming and swarming motility, biofilm formation and cell aggregation. DNA gel retardation analysis showed that Fis directly regulates the transcription of key virulence genes and the genes encoding Vfm quorum sensing system through DNA/protein interaction. Our findings unveil a key regulator associated with the virulence of D. zeae EC1, and present useful clues for further elucidation of the regulatory complex and signaling pathways which govern the virulence of this important pathogen.
Collapse
|
3
|
Sircar R, Borbat PP, Lynch MJ, Bhatnagar J, Beyersdorf MS, Halkides CJ, Freed JH, Crane BR. Assembly states of FliM and FliG within the flagellar switch complex. J Mol Biol 2014; 427:867-886. [PMID: 25536293 DOI: 10.1016/j.jmb.2014.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 01/11/2023]
Abstract
At the base of the bacterial flagella, a cytoplasmic rotor (the C-ring) generates torque and reverses rotation sense in response to stimuli. The bulk of the C-ring forms from many copies of the proteins FliG, FliM, and FliN, which together constitute the switch complex. To help resolve outstanding issues regarding C-ring architecture, we have investigated interactions between FliM and FliG from Thermotoga maritima with X-ray crystallography and pulsed dipolar ESR spectroscopy (PDS). A new crystal structure of an 11-unit FliG:FliM complex produces a large arc with a curvature consistent with the dimensions of the C-ring. Previously determined structures along with this new structure provided a basis to test switch complex assembly models. PDS combined with mutational studies and targeted cross-linking reveal that FliM and FliG interact through their middle domains to form both parallel and antiparallel arrangements in solution. Residue substitutions at predicted interfaces disrupt higher-order complexes that are primarily mediated by contacts between the C-terminal domain of FliG and the middle domain of a neighboring FliG molecule. Spin separations among multi-labeled components fit a self-consistent model that agree well with electron microscopy images of the C-ring. An activated form of the response regulator CheY destabilizes the parallel arrangement of FliM molecules to perturb FliG alignment in a process that may reflect the onset of rotation switching. These data suggest a model of C-ring assembly in which intermolecular contacts among FliG domains provide a template for FliM assembly and cooperative transitions.
Collapse
Affiliation(s)
- Ria Sircar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jaya Bhatnagar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Matthew S Beyersdorf
- Department of Chemistry and Biochemistry, Unversity of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Christopher J Halkides
- Department of Chemistry and Biochemistry, Unversity of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Sircar R, Greenswag AR, Bilwes AM, Gonzalez-Bonet G, Crane BR. Structure and activity of the flagellar rotor protein FliY: a member of the CheC phosphatase family. J Biol Chem 2013; 288:13493-502. [PMID: 23532838 PMCID: PMC3650386 DOI: 10.1074/jbc.m112.445171] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND FliY is a flagellar rotor protein of the CheC phosphatase family. RESULTS The FliY structure resembles that of the rotor protein FliM but contains two active centers for CheY dephosphorylation. CONCLUSION FliY incorporates properties of the FliM/FliN rotor proteins and the CheC/CheX phosphatases to serve multiple functions in the flagellar switch. SIGNIFICANCE FliY distinguishes flagellar architecture and function in different types of bacteria. Rotating flagella propel bacteria toward favorable environments. Sense of rotation is determined by the intracellular response regulator CheY, which when phosphorylated (CheY-P) interacts directly with the flagellar motor. In many different types of bacteria, the CheC/CheX/FliY (CXY) family of phosphatases terminates the CheY-P signal. Unlike CheC and CheX, FliY is localized in the flagellar switch complex, which also contains the stator-coupling protein FliG and the target of CheY-P, FliM. The 2.5 Å resolution crystal structure of the FliY catalytic domain from Thermotoga maritima bears strong resemblance to the middle domain of FliM. Regions of FliM that mediate contacts within the rotor compose the phosphatase active sites in FliY. Despite the similarity between FliY and FliM, FliY does not bind FliG and thus is unlikely to be a substitute for FliM in the center of the switch complex. Solution studies indicate that FliY dimerizes through its C-terminal domains, which resemble the Escherichia coli switch complex component FliN. FliY differs topologically from the E. coli chemotaxis phosphatase CheZ but appears to utilize similar structural motifs for CheY dephosphorylation in close analogy to CheX. Recognition properties and phosphatase activities of site-directed mutants identify two pseudosymmetric active sites in FliY (Glu(35)/Asn(38) and Glu(132)/Asn(135)), with the second site (Glu(132)/Asn(135)) being more active. A putative N-terminal CheY binding domain conserved with FliM is not required for binding CheY-P or phosphatase activity.
Collapse
Affiliation(s)
- Ria Sircar
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850
| | - Anna R. Greenswag
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850
| | - Alexandrine M. Bilwes
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850
| | - Gabriela Gonzalez-Bonet
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850
| | - Brian R. Crane
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, To whom correspondence should be addressed: Dept. of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14850. Tel.: 607-254-8634; E-mail:
| |
Collapse
|
5
|
Eichler J, Maupin-Furlow J. Post-translation modification in Archaea: lessons from Haloferax volcanii and other haloarchaea. FEMS Microbiol Rev 2012; 37:583-606. [PMID: 23167813 DOI: 10.1111/1574-6976.12012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 01/11/2023] Open
Abstract
As an ever-growing number of genome sequences appear, it is becoming increasingly clear that factors other than genome sequence impart complexity to the proteome. Of the various sources of proteomic variability, post-translational modifications (PTMs) most greatly serve to expand the variety of proteins found in the cell. Likewise, modulating the rates at which different proteins are degraded also results in a constantly changing cellular protein profile. While both strategies for generating proteomic diversity are adopted by organisms across evolution, the responsible pathways and enzymes in Archaea are often less well described than are their eukaryotic and bacterial counterparts. Studies on halophilic archaea, in particular Haloferax volcanii, originally isolated from the Dead Sea, are helping to fill the void. In this review, recent developments concerning PTMs and protein degradation in the haloarchaea are discussed.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel.
| | | |
Collapse
|
6
|
Fujinami S, Terahara N, Krulwich TA, Ito M. Motility and chemotaxis in alkaliphilic Bacillus species. Future Microbiol 2010; 4:1137-49. [PMID: 19895217 DOI: 10.2217/fmb.09.76] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alkaliphilic Bacillus species grow at pH values up to approximately 11. Motile alkaliphilic Bacillus use electrochemical gradients of Na(+) (sodium-motive force) to power ion-coupled, flagella-mediated motility as opposed to the electrochemical gradients of H(+) (proton-motive force) used by most neutralophilic bacteria. Membrane-embedded stators of bacterial flagella contain ion channels through which either H(+) or Na(+) flow to energize flagellar rotation. Stators of the major H(+)-coupled type, MotAB, are distinguishable from Na(+)-coupled stators, PomAB of marine bacteria and MotPS of alkaliphilic Bacillus. Dual ion-coupling capacity is found in neutralophilic Bacillus strains with both MotAB and MotPS. There is also a MotAB variant that uses both coupling ions, switching as a function of pH. Chemotaxis of alkaliphilic Bacillus depends upon flagellar motility but also requires a distinct voltage-gated NaChBac-type channel. The two alkaliphile Na(+) channels provide new vistas on the diverse adaptations of sensory responses in bacteria.
Collapse
Affiliation(s)
- Shun Fujinami
- NITE Bioresource Information Center, Department of Biotechnology, National Institute of Technology and Evaluation, Nishihara, Shibuya-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
7
|
Abstract
A new class of protein phosphatases has emerged in the study of bacterial/archaeal chemotaxis, the CheC-type phosphatases. These proteins are distinct and unrelated to the well-known CheY-P phosphatase CheZ, though they have convergently evolved to dephosphorylate the same target. The family contains a common consensus sequence D/S-X(3)-E-X(2)-N-X(22)-P that defines the phosphatase active site, of which there are often two per protein. Three distinct subgroups make up the family: CheC, FliY and CheX. Further, the CheC subgroup can be divided into three classes. Bacillus subtilis CheC typifies the first class and might function as a regulator of CheD. Class II CheCs likely function as phosphatases in systems other than chemotaxis. Class III CheCs are found in the archaeal class Halobacteria and might function as class I CheCs. FliY is the main phosphatase in the B. subtilis chemotaxis system. CheX is quite divergent from the rest of the family, forms a dimer and some may function outside chemotaxis. A model for the evolution of the family is discussed.
Collapse
Affiliation(s)
- Travis J Muff
- Department of Biochemistry, Colleges of Medicine and Liberal Arts and Sciences, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
8
|
A Predatory Patchwork: Membrane and Surface Structures of Bdellovibrio bacteriovorus. Adv Microb Physiol 2008; 54:313-61. [DOI: 10.1016/s0065-2911(08)00005-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Abstract
The bacterial chemotaxis system is one of the most extensively studied signal transduction systems in biology. The response regulator CheY controls flagellar rotation and is phosphorylated by the CheA histidine kinase to its active form. CheC is a CheY-P phosphatase, and this activity is enhanced in a CheC-CheD heterodimer. CheC is also critical for chemotactic adaptation, the return to the prestimulus system state despite persistent attractant concentrations. Here, CheC point mutants were examined in Bacillus subtilis for in vivo complementation and in vitro activity. The mutants were identified separating the three known abilities of CheC: CheD binding, CheY-P binding, and CheY-P phosphatase activity. Remarkably, the phosphatase ability was not as critical to the in vivo function of CheC as the ability to bind both CheY-P and CheD. Additionally, it was confirmed that CheY-P increases the affinity of CheC for CheD, the later of which is known to be necessary for receptor activation of CheA. These data suggest a model of CheC as a CheY-P-induced regulator of CheD. Here, CheY-P would cause CheC to sequester CheD from the chemoreceptors, inducing adaptation of the chemotaxis system. This model represents the first plausible means for feedback from the output of the system, CheY-P, to the receptors.
Collapse
Affiliation(s)
- Travis J Muff
- Department of Biochemistry, Colleges of Medicine and Liberal Arts and Sciences, University of Illinois, 506 S. Matthews, Urbana, IL 61801, USA
| | | |
Collapse
|
10
|
Muff TJ, Foster RM, Liu PJY, Ordal GW. CheX in the three-phosphatase system of bacterial chemotaxis. J Bacteriol 2007; 189:7007-13. [PMID: 17675386 PMCID: PMC2045203 DOI: 10.1128/jb.00896-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial chemotaxis involves the regulation of motility by a modified two-component signal transduction system. In Escherichia coli, CheZ is the phosphatase of the response regulator CheY but many other bacteria, including Bacillus subtilis, use members of the CheC-FliY-CheX family for this purpose. While Bacillus subtilis has only CheC and FliY, many systems also have CheX. The effect of this three-phosphatase system on chemotaxis has not been studied previously. CheX was shown to be a stronger CheY-P phosphatase than either CheC or FliY. In Bacillus subtilis, a cheC mutant strain was nearly complemented by heterologous cheX expression. CheX was shown to overcome the DeltacheC adaptational defect but also generally lowered the counterclockwise flagellar rotational bias. The effect on rotational bias suggests that CheX reduced the overall levels of CheY-P in the cell and did not truly replicate the adaptational effects of CheC. Thus, CheX is not functionally redundant to CheC and, as outlined in the discussion, may be more analogous to CheZ.
Collapse
Affiliation(s)
- Travis J Muff
- Department of Biochemistry, Colleges of Medicine and Liberal Arts and Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|