1
|
Wang X, Du ZW, Xu TM, Wang XJ, Li W, Gao JL, Li J, Zhu H. HIF-1α Is a Rational Target for Future Ovarian Cancer Therapies. Front Oncol 2022; 11:785111. [PMID: 35004308 PMCID: PMC8739787 DOI: 10.3389/fonc.2021.785111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer is the eighth most commonly diagnosed cancer among women worldwide. Even with the development of novel drugs, nearly one-half of the patients with ovarian cancer die within five years of diagnosis. These situations indicate the need for novel therapeutic agents for ovarian cancer. Increasing evidence has shown that hypoxia-inducible factor-1α(HIF-1α) plays an important role in promoting malignant cell chemoresistance, tumour metastasis, angiogenesis, immunosuppression and intercellular interactions. The unique microenvironment, crosstalk and/or interaction between cells and other characteristics of ovarian cancer can influence therapeutic efficiency or promote the disease progression. Inhibition of the expression or activity of HIF-1α can directly or indirectly enhance the therapeutic responsiveness of tumour cells. Therefore, it is reasonable to consider HIF-1α as a potential therapeutic target for ovarian cancer. In this paper, we summarize the latest research on the role of HIF-1α and molecules which can inhibit HIF-1α expression directly or indirectly in ovarian cancer, and drug clinical trials about the HIF-1α inhibitors in ovarian cancer or other solid malignant tumours.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Zhen-Wu Du
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China.,Research Center, The Second Hospital of Jilin University, Changchun, China
| | - Tian-Min Xu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Xiao-Jun Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jia-Li Gao
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jing Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Intrabody Targeting HIF-1α Mediates Transcriptional Downregulation of Target Genes Related to Solid Tumors. Int J Mol Sci 2021; 22:ijms222212335. [PMID: 34830219 PMCID: PMC8625554 DOI: 10.3390/ijms222212335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Uncontrolled growth of solid tumors will result in a hallmark hypoxic condition, whereby the key transcriptional regulator of hypoxia inducible factor-1α (HIF-1α) will be stabilized to activate the transcription of target genes that are responsible for the metabolism, proliferation, and metastasis of tumor cells. Targeting and inhibiting the transcriptional activity of HIF-1 may provide an interesting strategy for cancer therapy. In the present study, an immune library and a synthetic library were constructed for the phage display selection of Nbs against recombinant PAS B domain protein (rPasB) of HIF-1α. After panning and screening, seven different nanobodies (Nbs) were selected, of which five were confirmed via immunoprecipitation to target the native HIF-1α subunit. The inhibitory effect of the selected Nbs on HIF-1 induced activation of target genes has been evaluated after intracellular expression of these Nbs in HeLa cells. The dramatic inhibition of both intrabody formats on the expression of HIF-1-related target genes has been confirmed, which indicated the inhibitory efficacy of selected Nbs on the transcriptional activity of HIF-1.
Collapse
|
3
|
Kim SA, Jo SH, Cho JH, Yu MY, Shin HC, Kim JA, Park SG, Park BC, Kim S, Kim JH. Aryl Sulfonamides Induce Degradation of Aryl Hydrocarbon Receptor Nuclear Translocator through CRL4 DCAF15 E3 Ligase. Mol Cells 2020; 43:935-944. [PMID: 33168788 PMCID: PMC7700843 DOI: 10.14348/molcells.2020.0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Aryl hydrocarbon receptor nuclear translocator (ARNT) plays an essential role in maintaining cellular homeostasis in response to environmental stress. Under conditions of hypoxia or xenobiotic exposure, ARNT regulates the subset of genes involved in adaptive responses, by forming heterodimers with hypoxia-inducible transcription factors (HIF1α and HIF2α) or aryl hydrocarbon receptor (AhR). Here, we have shown that ARNT interacts with DDB1 and CUL4-associated factor 15 (DCAF15), and the aryl sulfonamides, indisulam and E7820, induce its proteasomal degradation through Cullin-RING finger ligase 4 containing DCAF15 (CRL4DCAF15) E3 ligase. Moreover, the two known neo-substrates of aryl sulfonamide, RNA-binding motif protein 39 (RBM39) and RNA-binding motif protein 23 (RBM23), are not required for ARNT degradation. In line with this finding, aryl sulfonamides inhibited the transcriptional activities of HIFs and AhR associated with ARNT. Our results collectively support novel regulatory roles of aryl sulfonamides in both hypoxic and xenobiotic responses.
Collapse
Affiliation(s)
- Sung Ah Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Seung-Hyun Jo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Min Yeong Yu
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jung-Ae Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
- Present address: Drug Discovery Center, LG Chem, Ltd., Seoul 07336, Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
4
|
Finoshin AD, Adameyko KI, Mikhailov KV, Kravchuk OI, Georgiev AA, Gornostaev NG, Kosevich IA, Mikhailov VS, Gazizova GR, Shagimardanova EI, Gusev OA, Lyupina YV. Iron metabolic pathways in the processes of sponge plasticity. PLoS One 2020; 15:e0228722. [PMID: 32084159 PMCID: PMC7034838 DOI: 10.1371/journal.pone.0228722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
The ability to regulate oxygen consumption evolved in ancestral animals and is intrinsically linked to iron metabolism. The iron pathways have been intensively studied in mammals, whereas data on distant invertebrates are limited. Sea sponges represent the oldest animal phylum and have unique structural plasticity and capacity to reaggregate after complete dissociation. We studied iron metabolic factors and their expression during reaggregation in the White Sea cold-water sponges Halichondria panicea and Halisarca dujardini. De novo transcriptomes were assembled using RNA-Seq data, and evolutionary trends were analyzed with bioinformatic tools. Differential expression during reaggregation was studied for H. dujardini. Enzymes of the heme biosynthesis pathway and transport globins, neuroglobin (NGB) and androglobin (ADGB), were identified in sponges. The globins mutate at higher evolutionary rates than the heme synthesis enzymes. Highly conserved iron-regulatory protein 1 (IRP1) presumably interacts with the iron-responsive elements (IREs) found in mRNAs of ferritin (FTH1) and a putative transferrin receptor NAALAD2. The reaggregation process is accompanied by increased expression of IRP1, the antiapoptotic factor BCL2, the inflammation factor NFκB (p65), FTH1 and NGB, as well as by an increase in mitochondrial density. Our data indicate a complex mechanism of iron regulation in sponge structural plasticity and help to better understand general mechanisms of morphogenetic processes in multicellular species.
Collapse
Affiliation(s)
- Alexander D. Finoshin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kim I. Adameyko
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V. Mikhailov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Oksana I. Kravchuk
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nicolay G. Gornostaev
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Victor S. Mikhailov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Oleg A. Gusev
- Kazan Federal University, Kazan, Russia
- KFU-RIKEN Translational Genomics Unit, RIKEN National Science Institute, Yokohama, Japan
| | - Yulia V. Lyupina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Identification, Characterization, and Diel Pattern of Expression of Canonical Clock Genes in Nephrops norvegicus (Crustacea: Decapoda) Eyestalk. PLoS One 2015; 10:e0141893. [PMID: 26524198 PMCID: PMC4629887 DOI: 10.1371/journal.pone.0141893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022] Open
Abstract
The Norway lobster, Nephrops norvegicus, is a burrowing decapod with a rhythmic burrow emergence (24 h) governed by the circadian system. It is an important resource for European fisheries and its behavior deeply affects its availability. The current knowledge of Nephrops circadian biology is phenomenological as it is currently the case for almost all crustaceans. In attempt to elucidate the putative molecular mechanisms underlying circadian gene regulation in Nephrops, we used a transcriptomics approach on cDNA extracted from the eyestalk, a structure playing a crucial role in controlling behavior of decapods. We studied 14 male lobsters under 12–12 light-darkness blue light cycle. We used the Hiseq 2000 Illumina platform to sequence two eyestalk libraries (under light and darkness conditions) obtaining about 90 millions 100-bp paired-end reads. Trinity was used for the de novo reconstruction of transcriptomes; the size at which half of all assembled bases reside in contigs (N50) was equal to 1796 (light) and 2055 (darkness). We found a list of candidate clock genes and focused our attention on canonical ones: timeless, period, clock and bmal1. The cloning of assembled fragments validated Trinity outputs. The putative Nephrops clock genes showed high levels of identity (blastx on NCBI) with known crustacean clock gene homologs such as Eurydice pulchra (period: 47%, timeless: 59%, bmal1: 79%) and Macrobrachium rosenbergii (clock: 100%). We also found a vertebrate-like cryptochrome 2. RT-qPCR showed that only timeless had a robust diel pattern of expression. Our data are in accordance with the current knowledge of the crustacean circadian clock, reinforcing the idea that the molecular clockwork of this group shows some differences with the established model in Drosophila melanogaster.
Collapse
|
6
|
Scheuermann TH, Li Q, Ma HW, Key J, Zhang L, Chen R, Garcia JA, Naidoo J, Longgood J, Frantz DE, Tambar UK, Gardner KH, Bruick RK. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat Chem Biol 2013; 9:271-6. [PMID: 23434853 PMCID: PMC3604136 DOI: 10.1038/nchembio.1185] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/18/2013] [Indexed: 02/07/2023]
Abstract
Hypoxia inducible factors (HIFs) are heterodimeric transcription factors induced in many cancers where they frequently promote the expression of protumorigenic pathways. Though transcription factors are typically considered 'undruggable', the PAS-B domain of the HIF-2α subunit contains a large cavity within its hydrophobic core that offers a unique foothold for small-molecule regulation. Here we identify artificial ligands that bind within this pocket and characterize the resulting structural and functional changes caused by binding. Notably, these ligands antagonize HIF-2 heterodimerization and DNA-binding activity in vitro and in cultured cells, reducing HIF-2 target gene expression. Despite the high sequence identity between HIF-2α and HIF-1α, these ligands are highly selective and do not affect HIF-1 function. These chemical tools establish the molecular basis for selective regulation of HIF-2, providing potential therapeutic opportunities to intervene in HIF-2-driven tumors, such as renal cell carcinomas.
Collapse
Affiliation(s)
- Thomas H Scheuermann
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Donovan LK, Pilkington GJ. CD133: holy of grail of neuro-oncology or promiscuous red-herring? Cell Prolif 2013; 45:527-37. [PMID: 23106300 DOI: 10.1111/j.1365-2184.2012.00842.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The CD133 glycoprotein is a controversial cancer stem cell marker in the field of neuro-oncology, based largely on the now considerable experimental evidence for the existence of both CD133+ve and CD133-ve populations as tumour-initiating cells. It is thought that decreasing oxygen tension enhances the complex regulation and phenotype of CD133 in glioma. In light of these ideologies, establishing the precise functional role of CD133 is becoming increasingly critical. In this article, we review the complex regulation of CD133 and its extracellular epitope AC133, and associated alterations, to tumour cell behaviour by hypoxia. Furthermore, its role in functional modulation of tumours, rather than determination of a specific stem cell type is therefore alluded to, while evidence for and against its ability as a cancer stem cell marker in primary brain tumours, is critically evaluated. Thus, the suggestion that CD133 may be a central 'holy grail' in identifying core cells for propagation of malignant glial neoplasms seems increasingly less convincing. It remains to be seen, however, whether CD133 is randomly expressed on such brain tumour cell populations or whether it is of major significance to brain biological behaviour.
Collapse
Affiliation(s)
- L K Donovan
- Cellular and Molecular Neuro-oncology Research Group, School of Pharmacy and Biomedical Sciences, Portsmouth, UK.
| | | |
Collapse
|
8
|
Rytkönen KT, Akbarzadeh A, Miandare HK, Kamei H, Duan C, Leder EH, Williams TA, Nikinmaa M. Subfunctionalization of cyprinid hypoxia-inducible factors for roles in development and oxygen sensing. Evolution 2012; 67:873-82. [PMID: 23461336 DOI: 10.1111/j.1558-5646.2012.01820.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among vertebrates, teleost fishes have evolved the most impressive adaptations to variable oxygen tensions in water (Shoubridge and Hochachka 1980; Nilsson and Randall 2010). Under conditions of oxygen deprivation (hypoxia), major changes in gene expression are mediated by hypoxia-inducible factors (HIF alpha). Here we show that hif alpha genes were duplicated in the teleost specific whole-genome duplication. Although one of each paralogous gene pair was lost in most teleosts, both copies were retained in cyprinids. Computational analyses suggest that these duplicates have become subfunctionalized with complementary changes in coding and regulatory sequences within each paralogous gene pair. We tested our predictions with comparisons of hif alpha transcription in zebrafish, a cyprinid, and sturgeon, an outgroup that diverged from teleosts before the duplication event. Our experiments revealed distinct transcriptional profiles in the cyprinid duplicates: while one of each paralogous pair maintained the ancestral developmental response, the other was more sensitive to changes in oxygen tension. These results demonstrate the subfunctionalization of cyprinid hif alpha paralogs for specialized roles in development and the hypoxic stress response.
Collapse
Affiliation(s)
- Kalle T Rytkönen
- Division of Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The crystal structure of a transcriptional activator reveals the inner workings of the mammalian circadian clock.
Collapse
Affiliation(s)
- Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
10
|
Xiang L, Liu ZH, Huan Q, Su P, Du GJ, Wang Y, Gao P, Zhou GY. Hypoxia-inducible factor-2a is associated with ABCG2 expression, histology-grade and Ki67 expression in breast invasive ductal carcinoma. Diagn Pathol 2012; 7:32. [PMID: 22452996 PMCID: PMC3337233 DOI: 10.1186/1746-1596-7-32] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/27/2012] [Indexed: 11/10/2022] Open
Abstract
Background Breast cancer is the most common cancer and the leading cause of cancer mortality in women worldwide. Hypoxia is an important factor involved in the progression of solid tumors and has been associated with various indicators of tumor metabolism, angiogenesis and metastasis. But little is known about the contribution of Hypoxia-Inducible Factor-2a (HIF-2a) to the drug resistance and the clinicopathological characteristics in breast cancer. Methods Immunohistochemistry was employed on the tissue microarray paraffin sections of surgically removed samples from 196 invasive breast cancer patients with clinicopathological data. The correlations between the expression of HIF-2a and ABCG2 as well as other patients' clinicopathological data were investigated. Results The results showed that HIF-2a was expressed in different intensities and distributions in the tumor cells of the breast invasive ductal carcinoma. A positive staining for HIF-2a was defined as a brown staining observed mainly in the nucleus. A statistically significant correlation was demonstrated between HIF-2a expression and ABCG2 expression (p = 0.001), histology-grade (p = 0.029), and Ki67 (p = 0. 043) respectively. Conclusion HIF-2a was correlated with ABCG2 expression, histology-grade and Ki67 expression in breast invasive ductal carcinoma. HIF-2a could regulate ABCG2 in breast cancer cells, and could be a novel potential bio-marker to predict chemotherapy effectiveness. The hypoxia/HIF-2a/ABCG2 pathway could be a new mechanism of breast cancer multidrug-resistance. Virtual slides http://www.diagnosticpathology.diagnomx.eu/vs/2965948166714795
Collapse
Affiliation(s)
- Lei Xiang
- Department of Pathology, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
King HA, Hoelz A, Crane BR, Young MW. Structure of an enclosed dimer formed by the Drosophila period protein. J Mol Biol 2011; 413:561-72. [PMID: 21907720 DOI: 10.1016/j.jmb.2011.08.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 11/18/2022]
Abstract
Period (PER) is the major transcription inhibitor in metazoan circadian clocks and lies at the center of several feedback loops that regulate gene expression. Dimerization of Drosophila PER influences nuclear translocation, repressor activity, and behavioral rhythms. The structure of a central, 346-residue PER fragment reveals two associated PAS (Per-Arnt-Sim) domains followed by a protruding α-helical extension (αF). A closed, pseudo-symmetric dimer forms from a cross handshake interaction of the N-terminal PAS domain with αF of the opposing subunit. Strikingly, a shift of αF against the PAS β-sheet generates two alternative subunit interfaces in the dimer. Taken together with a previously reported PER structure in which αF extends, these data indicate that αF unlatches to switch association of PER with itself to its partner Timeless. The variable positions of the αF helix provide snapshots of a helix dissociation mechanism that has relevance to other PAS protein systems. Conservation of PER interaction residues among a family of PAS-AB-containing transcription factors suggests that contacts mediating closed PAS-AB dimers serve a general function.
Collapse
Affiliation(s)
- Heather A King
- Laboratory of Genetics, The Rockefeller University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
12
|
Shewanella oneidensis MR-1 sensory box protein involved in aerobic and anoxic growth. Appl Environ Microbiol 2011; 77:4647-56. [PMID: 21602393 DOI: 10.1128/aem.03003-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although little is known of potential function for conserved signaling proteins, it is hypothesized that such proteins play important roles to coordinate cellular responses to environmental stimuli. In order to elucidate the function of a putative sensory box protein (PAS domains) in Shewanella oneidensis MR-1, the physiological role of SO3389 was characterized. The predicted open reading frame (ORF) encodes a putative sensory box protein that has PAS, GGDEF, and EAL domains, and an in-frame deletion mutant was constructed (ΔSO3389) with approximately 95% of the ORF deleted. Under aerated conditions, wild-type and mutant cultures had similar growth rates, but the mutant culture had a lower growth rate under static, aerobic conditions. Oxygen consumption rates were lower for mutant cultures (1.5-fold), and wild-type cultures also maintained lower dissolved oxygen concentrations under aerated growth conditions. When transferred to anoxic conditions, the mutant did not grow with fumarate, iron(III), or dimethyl sulfoxide (DMSO) as electron acceptors. Biochemical assays demonstrated the expression of different c-type cytochromes as well as decreased fumarate reductase activity in the mutant transferred to anoxic growth conditions. Transcriptomic studies showed the inability of the mutant to up-express and down-express genes, including c-type cytochromes (e.g., SO4047/SO4048, SO3285/SO3286), reductases (e.g., SO0768, SO1427), and potential regulators (e.g., SO1329). The complemented strain was able to grow when transferred from aerobic to anoxic growth conditions with the tested electron acceptors. The modeled structure for the SO3389 PAS domains was highly similar to the crystal structures of FAD-binding PAS domains that are known O2/redox sensors. Based on physiological, genomic, and bioinformatic results, we suggest that the sensory box protein, SO3389, is an O2/redox sensor that is involved in optimization of aerobic growth and transitions to anoxia in S. oneidensis MR-1.
Collapse
|
13
|
Wotzlaw C, Gneuss S, Konietzny R, Fandrey J. Nanoscopy of the cellular response to hypoxia by means of fluorescence resonance energy transfer (FRET) and new FRET software. PMC BIOPHYSICS 2010; 3:5. [PMID: 20205712 PMCID: PMC2846870 DOI: 10.1186/1757-5036-3-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 03/05/2010] [Indexed: 02/08/2023]
Abstract
Background Cellular oxygen sensing is fundamental to all mammalian cells to adequately respond to a shortage of oxygen by increasing the expression of genes that will ensure energy homeostasis. The transcription factor Hypoxia-Inducible-Factor-1 (HIF-1) is the key regulator of the response because it coordinates the expression of hypoxia inducible genes. The abundance and activity of HIF-1 are controlled through posttranslational modification by hydroxylases, the cellular oxygen sensors, of which the activity is oxygen dependent. Methods Fluorescence resonance energy transfer (FRET) was established to determine the assembly of the HIF-1 complex and to study the interaction of the α-subunit of HIF-1 with the O2-sensing hydroxylase. New software was developed to improve the quality and reliability of FRET measurements. Results FRET revealed close proximity between the HIF-1 subunits in multiple cells. Data obtained by sensitized FRET in this study were fully compatible with previous work using acceptor bleaching FRET. Interaction between the O2-sensing hydroxylase PHD1 and HIF-1α was demonstrated and revealed exclusive localization of O2-sensing in the nucleus. The new software FRET significantly improved the quality and speed of FRET measurements. Conclusion FRET measurements do not only allow following the assembly of the HIF-1 complex under hypoxic conditions but can also provide important information about the process of O2-sensing and its localisation within a cell. MCS codes: 92C30, 92C05, 92C40
Collapse
Affiliation(s)
- Christoph Wotzlaw
- Institut für Physiologie, Universität Duisburg-Essen, D-45122 Essen, Germany.
| | | | | | | |
Collapse
|
14
|
Hennig S, Strauss HM, Vanselow K, Yildiz Ö, Schulze S, Arens J, Kramer A, Wolf E. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLoS Biol 2009; 7:e94. [PMID: 19402751 PMCID: PMC2671562 DOI: 10.1371/journal.pbio.1000094] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 03/13/2009] [Indexed: 01/17/2023] Open
Abstract
PERIOD proteins are central components of the Drosophila and mammalian circadian clocks. The crystal structure of a Drosophila PERIOD (dPER) fragment comprising two PER-ARNT-SIM (PAS) domains (PAS-A and PAS-B) and two additional C-terminal α-helices (αE and αF) has revealed a homodimer mediated by intermolecular interactions of PAS-A with tryptophane 482 in PAS-B and helix αF. Here we present the crystal structure of a monomeric PAS domain fragment of dPER lacking the αF helix. Moreover, we have solved the crystal structure of a PAS domain fragment of the mouse PERIOD homologue mPER2. The mPER2 structure shows a different dimer interface than dPER, which is stabilized by interactions of the PAS-B β-sheet surface including tryptophane 419 (equivalent to Trp482dPER). We have validated and quantitatively analysed the homodimer interactions of dPER and mPER2 by site-directed mutagenesis using analytical gel filtration, analytical ultracentrifugation, and co-immunoprecipitation experiments. Furthermore we show, by yeast-two-hybrid experiments, that the PAS-B β-sheet surface of dPER mediates interactions with TIMELESS (dTIM). Our study reveals quantitative and qualitative differences between the homodimeric PAS domain interactions of dPER and its mammalian homologue mPER2. In addition, we identify the PAS-B β-sheet surface as a versatile interaction site mediating mPER2 homodimerization in the mammalian system and dPER-dTIM heterodimer formation in the Drosophila system. Most organisms have daily activity cycles (circadian rhythms), which are generated by circadian clocks. Circadian periodicity is produced by specific clock protein interactions and posttranslational modifications as well as changes in their cellular localization, expression, and stability. To learn more about the molecular processes underlying circadian clock operation in fruit flies and mouse, we analysed the homo- and heterodimeric interactions of the clock proteins Drosophila PERIOD (dPER) and mouse PERIOD2 (mPER2). We show that dPER and mPER2 use different interaction surfaces for homodimer formation, which are associated with different dimerization affinities. In addition, we present a structure-based biochemical analysis of the heterodimeric interaction of dPER with its partner Drosophila TIMELESS (dTIM). We identify a versatile molecular surface of the PERIOD proteins, which mediates homodimer formation of mPER2 but is used for dPER-dTIM heterodimer formation in Drosophila. Our results reveal quantitative and qualitative differences in the molecular interactions of PERIOD clock proteins in flies and mammals, allowing them to adjust to their different binding partners and regulatory functions in these different organisms. Crystal structures and structure-based biochemical studies ofDrosophila PERIOD and mouse PERIOD2 circadian clock proteins reveal different homodimer interactions and identify a versatile molecular surface that mediates homodimerization of mouse PERIOD2 but is involved in heterodimeric interactions ofDrosophila PERIOD with TIMELESS.
Collapse
Affiliation(s)
- Sven Hennig
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Holger M Strauss
- Max Planck Institute for Colloids and Interfaces, Potsdam, Germany
| | - Katja Vanselow
- Laboratory of Chronobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Özkan Yildiz
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Sabrina Schulze
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Julia Arens
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Wolf
- Max Planck Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Qing G, Simon MC. Hypoxia inducible factor-2alpha: a critical mediator of aggressive tumor phenotypes. Curr Opin Genet Dev 2009; 19:60-6. [PMID: 19167211 PMCID: PMC3146034 DOI: 10.1016/j.gde.2008.12.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 01/10/2023]
Abstract
Intra-tumoral hypoxia (low oxygen [O(2)] level) is an independent indicator of unfavorable patient diagnosis, and increasing evidence demonstrates that hypoxia contributes to a more aggressive tumor phenotype. Adaptation to hypoxia is predominantly regulated by two structurally related hypoxia inducible factors, HIF-1alpha and HIF-2alpha, which activate the expression of genes involved in proliferation, metabolism, angiogenesis, and metastasis. While highly homologous, HIF-1alpha and HIF-2alpha have been shown to have different roles in tumorigenesis dependent on specific tumor microenvironments. Here we summarize recent studies on HIF-2alpha and discuss the potential mechanisms whereby it contributes to tumor aggressiveness.
Collapse
Affiliation(s)
- Guoliang Qing
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - M. Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, 421 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|