1
|
Abstract
Over the past decade, harnessing the cellular protein synthesis machinery to incorporate non-canonical amino acids (ncAAs) into tailor-made peptides has significantly advanced many aspects of molecular science. More recently, groundbreaking progress in our ability to engineer this machinery for improved ncAA incorporation has led to significant enhancements of this powerful tool for biology and chemistry. By revealing the molecular basis for the poor or improved incorporation of ncAAs, mechanistic studies of ncAA incorporation by the protein synthesis machinery have tremendous potential for informing and directing such engineering efforts. In this chapter, we describe a set of complementary biochemical and single-molecule fluorescence assays that we have adapted for mechanistic studies of ncAA incorporation. Collectively, these assays provide data that can guide engineering of the protein synthesis machinery to expand the range of ncAAs that can be incorporated into peptides and increase the efficiency with which they can be incorporated, thereby enabling the full potential of ncAA mutagenesis technology to be realized.
Collapse
|
2
|
Wiryaman T, Toor N. SHAPE Profiling to Probe Group II Intron Conformational Dynamics During Splicing. Methods Mol Biol 2021; 2167:171-182. [PMID: 32712920 DOI: 10.1007/978-1-0716-0716-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) is a widely used technique for studying the structure and function of RNA molecules. It characterizes the flexibility of single nucleotides in the context of the local RNA structure. Here we describe the application of SHAPE-MaP (mutational profiling) to study different conformational states of the group II intron during the self-splicing reaction.
Collapse
Affiliation(s)
- Timothy Wiryaman
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Navtej Toor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Smith BA, Gupta N, Denny K, Culver GM. Characterization of 16S rRNA Processing with Pre-30S Subunit Assembly Intermediates from E. coli. J Mol Biol 2018; 430:1745-1759. [PMID: 29660326 DOI: 10.1016/j.jmb.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/02/2023]
Abstract
Ribosomal RNA (rRNA) is a major component of ribosomes and is fundamental to the process of translation. In bacteria, 16S rRNA is a component of the small ribosomal subunit and plays a critical role in mRNA decoding. rRNA maturation entails the removal of intervening spacer sequences contained within the pre-rRNA transcript by nucleolytic enzymes. Enzymatic activities involved in maturation of the 5'-end of 16S rRNA have been identified, but those involved in 3'-end maturation of 16S rRNA are more enigmatic. Here, we investigate molecular details of 16S rRNA maturation using purified in vivo-formed small subunit (SSU) assembly intermediates (pre-SSUs) from wild-type Escherichia coli that contain precursor 16S rRNA (17S rRNA). Upon incubation of pre-SSUs with E. coli S100 cell extracts or purified enzymes implicated in 16S rRNA processing, the 17S rRNA is processed into additional intermediates and mature 16S rRNA. These results illustrate that exonucleases RNase R, RNase II, PNPase, and RNase PH can process the 3'-end of pre-SSUs in vitro. However, the endonuclease YbeY did not exhibit nucleolytic activity with pre-SSUs under these conditions. Furthermore, these data demonstrate that multiple pathways facilitate 16S rRNA maturation with pre-SSUs in vitro, with the dominant pathways entailing complete processing of the 5'-end of 17S rRNA prior to 3'-end maturation or partial processing of the 5'-end with concomitant processing of the 3'-end. These results reveal the multifaceted nature of SSU biogenesis and suggest that E. coli may be able to escape inactivation of any one enzyme by using an existing complementary pathway.
Collapse
Affiliation(s)
- Brian A Smith
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Neha Gupta
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Denny
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Chemistry and Biochemistry Department, Nazareth College, Pittsford, NY 14618, USA
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA; Center for RNA Biology: from Genome to Therapeutics, University of Rochester Medical Center, Rochester, NY 14627, USA.
| |
Collapse
|
4
|
Mlýnský V, Bussi G. Understanding in-line probing experiments by modeling cleavage of nonreactive RNA nucleotides. RNA (NEW YORK, N.Y.) 2017; 23:712-720. [PMID: 28202709 PMCID: PMC5393180 DOI: 10.1261/rna.060442.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/03/2017] [Indexed: 05/25/2023]
Abstract
Ribonucleic acid (RNA) is involved in many regulatory and catalytic processes in the cell. The function of any RNA molecule is intimately related with its structure. In-line probing experiments provide valuable structural data sets for a variety of RNAs and are used to characterize conformational changes in riboswitches. However, the structural determinants that lead to differential reactivities in unpaired nucleotides have not been investigated yet. In this work, we used a combination of theoretical approaches, i.e., classical molecular dynamics simulations, multiscale quantum mechanical/molecular mechanical calculations, and enhanced sampling techniques in order to compute and interpret the differential reactivity of individual residues in several RNA motifs, including members of the most important GNRA and UNCG tetraloop families. Simulations on the multinanosecond timescale are required to converge the related free-energy landscapes. The results for uGAAAg and cUUCGg tetraloops and double helices are compared with available data from in-line probing experiments and show that the introduced technique is able to distinguish between nucleotides of the uGAAAg tetraloop based on their structural predispositions toward phosphodiester backbone cleavage. For the cUUCGg tetraloop, more advanced ab initio calculations would be required. This study is the first attempt to computationally classify chemical probing experiments and paves the way for an identification of tertiary structures based on the measured reactivity of nonreactive nucleotides.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| |
Collapse
|
5
|
Abstract
Secondary structure diagrams are essential, in RNA biology, to communicate functional hypotheses and summarize structural data, and communicate them visually as drafts or finalized publication-ready figures. While many tools are currently available to automate the production of such diagrams, their capacities are usually partial, making it hard for a user to decide which to use in a given context. In this chapter, we guide the reader through the steps involved in the production of expressive publication-quality illustrations featuring the RNA secondary structure. We present major existing representations and layouts, and give precise instructions to produce them using available free software, including jViz.RNA, the PseudoViewer, RILogo, R-chie, RNAplot, R2R, and VARNA. We describe the file formats and structural descriptions accepted by popular RNA visualization tools. We also provide command lines and Python scripts to ease the user's access to advanced features. Finally, we discuss and illustrate alternative approaches to visualize the secondary structure in the presence of probing data, pseudoknots, RNA-RNA interactions, and comparative data.
Collapse
|
6
|
Gupta N, Culver GM. Multiple in vivo pathways for Escherichia coli small ribosomal subunit assembly occur on one pre-rRNA. Nat Struct Mol Biol 2014; 21:937-43. [PMID: 25195050 PMCID: PMC4355579 DOI: 10.1038/nsmb.2887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/07/2014] [Indexed: 01/01/2023]
Abstract
Processing of transcribed precursor ribosomal RNA (pre-rRNA) to a mature state is a conserved aspect of ribosome biogenesis in vivo. We developed an affinity-purification system to isolate and analyze in vivo-formed pre-rRNA-containing ribonucleoprotein (RNP) particles (rRNPs) from wild-type E. coli. We observed that the first processing intermediate of pre-small subunit (pre-SSU) rRNA is a platform for biogenesis. These pre-SSU-containing RNPs have differing ribosomal-protein and auxiliary factor association and rRNA folding. Each RNP lacks the proper architecture in functional regions, thus suggesting that checkpoints preclude immature subunits from entering the translational cycle. This work offers in vivo snapshots of SSU biogenesis and reveals that multiple pathways exist for the entire SSU biogenesis process in wild-type E. coli. These findings have implications for understanding SSU biogenesis in vivo and offer a general strategy for analysis of RNP biogenesis.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Gloria M Culver
- 1] Department of Biology, University of Rochester, Rochester, New York, USA. [2] Center for RNA Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
7
|
Kossinova O, Malygin A, Krol A, Karpova G. The SBP2 protein central to selenoprotein synthesis contacts the human ribosome at expansion segment 7L of the 28S rRNA. RNA (NEW YORK, N.Y.) 2014; 20:1046-1056. [PMID: 24850884 PMCID: PMC4114684 DOI: 10.1261/rna.044917.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/27/2014] [Indexed: 05/31/2023]
Abstract
SBP2 is a pivotal protein component in selenoprotein synthesis. It binds the SECIS stem-loop in the 3' UTR of selenoprotein mRNA and interacts with both the specialized translation elongation factor and the ribosome at the 60S subunit. In this work, our goal was to identify the binding partners of SBP2 on the ribosome. Cross-linking experiments with bifunctional reagents demonstrated that the SBP2-binding site on the human ribosome is mainly formed by the 28S rRNA. Direct hydroxyl radical probing of the entire 28S rRNA revealed that SBP2 bound to 80S ribosomes or 60S subunits protects helix ES7L-E in expansion segment 7 of the 28S rRNA. Diepoxybutane cross-linking confirmed the interaction of SBP2 with helix ES7L-E. Additionally, binding of SBP2 to the ribosome led to increased reactivity toward chemical probes of a few bases in ES7L-E and in the universally conserved helix H89, indicative of conformational changes in the 28S rRNA in response to SBP2 binding. This study revealed for the first time that SBP2 makes direct contacts with a discrete region of the human 28S rRNA.
Collapse
Affiliation(s)
- Olga Kossinova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Alexey Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alain Krol
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Galina Karpova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
A trans-spliced telomerase RNA dictates telomere synthesis in Trypanosoma brucei. Cell Res 2013; 23:537-51. [PMID: 23478302 DOI: 10.1038/cr.2013.35] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme typically required for sustained cell proliferation. Although both telomerase activity and the telomerase catalytic protein component, TbTERT, have been identified in the eukaryotic pathogen Trypanosoma brucei, the RNA molecule that dictates telomere synthesis remains unknown. Here, we identify the RNA component of Trypanosoma brucei telomerase, TbTR, and provide phylogenetic and in vivo evidence for TbTR's native folding and activity. We show that TbTR is processed through trans-splicing, and is a capped transcript that interacts and copurifies with TbTERT in vivo. Deletion of TbTR caused progressive shortening of telomeres at a rate of 3-5 bp/population doubling (PD), which can be rescued by ectopic expression of a wild-type allele of TbTR in an apparent dose-dependent manner. Remarkably, introduction of mutations in the TbTR template domain resulted in corresponding mutant telomere sequences, demonstrating that telomere synthesis in T. brucei is dependent on TbTR. We also propose a secondary structure model for TbTR based on phylogenetic analysis and chemical probing experiments, thus defining TbTR domains that may have important functional implications in telomere synthesis. Identification and characterization of TbTR not only provide important insights into T. brucei telomere functions, which have been shown to play important roles in T. brucei pathogenesis, but also offer T. brucei as an attractive model system for studying telomerase biology in pathogenic protozoa and for comparative analysis of telomerase function with higher eukaryotes.
Collapse
|
9
|
Gamalinda M, Jakovljevic J, Babiano R, Talkish J, de la Cruz J, Woolford JL. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing. Nucleic Acids Res 2012; 41:1965-83. [PMID: 23268442 PMCID: PMC3561946 DOI: 10.1093/nar/gks1272] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.
Collapse
Affiliation(s)
- Michael Gamalinda
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
10
|
Saccharomyces cerevisiae ribosomal protein L26 is not essential for ribosome assembly and function. Mol Cell Biol 2012; 32:3228-41. [PMID: 22688513 DOI: 10.1128/mcb.00539-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ribosomal proteins play important roles in ribosome biogenesis and function. Here, we study the evolutionarily conserved L26 in Saccharomyces cerevisiae, which assembles into pre-60S ribosomal particles in the nucle(ol)us. Yeast L26 is one of the many ribosomal proteins encoded by two functional genes. We have disrupted both genes; surprisingly, the growth of the resulting rpl26 null mutant is apparently identical to that of the isogenic wild-type strain. The absence of L26 minimally alters 60S ribosomal subunit biogenesis. Polysome analysis revealed the appearance of half-mers. Analysis of pre-rRNA processing indicated that L26 is mainly required to optimize 27S pre-rRNA maturation, without which the release of pre-60S particles from the nucle(ol)us is partially impaired. Ribosomes lacking L26 exhibit differential reactivity to dimethylsulfate in domain I of 25S/5.8S rRNAs but apparently are able to support translation in vivo with wild-type accuracy. The bacterial homologue of yeast L26, L24, is a primary rRNA binding protein required for 50S ribosomal subunit assembly in vitro and in vivo. Our results underscore potential differences between prokaryotic and eukaryotic ribosome assembly. We discuss the reasons why yeast L26 plays such an apparently nonessential role in the cell.
Collapse
|
11
|
Fourmy D, Yoshizawa S. Protein-RNA footprinting: an evolving tool. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:557-66. [PMID: 22566372 DOI: 10.1002/wrna.1119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As more RNA molecules with important cellular functions are discovered, there is a strong need to characterize their structures, functions, and interactions. Chemical and enzymatic footprinting methods are used to map RNA secondary and tertiary structure, to monitor ligand interactions and conformational changes, and in the study of protein-RNA interactions. These methods provide data at single-nucleotide resolution that nicely complements the structural information available from X-ray diffraction, nuclear magnetic resonance spectroscopy (NMR), or cryo-electron microscopy. Footprinting methods also complement the dynamic information derived from single-molecule Förster resonance energy transfer. RNA footprinting tools have been used for decades, but we have recently seen spectacular advances, for instance, the use in combination with massive parallel sequencing techniques. Large libraries of RNA molecules (small or large in size) can now be probed in high-throughput manner when RNA footprinting methods are combined with fluorescent probe technologies and automation. In this article, after a brief historical overview, we summarize recent advances in RNA-protein footprinting methodologies that now integrate tools for massive parallel analysis.
Collapse
Affiliation(s)
- Dominique Fourmy
- Centre de Génétique Moléculaire UPR 3404, CNRS, Université Paris-Sud, Gif-sur-Yvette, France.
| | | |
Collapse
|
12
|
Xu Z, Culver GM. Differential assembly of 16S rRNA domains during 30S subunit formation. RNA (NEW YORK, N.Y.) 2010; 16:1990-2001. [PMID: 20736336 PMCID: PMC2941107 DOI: 10.1261/rna.2246710] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 07/14/2010] [Indexed: 05/29/2023]
Abstract
Rapid and accurate assembly of the ribosomal subunits, which are responsible for protein synthesis, is required to sustain cell growth. Our best understanding of the interaction of 30S ribosomal subunit components (16S ribosomal RNA [rRNA] and 20 ribosomal proteins [r-proteins]) comes from in vitro work using Escherichia coli ribosomal components. However, detailed information regarding the essential elements involved in the assembly of 30S subunits still remains elusive. Here, we defined a set of rRNA nucleotides that are critical for the assembly of the small ribosomal subunit in E. coli. Using an RNA modification interference approach, we identified 54 nucleotides in 16S rRNA whose modification prevents the formation of a functional small ribosomal subunit. The majority of these nucleotides are located in the head and interdomain junction of the 30S subunit, suggesting that these regions are critical for small subunit assembly. In vivo analysis of specific identified sites, using engineered mutations in 16S rRNA, revealed defective protein synthesis capability, aberrant polysome profiles, and abnormal 16S rRNA processing, indicating the importance of these residues in vivo. These studies reveal that specific segments of 16S rRNA are more critical for small subunit assembly than others, and suggest a hierarchy of importance.
Collapse
MESH Headings
- Base Sequence
- DNA Primers/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Models, Molecular
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
Collapse
Affiliation(s)
- Zhili Xu
- Department of Biology, University of Rochester, Rochester, New York 14624, USA
| | | |
Collapse
|