1
|
Barbero-Úriz Ó, Valenti M, Molina M, Fernández-Acero T, Cid VJ. Modeling Necroptotic and Pyroptotic Signaling in Saccharomyces cerevisiae. Biomolecules 2025; 15:530. [PMID: 40305268 PMCID: PMC12025182 DOI: 10.3390/biom15040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
The yeast Saccharomyces cerevisiae is the paradigm of a eukaryotic model organism. In virtue of a substantial degree of functional conservation, it has been extensively exploited to understand multiple aspects of the genetic, molecular, and cellular biology of human disease. Many aspects of cell signaling in cancer, aging, or metabolic diseases have been tackled in yeast. Here, we review the strategies undertaken throughout the years for the development of humanized yeast models to study regulated cell death (RCD) pathways in general, and specifically, those related to innate immunity and inflammation, with an emphasis on pyroptosis and necroptosis. Such pathways involve the assembly of distinct modular signaling complexes such as the inflammasome and the necrosome. Like other supramolecular organizing centers (SMOCs), such intricate molecular arrangements trigger the activity of enzymes, like caspases or protein kinases, culminating in the activation of lytic pore-forming final effectors, respectively, Gasdermin D (GSDMD) in pyroptosis and MLKL in necroptosis. Even though pathways related to those governing innate immunity and inflammation in mammals are missing in fungi, the heterologous expression of their components in the S. cerevisiae model provides a "cellular test tube" to readily study their properties and interactions, thus constituting a valuable tool for finding novel therapies.
Collapse
Affiliation(s)
| | | | | | | | - Víctor J. Cid
- Department of Microbiology and Parasitology, School of Pharmacy, Universidad Complutense de Madrid, Pza. de Ramón y Cajal s/n, 28040 Madrid, Spain; (Ó.B.-Ú.); (M.V.); (M.M.); (T.F.-A.)
| |
Collapse
|
2
|
Sharma S, Srivastava S, Dubey RN, Mishra P, Singh J. [SNG2], a prion form of Cut4/Apc1, confers non-Mendelian inheritance of heterochromatin silencing defect in fission yeast. Nucleic Acids Res 2024; 52:13792-13811. [PMID: 39565210 DOI: 10.1093/nar/gkae1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Prions represent epigenetic regulator proteins that can self-propagate their structure and confer their misfolded structure and function on normally folded proteins. Like the mammalian prion PrPSc, prions also occur in fungi. While a few prions, like Swi1, affect gene expression, none are shown to affect heterochromatin structure and function. In fission yeast and metazoans, histone methyltransferase Clr4/Suv39 causes H3-Lys9 methylation, which is bound by the chromodomain protein Swi6/HP1 to assemble heterochromatin. Earlier, we showed that sng2-1 mutation in the Cut4 subunit of anaphase-promoting complex abrogates heterochromatin structure due to defective binding and recruitment of Swi6. Here, we demonstrate that the Cut4p forms a non-canonical prion form, designated as [SNG2], which abrogates heterochromatin silencing. [SNG2] exhibits various prion-like properties, e.g. non-Mendelian inheritance, requirement of Hsp proteins for its propagation, de novo generation upon cut4 overexpression, reversible curing by guanidine, cytoplasmic inheritance and formation of infectious protein aggregates, which are dissolved upon overexpression of hsp genes. Interestingly, [SNG2] prion imparts an enhanced tolerance to stress conditions, supporting its role in promoting cell survival under environmental stress during evolution.
Collapse
Affiliation(s)
- Suman Sharma
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | | | | | - Poonam Mishra
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Jagmohan Singh
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| |
Collapse
|
3
|
Baer MH, Cascarina SM, Paul KR, Ross ED. Rational Tuning of the Concentration-independent Enrichment of Prion-like Domains in Stress Granules. J Mol Biol 2024; 436:168703. [PMID: 39004265 PMCID: PMC11486480 DOI: 10.1016/j.jmb.2024.168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Stress granules (SGs) are large ribonucleoprotein assemblies that form in response to acute stress in eukaryotes. SG formation is thought to be initiated by liquid-liquid phase separation (LLPS) of key proteins and RNA. These molecules serve as a scaffold for recruitment of client molecules. LLPS of scaffold proteins in vitro is highly concentration-dependent, yet biomolecular condensates in vivo contain hundreds of unique proteins, most of which are thought to be clients rather than scaffolds. Many proteins that localize to SGs contain low-complexity, prion-like domains (PrLDs) that have been implicated in LLPS and SG recruitment. The degree of enrichment of proteins in biomolecular condensates such as SGs can vary widely, but the underlying basis for these differences is not fully understood. Here, we develop a toolkit of model PrLDs to examine the factors that govern efficiency of PrLD recruitment to stress granules. Recruitment was highly sensitive to amino acid composition: enrichment in SGs could be tuned through subtle changes in hydrophobicity. By contrast, SG recruitment was largely insensitive to PrLD concentration at both a population level and single-cell level. These observations point to a model wherein PrLDs are enriched in SGs through either simple solvation effects or interactions that are effectively non-saturable even at high expression levels.
Collapse
Affiliation(s)
- Matthew H Baer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kacy R Paul
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
4
|
Carter Z, Creamer D, Kouvidi A, Grant CM. Sequestrase chaperones protect against oxidative stress-induced protein aggregation and [PSI+] prion formation. PLoS Genet 2024; 20:e1011194. [PMID: 38422160 DOI: 10.1371/journal.pgen.1011194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Misfolded proteins are usually refolded to their functional conformations or degraded by quality control mechanisms. When misfolded proteins evade quality control, they can be sequestered to specific sites within cells to prevent the potential dysfunction and toxicity that arises from protein aggregation. Btn2 and Hsp42 are compartment-specific sequestrases that play key roles in the assembly of these deposition sites. Their exact intracellular functions and substrates are not well defined, particularly since heat stress sensitivity is not observed in deletion mutants. We show here that Btn2 and Hsp42 are required for tolerance to oxidative stress conditions induced by exposure to hydrogen peroxide. Btn2 and Hsp42 act to sequester oxidized proteins into defined PQC sites following ROS exposure and their absence leads to an accumulation of protein aggregates. The toxicity of protein aggregate accumulation causes oxidant sensitivity in btn2 hsp42 sequestrase mutants since overexpression of the Hsp104 disaggregase rescues oxidant tolerance. We have identified the Sup35 translation termination factor as an in vivo sequestrase substrate and show that Btn2 and Hsp42 act to suppress oxidant-induced formation of the yeast [PSI+] prion, which is the amyloid form of Sup35. [PSI+] prion formation in sequestrase mutants does not require IPOD (insoluble protein deposit) localization which is the site where amyloids are thought to undergo fragmentation and seeding to propagate their heritable prion form. Instead, both amorphous and amyloid Sup35 aggregates are increased in btn2 hsp42 mutants consistent with the idea that prion formation occurs at multiple intracellular sites during oxidative stress conditions in the absence of sequestrase activity. Taken together, our data identify protein sequestration as a key antioxidant defence mechanism that functions to mitigate the damaging consequences of protein oxidation-induced aggregation.
Collapse
Affiliation(s)
- Zorana Carter
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Declan Creamer
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Aikaterini Kouvidi
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Chris M Grant
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| |
Collapse
|
5
|
Teixeira M, Sheta R, Idi W, Oueslati A. Optogenetic-mediated induction and monitoring of α-synuclein aggregation in cellular models of Parkinson's disease. STAR Protoc 2023; 4:102738. [PMID: 37991922 PMCID: PMC10700619 DOI: 10.1016/j.xpro.2023.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Studying Parkinson's disease (PD) is complex due to a lack of cellular models mimicking key aspects of protein pathology. Here, we present a protocol for inducing and monitoring α-synuclein aggregation in living cells using optogenetics. We describe steps for plasmid transduction, biochemical validation, immunocytochemistry, and live-cell confocal imaging. These induced aggregates fulfill the cardinal features of authentic protein inclusions observed in PD-diseased brains and offer a tool to study the role of protein aggregation in neurodegeneration. For complete details on the use and execution of this protocol, please refer to Bérard et al.1.
Collapse
Affiliation(s)
- Maxime Teixeira
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Walid Idi
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
6
|
Hall D. MIL-CELL: a tool for multi-scale simulation of yeast replication and prion transmission. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:673-704. [PMID: 37670150 PMCID: PMC10682183 DOI: 10.1007/s00249-023-01679-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
The single-celled baker's yeast, Saccharomyces cerevisiae, can sustain a number of amyloid-based prions, the three most prominent examples being [URE3], [PSI+], and [PIN+]. In the laboratory, haploid S. cerevisiae cells of a single mating type can acquire an amyloid prion in one of two ways (i) spontaneous nucleation of the prion within the yeast cell, and (ii) receipt via mother-to-daughter transmission during the cell division cycle. Similarly, prions can be lost due to (i) dissolution of the prion amyloid by its breakage into non-amyloid monomeric units, or (ii) preferential donation/retention of prions between the mother and daughter during cell division. Here we present a computational tool (Monitoring Induction and Loss of prions in Cells; MIL-CELL) for modelling these four general processes using a multiscale approach describing both spatial and kinetic aspects of the yeast life cycle and the amyloid-prion behavior. We describe the workings of the model, assumptions upon which it is based and some interesting simulation results pertaining to the wave-like spread of the epigenetic prion elements through the yeast population. MIL-CELL is provided as a stand-alone GUI executable program for free download with the paper. MIL-CELL is equipped with a relational database allowing all simulated properties to be searched, collated and graphed. Its ability to incorporate variation in heritable properties means MIL-CELL is also capable of simulating loss of the isogenic nature of a cell population over time. The capability to monitor both chronological and reproductive age also makes MIL-CELL potentially useful in studies of cell aging.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1164, Japan.
| |
Collapse
|
7
|
Shrimali PC, Chen S, Das A, Dreher R, Howard MK, Ryan JJ, Buck J, Kim D, Sprunger ML, Rudra JS, Jackrel ME. Amyloidogenic propensity of self-assembling peptides and their adjuvant potential for use as DNA vaccines. Acta Biomater 2023; 169:464-476. [PMID: 37586449 DOI: 10.1016/j.actbio.2023.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
De novo designed peptides that self-assemble into cross-β rich fibrillar biomaterials have been pursued as an innovative platform for the development of adjuvant- and inflammation-free vaccines. However, they share structural and morphological properties similar to amyloid species implicated in neurodegenerative diseases, which has been a long-standing concern for their successful translation. Here, we comprehensively characterize the amyloidogenic character of the amphipathic self-assembling cross-β peptide KFE8, compared to pathological amyloid and amyloid-like proteins α-synuclein (α-syn) and TDP-43. Further, we developed plasmid-based DNA vaccines with the KFE8 backbone serving as a scaffold for delivery of a GFP model antigen. We find that expression of tandem repeats of KFE8 is non-toxic and efficiently cleared by autophagy. We also demonstrate that preformed KFE8 fibrils do not cross-seed amyloid formation of α-syn in mammalian cells compared to α-syn preformed fibrils. In mice, vaccination with plasmids encoding the KFE32-GFP fusion protein elicited robust immune responses, inducing production of significantly higher levels of anti-GFP antibodies compared to soluble GFP. Antigen-specific CD8+T cells were also detected in the spleens of vaccinated mice and cytokine profiles from antigen recall assays indicate a balanced Th1/Th2 response. These findings illustrate that cross-β-rich peptide nanofibers have distinct physicochemical properties from those of pathological amyloidogenic proteins, and are an attractive platform for the development of DNA vaccines with self-adjuvanting properties and improved safety profiles. STATEMENT OF SIGNIFICANCE: Biomaterials comprised of self-assembling peptides hold great promise for the development of new vaccines that do not require use of adjuvants. However, these materials have safety concerns, as they self-assemble into cross-β rich fibrils that are structurally similar to amyloid species implicated in disease. Here, we comprehensively study the properties of these biomaterials. We demonstrate that they have distinct properties from pathological proteins. They are non-toxic and do not trigger amyloidogenesis. Vaccination of these materials in mice elicited a robust immune response. Most excitingly, our work suggests that this platform could be used to develop DNA-based vaccines, which have few storage requirements. Further, due to their genetic encoding, longer sequences can be generated and the vaccines will be amenable to modification.
Collapse
Affiliation(s)
- Paresh C Shrimali
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Sheng Chen
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Anirban Das
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Rachel Dreher
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Matthew K Howard
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jeremy J Ryan
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jeremy Buck
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Darren Kim
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Macy L Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jai S Rudra
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
8
|
Howard MK, Miller KR, Sohn BS, Ryan JJ, Xu A, Jackrel ME. Probing the drivers of Staphylococcus aureus biofilm protein amyloidogenesis and disrupting biofilms with engineered protein disaggregases. mBio 2023; 14:e0058723. [PMID: 37195208 PMCID: PMC10470818 DOI: 10.1128/mbio.00587-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/18/2023] Open
Abstract
Phenol-soluble modulins (PSMs) are the primary proteinaceous component of Staphylococcus aureus biofilms. Residence in the protective environment of biofilms allows bacteria to rapidly evolve and acquire antimicrobial resistance, which can lead to persistent infections such as those caused by methicillin-resistant S. aureus (MRSA). In their soluble form, PSMs hinder the immune response of the host and can increase the virulence potential of MRSA. PSMs also self-assemble into insoluble functional amyloids that contribute to the structural scaffold of biofilms. The specific roles of PSM peptides in biofilms remain poorly understood. Here, we report the development of a genetically tractable yeast model system for studying the properties of PSMα peptides. Expression of PSMα peptides in yeast drives the formation of toxic insoluble aggregates that adopt vesicle-like structures. Using this system, we probed the molecular drivers of PSMα aggregation to delineate key similarities and differences among the PSMs and identified a crucial residue that drives PSM features. Biofilms are a major public health threat; thus, biofilm disruption is a key goal. To solubilize aggregates comprised of a diverse range of amyloid and amyloid-like species, we have developed engineered variants of Hsp104, a hexameric AAA+ protein disaggregase from yeast. Here, we demonstrate that potentiated Hsp104 variants counter the toxicity and aggregation of PSMα peptides. Further, we demonstrate that a potentiated Hsp104 variant can drive the disassembly of preformed S. aureus biofilms. We suggest that this new yeast model can be a powerful platform for screening for agents that disrupt PSM aggregation and that Hsp104 disaggregases could be a promising tool for the safe enzymatic disruption of biofilms. IMPORTANCE Biofilms are complex mixtures secreted by bacteria that form a material in which the bacteria can become embedded. This process transforms the properties of the bacteria, and they become more resistant to removal, which can give rise to multidrug-resistant strains, such as methicillin-resistant Staphylococcus aureus (MRSA). Here, we study phenol-soluble modulins (PSMs), which are amyloidogenic proteins secreted by S. aureus, that become incorporated into biofilms. Biofilms are challenging to study, so we have developed a new genetically tractable yeast model to study the PSMs. We used our system to learn about several key features of the PSMs. We also demonstrate that variants of an amyloid disaggregase, Hsp104, can disrupt the PSMs and, more importantly, dissolve preformed S. aureus biofilms. We propose that our system can be a powerful screening tool and that Hsp104 disaggregases may be a new avenue to explore for biofilm disruption agents.
Collapse
Affiliation(s)
- Matthew K. Howard
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Karlie R. Miller
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Brian S. Sohn
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Jeremy J. Ryan
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Andy Xu
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
9
|
Schepers J, Carter Z, Kritsiligkou P, Grant CM. Methionine Sulfoxide Reductases Suppress the Formation of the [ PSI+] Prion and Protein Aggregation in Yeast. Antioxidants (Basel) 2023; 12:antiox12020401. [PMID: 36829961 PMCID: PMC9952077 DOI: 10.3390/antiox12020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Prions are self-propagating, misfolded forms of proteins associated with various neurodegenerative diseases in mammals and heritable traits in yeast. How prions form spontaneously into infectious amyloid-like structures without underlying genetic changes is poorly understood. Previous studies have suggested that methionine oxidation may underlie the switch from a soluble protein to the prion form. In this current study, we have examined the role of methionine sulfoxide reductases (MXRs) in protecting against de novo formation of the yeast [PSI+] prion, which is the amyloid form of the Sup35 translation termination factor. We show that [PSI+] formation is increased during normal and oxidative stress conditions in mutants lacking either one of the yeast MXRs (Mxr1, Mxr2), which protect against methionine oxidation by reducing the two epimers of methionine-S-sulfoxide. We have identified a methionine residue (Met124) in Sup35 that is important for prion formation, confirming that direct Sup35 oxidation causes [PSI+] prion formation. [PSI+] formation was less pronounced in mutants simultaneously lacking both MXR isoenzymes, and we show that the morphology and biophysical properties of protein aggregates are altered in this mutant. Taken together, our data indicate that methionine oxidation triggers spontaneous [PSI+] prion formation, which can be alleviated by methionine sulfoxide reductases.
Collapse
Affiliation(s)
- Jana Schepers
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | - Zorana Carter
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Paraskevi Kritsiligkou
- Division of Redox Regulation, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Chris M. Grant
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Correspondence:
| |
Collapse
|
10
|
Cobos SN, Janani C, Cruz G, Rana N, Son E, Frederic R, Paredes Casado J, Khan M, Bennett SA, Torrente MP. [PRION +] States Are Associated with Specific Histone H3 Post-Translational Modification Changes. Pathogens 2022; 11:pathogens11121436. [PMID: 36558770 PMCID: PMC9786042 DOI: 10.3390/pathogens11121436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Prions are proteins able to take on alternative conformations and propagate them in a self-templating process. In Saccharomyces cerevisiae, prions enable heritable responses to environmental conditions through bet-hedging mechanisms. Hence, [PRION+] states may serve as an atypical form of epigenetic control, producing heritable phenotypic change via protein folding. However, the connections between prion states and the epigenome remain unknown. Do [PRION+] states link to canonical epigenetic channels, such as histone post-translational modifications? Here, we map out the histone H3 modification landscape in the context of the [SWI+] and [PIN+] prion states. [SWI+] is propagated by Swi1, a subunit of the SWI/SNF chromatin remodeling complex, while [PIN+] is propagated by Rnq1, a protein of unknown function. We find [SWI+] yeast display decreases in the levels of H3K36me2 and H3K56ac compared to [swi-] yeast. In contrast, decreases in H3K4me3, H3K36me2, H3K36me3 and H3K79me3 are connected to the [PIN+] state. Curing of the prion state by treatment with guanidine hydrochloride restored histone PTM to [prion-] state levels. We find histone PTMs in the [PRION+] state do not match those in loss-of-function models. Our findings shed light into the link between prion states and histone modifications, revealing novel insight into prion function in yeast.
Collapse
Affiliation(s)
- Samantha N. Cobos
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
| | - Chaim Janani
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
| | - Gabriel Cruz
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
| | - Navin Rana
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
| | - Elizaveta Son
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
| | - Rania Frederic
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
| | | | - Maliha Khan
- Biology Department, Brooklyn College, Brooklyn, NY 11210, USA
| | - Seth A. Bennett
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
- Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Mariana P. Torrente
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
- Ph.D. Programs in Chemistry, Biochemistry, and Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
11
|
Chernyshev VS, Chuprov‐Netochin RN, Tsydenzhapova E, Svirshchevskaya EV, Poltavtseva RA, Merdalimova A, Yashchenok A, Keshelava A, Sorokin K, Keshelava V, Sukhikh GT, Gorin D, Leonov S, Skliar M. Asymmetric depth-filtration: A versatile and scalable method for high-yield isolation of extracellular vesicles with low contamination. J Extracell Vesicles 2022; 11:e12256. [PMID: 35942823 PMCID: PMC9451526 DOI: 10.1002/jev2.12256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
We developed a novel asymmetric depth filtration (DF) approach to isolate extracellular vesicles (EVs) from biological fluids that outperforms ultracentrifugation and size-exclusion chromatography in purity and yield of isolated EVs. By these metrics, a single-step DF matches or exceeds the performance of multistep protocols with dedicated purification procedures in the isolation of plasma EVs. We demonstrate the selective transit and capture of biological nanoparticles in asymmetric pores by size and elasticity, low surface binding to the filtration medium, and the ability to cleanse EVs held by the filter before their recovery with the reversed flow all contribute to the achieved purity and yield of preparations. We further demonstrate the method's versatility by applying it to isolate EVs from different biofluids (plasma, urine, and cell culture growth medium). The DF workflow is simple, fast, and inexpensive. Only standard laboratory equipment is required for its implementation, making DF suitable for low-resource and point-of-use locations. The method may be used for EV isolation from small biological samples in diagnostic and treatment guidance applications. It can also be scaled up to harvest therapeutic EVs from large volumes of cell culture medium.
Collapse
Affiliation(s)
- Vasiliy S. Chernyshev
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | - Roman N. Chuprov‐Netochin
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | - Ekaterina Tsydenzhapova
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | | | - Rimma A. Poltavtseva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. KulakovMinistry of Healthcare of the Russian FederationMoscowRussian Federation
| | | | - Alexey Yashchenok
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
| | | | | | - Varlam Keshelava
- Institute for Biological Instrumentation RASPushchinoRussian Federation
| | - Gennadiy T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. KulakovMinistry of Healthcare of the Russian FederationMoscowRussian Federation
| | - Dmitry Gorin
- Skolkovo Institute of Science and TechnologyMoscowRussian Federation
| | - Sergey Leonov
- School of Biological and Medical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyMoscow RegionRussian Federation
| | - Mikhail Skliar
- Department of Chemical EngineeringUniversity of UtahSalt Lake CityUTUSA
- The Nano Institute of UtahUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
12
|
Navalkar A, Paul A, Sakunthala A, Pandey S, Dey AK, Saha S, Sahoo S, Jolly MK, Maiti TK, Maji SK. Oncogenic gain of function due to p53 amyloids by aberrant alteration of cell cycle and proliferation. J Cell Sci 2022; 135:276165. [PMID: 35796018 DOI: 10.1242/jcs.259500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Transcription factor p53 has been shown to aggregate into cytoplasmic/nuclear inclusions, compromising its native tumor suppressive functions. Recently, p53 is shown to form amyloids, which play a role in conferring cancerous properties to cells leading to tumorigenesis. However, the exact pathways involved in p53 amyloid-mediated cellular transformations are unknown. Here, using an in cellulo model of full-length p53 amyloid formation, we demonstrate the mechanism of loss of p53 tumor-suppressive function with concomitant oncogenic gain-of functions. Global gene expression profiling of cells suggests that p53 amyloid formation dysregulates the genes associated with cell cycle, proliferation, apoptosis, senescence along with major signaling pathways. This is further supported by the proteome analysis, showing a significant alteration in levels of p53 target proteins and enhanced metabolism, which enables the survival of cells. Our data indicate that specifically targeting the key molecules in pathways affected by p53 amyloid formation such as cyclin-dependent kinase-1, leads to loss of oncogenic phenotype and induces apoptosis of cells. Overall, our work establishes the mechanism of the transformation of cells due to p53 amyloids leading to cancer pathogenesis.
Collapse
Affiliation(s)
- Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Arunima Sakunthala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Satyaprakash Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Amit Kumar Dey
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sandhini Saha
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bengaluru 560012, India
| | - Mohit K Jolly
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bengaluru 560012, India
| | - Tushar K Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
13
|
Sprunger ML, Lee K, Sohn BS, Jackrel ME. Molecular determinants and modifiers of Matrin-3 toxicity, condensate dynamics, and droplet morphology. iScience 2022; 25:103900. [PMID: 35252808 PMCID: PMC8889142 DOI: 10.1016/j.isci.2022.103900] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Matrin-3 (MATR3) is a DNA- and RNA-binding protein implicated in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and distal myopathy. Here, we report the development of a yeast model of MATR3 proteotoxicity and aggregation. MATR3 is toxic and forms dynamic shell-like nuclear condensates in yeast. Disease-associated mutations in MATR3 impair condensate dynamics and disrupt condensate morphology. MATR3 toxicity is largely driven by its RNA-recognitions motifs (RRMs). Further, deletion of one or both RRMs drives coalescence of these condensates. Aberrant phase separation of several different RBPs underpins ALS/FTD, and we have engineered Hsp104 variants to reverse this misfolding. Here, we demonstrate that these same variants also counter MATR3 toxicity. We suggest that these Hsp104 variants which rescue MATR3, TDP-43, and FUS toxicity might be employed against a range of ALS/FTD-associated proteins. We anticipate that our yeast model could be a useful platform to screen for modulators of MATR3 misfolding.
Collapse
Affiliation(s)
- Macy L. Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Ken Lee
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Brian S. Sohn
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
14
|
Chatterjee D, Jacob RS, Ray S, Navalkar A, Singh N, Sengupta S, Gadhe L, Kadu P, Datta D, Paul A, Arunima S, Mehra S, Pindi C, Kumar S, Singru P, Senapati S, Maji SK. Co-aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids. eLife 2022; 11:73835. [PMID: 35257659 PMCID: PMC8993219 DOI: 10.7554/elife.73835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Synergistic-aggregation and cross-seeding by two different proteins/peptides in the amyloid aggregation are well evident in various neurological disorders including Alzheimer’s disease. Here, we show co-storage of human Prolactin (PRL), which is associated with lactation in mammals, and neuropeptide galanin (GAL) as functional amyloids in secretory granules (SGs) of the female rat. Using a wide variety of biophysical studies, we show that irrespective of the difference in sequence and structure, both hormones facilitate their synergic aggregation to amyloid fibrils. Although each hormone possesses homotypic seeding ability, a unidirectional cross-seeding of GAL aggregation by PRL seeds and the inability of cross seeding by mixed fibrils suggest tight regulation of functional amyloid formation by these hormones for their efficient storage in SGs. Further, the faster release of functional hormones from mixed fibrils compared to the corresponding individual amyloid, suggests a novel mechanism of heterologous amyloid formation in functional amyloids of SGs in the pituitary. The formation of plaques of proteins called ‘amyloids’ in the brain is one of the hallmark characteristics of both Alzheimer’s and Parkinson’s disease, but amyloids can form in many tissues and organs, often disrupting normal activity. A lot of the research into amyloids has focused on their role in disease, but it turns out that amyloids can also appear in healthy tissues. For example, some protein hormones form amyloids that act as storage depots, helping cells to release the hormone when it is needed. Normally, amyloids are made mostly of a single type of protein or protein fragment associated with a particular disease like Alzheimer's. Often, this type of amyloid promotes plaque formation in other proteins, which aggravates other diseases (for example, the amyloids that form in Alzheimer’s can lead to Parkinson’s disease or type II diabetes getting worse).The plaques start growing from small amyloid fragments called seeds. In mixed amyloids – amyloids made of two types of proteins – seeds made of one protein can trigger the formation of amyloids of the other protein. This raises the question, is this true for hormones? The body often releases more than one hormone at a time from the same tissue; for example, the pituitary gland releases prolactin and galanin simultaneously. However, these hormones have completely different structures, so whether they can form a mixed amyloid is unclear. To answer this question, Chatterjee et al. first determined that, within the pituitary gland of female rats, prolactin and galanin could be found together in the same cells, forming mixed amyloids. To understand out how this happens, Chatterjee et al. tried seeding new amyloids using either prolactin or galanin. This revealed that only prolactin seeds were able to trigger the formation of galanin amyloids. Chatterjee et al. also found that the mixed amyloids could release the hormones faster than amyloids made from either protein alone. Together, these results suggest that the collaboration between these two proteins may help maintain hormone balance in the body. Problems with hormone storage and release lead to various human diseases, including prolactinoma. Understanding amyloid storage depots could reveal new ways to control hormone levels. Further research could also help to explain more about well-studied diseases linked to amyloids, like Alzheimer's.
Collapse
Affiliation(s)
- Debdeep Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Reeba S Jacob
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Soumik Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shinjinee Sengupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sakunthala Arunima
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Chinmai Pindi
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Santosh Kumar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Praful Singru
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Sanjib Senapati
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
15
|
Sirati N, Popova B, Molenaar MR, Verhoek IC, Braus GH, Kaloyanova DV, Helms JB. Dynamic and Reversible Aggregation of the Human CAP Superfamily Member GAPR-1 in Protein Inclusions in Saccharomyces cerevisiae. J Mol Biol 2021; 433:167162. [PMID: 34298062 DOI: 10.1016/j.jmb.2021.167162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022]
Abstract
Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid-liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members.
Collapse
Affiliation(s)
- Nafiseh Sirati
- Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Blagovesta Popova
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute for Microbiology and Genetics, Universität Göttingen, Göttingen, Germany
| | - Martijn R Molenaar
- Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Iris C Verhoek
- Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute for Microbiology and Genetics, Universität Göttingen, Göttingen, Germany
| | - Dora V Kaloyanova
- Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - J Bernd Helms
- Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
16
|
Tang S, Wang W, Zhang X. Direct visualization and profiling of protein misfolding and aggregation in live cells. Curr Opin Chem Biol 2021; 64:116-123. [PMID: 34246835 DOI: 10.1016/j.cbpa.2021.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 10/20/2022]
Abstract
Over the past few years, research tools have been developed to monitor the multistep protein aggregation process in live cells, a process that has been associated with a growing number of human diseases. Herein, we describe recent advances in methods that can either survey the distribution of aggregation at the level of the cellular proteome using mass spectroscopy or discern the multistep aggregation process of specific proteins of interest via fluorescence signals. Future development and application of such technologies are expected to provide insights on mechanisms, diagnosis, and treatment of diseases rooted in protein aggregation.
Collapse
Affiliation(s)
- Sicheng Tang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Wenting Wang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Xin Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, United States; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
17
|
Chen YR, Ziv I, Swaminathan K, Elias JE, Jarosz DF. Protein aggregation and the evolution of stress resistance in clinical yeast. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200127. [PMID: 33866806 DOI: 10.1098/rstb.2020.0127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation, particularly in its prion-like form, has long been thought to be detrimental. However, recent studies have identified multiple instances where protein aggregation is important for normal physiological functions. Combining mass spectrometry and cell biological approaches, we developed a strategy for the identification of protein aggregates in cell lysates. We used this approach to characterize prion-based traits in pathogenic strains of the yeast Saccharomyces cerevisiae isolated from immunocompromised human patients. The proteins that we found, including the metabolic enzyme Cdc19, the translation elongation factor Yef3 and the fibrillarin homologue Nop1, are known to assemble under certain physiological conditions. Yet, such assemblies have not been reported to be stable or heritable. Our data suggest that some proteins which aggregate in response to stress have the capacity to acquire diverse assembled states, certain ones of which can be propagated across generations in a form of protein-based epigenetics. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Yiwen R Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Kavya Swaminathan
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Peggion C, Massimino ML, Stella R, Bortolotto R, Agostini J, Maldi A, Sartori G, Tonello F, Bertoli A, Lopreiato R. Nucleolin Rescues TDP-43 Toxicity in Yeast and Human Cell Models. Front Cell Neurosci 2021; 15:625665. [PMID: 33912014 PMCID: PMC8072491 DOI: 10.3389/fncel.2021.625665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
TDP-43 is a nuclear protein involved in pivotal processes, extensively studied for its implication in neurodegenerative disorders. TDP-43 cytosolic inclusions are a common neuropathologic hallmark in amyotrophic lateral sclerosis (ALS) and related diseases, and it is now established that TDP-43 misfolding and aggregation play a key role in their etiopathology. TDP-43 neurotoxic mechanisms are not yet clarified, but the identification of proteins able to modulate TDP-43-mediated damage may be promising therapeutic targets for TDP-43 proteinopathies. Here we show by the use of refined yeast models that the nucleolar protein nucleolin (NCL) acts as a potent suppressor of TDP-43 toxicity, restoring cell viability. We provide evidence that NCL co-expression is able to alleviate TDP-43-induced damage also in human cells, further supporting its beneficial effects in a more consistent pathophysiological context. Presented data suggest that NCL could promote TDP-43 nuclear retention, reducing the formation of toxic cytosolic TDP-43 inclusions.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Roberto Stella
- Food Safety Division, Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Raissa Bortolotto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jessica Agostini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Arianna Maldi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Geppo Sartori
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR - Neuroscience Institute, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | | |
Collapse
|
19
|
Aladdin A, Yao Y, Yang C, Kahlert G, Ghani M, Király N, Boratkó A, Uray K, Dittmar G, Tar K. The Proteasome Activators Blm10/PA200 Enhance the Proteasomal Degradation of N-Terminal Huntingtin. Biomolecules 2020; 10:biom10111581. [PMID: 33233776 PMCID: PMC7699873 DOI: 10.3390/biom10111581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
The Blm10/PA200 family of proteasome activators modulates the peptidase activity of the core particle (20S CP). They participate in opening the 20S CP gate, thus facilitating the degradation of unstructured proteins such as tau and Dnm1 in a ubiquitin- and ATP-independent manner. Furthermore, PA200 also participates in the degradation of acetylated histones. In our study, we use a combination of yeast and human cell systems to investigate the role of Blm10/PA200 in the degradation of N-terminal Huntingtin fragments (N-Htt). We demonstrate that the human PA200 binds to N-Htt. The loss of Blm10 in yeast or PA200 in human cells results in increased mutant N-Htt aggregate formation and elevated cellular toxicity. Furthermore, Blm10 in vitro accelerates the proteasomal degradation of soluble N-Htt. Collectively, our data suggest N-Htt as a new substrate for Blm10/PA200-proteasomes and point to new approaches in Huntington's disease (HD) research.
Collapse
Affiliation(s)
- Azzam Aladdin
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Yanhua Yao
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10460, USA;
- Correspondence: (Y.Y.); (G.D.); (K.T.); Tel.: +86-21-6384-6590 (Y.Y.); +352-26970-944 (G.D.); +36-52-412-345 (K.T.)
| | - Ciyu Yang
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10460, USA;
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Marvi Ghani
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Nikolett Király
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
| | - Gunnar Dittmar
- Proteomics of Cellular Signalling, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Department of Life Science and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Correspondence: (Y.Y.); (G.D.); (K.T.); Tel.: +86-21-6384-6590 (Y.Y.); +352-26970-944 (G.D.); +36-52-412-345 (K.T.)
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10460, USA;
- Correspondence: (Y.Y.); (G.D.); (K.T.); Tel.: +86-21-6384-6590 (Y.Y.); +352-26970-944 (G.D.); +36-52-412-345 (K.T.)
| |
Collapse
|
20
|
Nüske E, Marini G, Richter D, Leng W, Bogdanova A, Franzmann TM, Pigino G, Alberti S. Filament formation by the translation factor eIF2B regulates protein synthesis in starved cells. Biol Open 2020; 9:bio046391. [PMID: 32554487 PMCID: PMC7358136 DOI: 10.1242/bio.046391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Cells exposed to starvation have to adjust their metabolism to conserve energy and protect themselves. Protein synthesis is one of the major energy-consuming processes and as such has to be tightly controlled. Many mechanistic details about how starved cells regulate the process of protein synthesis are still unknown. Here, we report that the essential translation initiation factor eIF2B forms filaments in starved budding yeast cells. We demonstrate that filamentation is triggered by starvation-induced acidification of the cytosol, which is caused by an influx of protons from the extracellular environment. We show that filament assembly by eIF2B is necessary for rapid and efficient downregulation of translation. Importantly, this mechanism does not require the kinase Gcn2. Furthermore, analysis of site-specific variants suggests that eIF2B assembly results in enzymatically inactive filaments that promote stress survival and fast recovery of cells from starvation. We propose that translation regulation through filament assembly is an efficient mechanism that allows yeast cells to adapt to fluctuating environments.
Collapse
Affiliation(s)
- Elisabeth Nüske
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Guendalina Marini
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Doris Richter
- Department of Cellular Biochemistry Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Aliona Bogdanova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Titus M Franzmann
- Department of Cellular Biochemistry Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Department of Cellular Biochemistry Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| |
Collapse
|
21
|
Pullen MY, Weihl CC, True HL. Client processing is altered by novel myopathy-causing mutations in the HSP40 J domain. PLoS One 2020; 15:e0234207. [PMID: 32497100 PMCID: PMC7272046 DOI: 10.1371/journal.pone.0234207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022] Open
Abstract
The misfolding and aggregation of proteins is often implicated in the development and progression of degenerative diseases. Heat shock proteins (HSPs), such as the ubiquitously expressed Type II Hsp40 molecular chaperone, DNAJB6, assist in protein folding and disaggregation. Historically, mutations within the DNAJB6 G/F domain have been associated with Limb-Girdle Muscular Dystrophy type 1D, now referred to as LGMDD1, a dominantly inherited degenerative disease. Recently, novel mutations within the J domain of DNAJB6 have been reported in patients with LGMDD1. Since novel myopathy-causing mutations in the Hsp40 J domain have yet to be characterized and both the function of DNAJB6 in skeletal muscle and the clients of this chaperone are unknown, we set out to assess the effect of these mutations on chaperone function using the genetically tractable yeast system. The essential yeast Type II Hsp40, Sis1, is homologous to DNAJB6 and is involved in the propagation of yeast prions. Using phenotypic, biochemical, and functional assays we found that homologous mutations in the Sis1 J domain differentially alter the processing of specific yeast prion strains, as well as a non-prion substrate. These data suggest that the newly-identified mutations in the J domain of DNAJB6 cause aberrant chaperone function that leads to the pathogenesis in LGMDD1.
Collapse
Affiliation(s)
- Melanie Y. Pullen
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Conrad C. Weihl
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Heather L. True
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| |
Collapse
|
22
|
Morphology of Mitochondria in Syncytial Annelid Female Germ-Line Cyst Visualized by Serial Block-Face SEM. Int J Cell Biol 2020; 2020:7483467. [PMID: 32395131 PMCID: PMC7199535 DOI: 10.1155/2020/7483467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 11/23/2022] Open
Abstract
Mitochondria change their morphology and distribution depending on the metabolism and functional state of a cell. Here, we analyzed the mitochondria and selected structures in female germ-line cysts in a representative of clitellate annelids – the white worm Enchytraeus albidus in which each germ cell has one cytoplasmic bridge that connects it to a common cytoplasmic mass. Using serial block-face scanning electron microscopy (SBEM), we prepared three-dimensional ultrastructural reconstructions of the entire selected compartments of a cyst at the advanced stage of oogenesis, i.e. the nurse cell, cytophore, and cytoplasmic bridges of all 16 cells (15 nurse cells and oocyte). We revealed extensive mitochondrial networks in the nurse cells, cytophore and mitochondria that pass through the cytoplasmic bridges, which indicates that a mitochondrial network can extend throughout the entire cyst. The dynamic hyperfusion state was suggested for such mitochondrial aggregations. We measured the mitochondria distribution and revealed their polarized distribution in the nurse cells and more abundant accumulation within the cytophore compared to the nurse cell. A close association of mitochondrial networks with dispersed nuage material, which seems to be the structural equivalent of a Balbiani body, not described in clitellate annelids so far, was also revealed.
Collapse
|
23
|
Lam I, Hallacli E, Khurana V. Proteome-Scale Mapping of Perturbed Proteostasis in Living Cells. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034124. [PMID: 30910772 DOI: 10.1101/cshperspect.a034124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteinopathies are degenerative diseases in which specific proteins adopt deleterious conformations, leading to the dysfunction and demise of distinct cell types. They comprise some of the most significant diseases of aging-from Alzheimer's disease to Parkinson's disease to type 2 diabetes-for which not a single disease-modifying or preventative strategy exists. Here, we survey approaches in tractable cellular and organismal models that bring us toward a more complete understanding of the molecular consequences of protein misfolding. These include proteome-scale profiling of genetic modifiers, as well as transcriptional and proteome changes. We describe assays that can capture protein interactomes in situ and distinct protein conformational states. A picture of cellular drivers and responders to proteotoxicity emerges from this work, distinguishing general alterations of proteostasis from cellular events that are deeply tied to the intrinsic function of the misfolding protein. These distinctions have consequences for the understanding and treatment of proteinopathies.
Collapse
Affiliation(s)
- Isabel Lam
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Erinc Hallacli
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Vikram Khurana
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138.,New York Stem Cell Foundation - Robertson Investigator
| |
Collapse
|
24
|
Zhang Y, Zou J, Zhao X, Yuan Z, Yi Z. Hepatitis C virus NS5A inhibitor daclatasvir allosterically impairs NS4B-involved protein-protein interactions within the viral replicase and disrupts the replicase quaternary structure in a replicase assembly surrogate system. J Gen Virol 2018; 100:69-83. [PMID: 30516462 DOI: 10.1099/jgv.0.001180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Daclatasvir (DCV) is a highly potent direct-acting antiviral that targets the non-structural protein 5A (NS5A) of hepatitis C virus (HCV) and has been used with great clinical success. Previous studies have demonstrated its impact on viral replication complex assembly. However, the precise mechanisms by which DCV impairs the replication complex assembly remains elusive. In this study, by using HCV subgenomic replicons and a viral replicase assembly surrogate system in which the HCV NS3-5B polyprotein is expressed to mimic the viral replicase assembly, we assessed the impact of DCV on the aggregation and tertiary structure of NS5A, the protein-protein interactions within the viral replicase and the quaternary structure of the viral replicase. We found that DCV did not affect aggregation and tertiary structure of NS5A. DCV induced a quaternary structural change of the viral replicase, as evidenced by selective increase of NS4B's sensitivity to proteinase K digestion. Mechanically, DCV impaired the NS4B-involved protein-protein interactions within the viral replicase. These phenotypes were consistent with the phenotypes of several reported NS4B mutants that abolish the viral replicase assembly. The DCV-resistant mutant Y93H was refractory to the DCV-induced reduction of the NS4B-involved protein interactions and the quaternary structural change of the viral replicase. In addition, Y93H reduced NS4B-involved protein-protein interactions within the viral replicase and attenuated viral replication. We propose that DCV may induce a positional change of NS5A, which allosterically affects protein interactions within the replicase components and disrupts replicase assembly.
Collapse
Affiliation(s)
- Yang Zhang
- 1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Jingyi Zou
- 1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Xiaomin Zhao
- 1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhenghong Yuan
- 1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhigang Yi
- 2Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China.,1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| |
Collapse
|
25
|
Kama R, Gabriely G, Kanneganti V, Gerst JE. Cdc48 and ubiquilins confer selective anterograde protein sorting and entry into the multivesicular body in yeast. Mol Biol Cell 2018; 29:948-963. [PMID: 29444958 PMCID: PMC5896933 DOI: 10.1091/mbc.e17-11-0652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Cdc48/p97 and the ubiquilin family of UBA-UBL proteins are known for their role in the retrotranslocation of damaged proteins from the endoplasmic reticulum. We demonstrate that Cdc48 and the ubiquilin-like proteins in yeast also play a role in the anterograde trafficking of proteins, in this case the vacuolar protease, Cps1.
Collapse
Affiliation(s)
- Rachel Kama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Galina Gabriely
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vydehi Kanneganti
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jeffrey E. Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
26
|
Popova B, Kleinknecht A, Arendarski P, Mischke J, Wang D, Braus GH. Sumoylation Protects Against β-Synuclein Toxicity in Yeast. Front Mol Neurosci 2018; 11:94. [PMID: 29636661 PMCID: PMC5880895 DOI: 10.3389/fnmol.2018.00094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/09/2018] [Indexed: 02/05/2023] Open
Abstract
Aggregation of α-synuclein (αSyn) plays a central role in the pathogenesis of Parkinson’s disease (PD). The budding yeast Saccharomyces cerevisiae serves as reference cell to study the interplay between αSyn misfolding, cytotoxicity and post-translational modifications (PTMs). The synuclein family includes α, β and γ isoforms. β-synuclein (βSyn) and αSyn are found at presynaptic terminals and both proteins are presumably involved in disease pathogenesis. Similar to αSyn, expression of βSyn leads to growth deficiency and formation of intracellular aggregates in yeast. Co-expression of αSyn and βSyn exacerbates the cytotoxicity. This suggests an important role of βSyn homeostasis in PD pathology. We show here that the small ubiquitin-like modifier SUMO is an important determinant of protein stability and βSyn-induced toxicity in eukaryotic cells. Downregulation of sumoylation in a yeast strain, defective for the SUMO-encoding gene resulted in reduced yeast growth, whereas upregulation of sumoylation rescued growth of yeast cell expressing βSyn. This corroborates a protective role of the cellular sumoylation machinery against βSyn-induced toxicity. Upregulation of sumoylation significantly reduced βSyn aggregate formation. This is an indirect molecular process, which is not directly linked to βSyn sumoylation because amino acid substitutions in the lysine residues required for βSyn sumoylation decreased aggregation without changing yeast cellular toxicity. αSyn aggregates are more predominantly degraded by the autophagy/vacuole than by the 26S ubiquitin proteasome system. We demonstrate a vice versa situation for βSyn, which is mainly degraded in the 26S proteasome. Downregulation of sumoylation significantly compromised the clearance of βSyn by the 26S proteasome and increased protein stability. This effect is specific, because depletion of functional SUMO did neither affect βSyn aggregate formation nor its degradation by the autophagy/vacuolar pathway. Our data support that cellular βSyn toxicity and aggregation do not correlate in their cellular impact as for αSyn but rather represent two distinct independent molecular functions and molecular mechanisms. These insights into the relationship between βSyn-induced toxicity, aggregate formation and degradation demonstrate a significant distinction between the impact of αSyn compared to βSyn on eukaryotic cells.
Collapse
Affiliation(s)
- Blagovesta Popova
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute for Microbiology and Genetics, Universität Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Alexandra Kleinknecht
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute for Microbiology and Genetics, Universität Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Patricia Arendarski
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute for Microbiology and Genetics, Universität Göttingen, Göttingen, Germany
| | - Jasmin Mischke
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute for Microbiology and Genetics, Universität Göttingen, Göttingen, Germany
| | - Dan Wang
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute for Microbiology and Genetics, Universität Göttingen, Göttingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute for Microbiology and Genetics, Universität Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
27
|
Stress-dependent miR-980 regulation of Rbfox1/A2bp1 promotes ribonucleoprotein granule formation and cell survival. Nat Commun 2018; 9:312. [PMID: 29358748 PMCID: PMC5778076 DOI: 10.1038/s41467-017-02757-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Upon stress, profound post-transcriptional adjustments of gene expression occur in spatially restricted, subcellular, membraneless compartments, or ribonucleoprotein (RNP) granules, which are formed by liquid phase separation of RNA-binding proteins with low complexity sequence domains (LCDs). Here, we show that Rbfox1 is an LCD-containing protein that aggregates into liquid droplets and amyloid-like fibers and promiscuously joins different nuclear and cytoplasmic RNP granules. Using Drosophila oogenesis as an in vivo system for stress response, we demonstrate a mechanism by which Rbfox1 promotes cell survival. The stress-dependent miRNA miR-980 acts to buffer Rbfox1 levels, since it targets only those Rbfox1 transcripts that contain extended 3′UTRs. Reduced miR-980 expression during stress leads to increased Rbfox1 levels, widespread formation of various RNP granules, and increased cell viability. We show that human RBFOX proteins also contain multiple LCDs and form membraneless compartments, suggesting that the RNP granule-linked control of cellular adaptive responses may contribute to a wide range of RBFOX-associated pathologies in humans. Rbfox1, a pro-survival RNA-binding protein, is expressed in a complex manner and mediates diverse developmental processes. Here, the authors observe alternative splicing of Rbfox1 and stress-dependent regulation by miR-980 in Drosophila ovaries and Rbfox1 localisation in ribonucleoprotein granules in human cells.
Collapse
|
28
|
A reversible liquid drop aggregation controls glucose response in yeast. Curr Genet 2018; 64:785-788. [DOI: 10.1007/s00294-018-0805-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/05/2018] [Indexed: 12/18/2022]
|
29
|
Simpson-Lavy K, Xu T, Johnston M, Kupiec M. The Std1 Activator of the Snf1/AMPK Kinase Controls Glucose Response in Yeast by a Regulated Protein Aggregation. Mol Cell 2017; 68:1120-1133.e3. [PMID: 29249654 DOI: 10.1016/j.molcel.2017.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/10/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
The ability to respond to available nutrients is critical for all living cells. The AMP-activated protein kinase (SNF1 in yeast) is a central regulator of metabolism that is activated when energy is depleted. We found that SNF1 activity in the nucleus is regulated by controlled relocalization of the SNF1 activator Std1 into puncta. This process is regulated by glucose through the activity of the previously uncharacterized protein kinase Vhs1 and its substrate Sip5, a protein of hitherto unknown function. Phosphorylation of Sip5 prevents its association with Std1 and triggers Std1 accretion. Reversible Std1 puncta formation occurs under non-stressful, ambient conditions, creating non-amyloid inclusion bodies at the nuclear-vacuolar junction, and it utilizes cellular chaperones similarly to the aggregation of toxic or misfolded proteins such as those associated with Parkinson's, Alzheimer's, and CJD diseases. Our results reveal a controlled, non-pathological, physiological role of protein aggregation in the regulation of a major metabolic cellular pathway.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- Dept of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Tianchang Xu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mark Johnston
- Dept of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Martin Kupiec
- Dept of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
30
|
Loya TJ, O’Rourke TW, Reines D. The hnRNP-like Nab3 termination factor can employ heterologous prion-like domains in place of its own essential low complexity domain. PLoS One 2017; 12:e0186187. [PMID: 29023495 PMCID: PMC5638401 DOI: 10.1371/journal.pone.0186187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/27/2017] [Indexed: 12/04/2022] Open
Abstract
Many RNA-binding proteins possess domains with a biased amino acid content. A common property of these low complexity domains (LCDs) is that they assemble into an ordered amyloid form, juxtaposing RNA recognition motifs in a subcellular compartment in which RNA metabolism is focused. Yeast Nab3 is one such protein that contains RNA-binding domains and a low complexity, glutamine/proline-rich, prion-like domain that can self-assemble. Nab3 also contains a region of structural homology to human hnRNP-C that resembles a leucine zipper which can oligomerize. Here we show that the LCD and the human hnRNP-C homology domains of Nab3 were experimentally separable, as cells were viable with either segment, but not when both were missing. In exploiting the lethality of deleting these regions of Nab3, we were able to test if heterologous prion-like domains known to assemble into amyloid, could substitute for the native sequence. Those from the hnRNP-like protein Hrp1, the canonical prion Sup35, or the epsin-related protein Ent2, could rescue viability and enable the new Nab3 chimeric protein to support transcription termination. Other low complexity domains from RNA-binding, termination-related proteins or a yeast prion, could not. As well, an unbiased genetic selection revealed a new protein sequence that could rescue the loss of Nab3’s essential domain via multimerization. This new sequence and Sup35’s prion domain could also rescue the lethal loss of Hrp1’s prion-like domain when substituted for it. This suggests there are different cross-functional classes of amyloid-forming LCDs and that appending merely any assembly-competent LCD to Nab3 does not restore function or rescue viability. The analysis has revealed the functional complexity of LCDs and provides a means by which the differing classes of LCD can be dissected and understood.
Collapse
Affiliation(s)
- Travis J. Loya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Thomas W. O’Rourke
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Loss of p53 function is largely responsible for the occurrence of cancer in humans. Aggregation of mutant p53 has been found in multiple cancer cell types, suggesting a role of aggregation in loss of p53 function and cancer development. The p53 protein has recently been hypothesized to possess a prion-like conformation, although experimental evidence is lacking. Here, we report that human p53 can be inactivated upon exposure to preformed fibrils containing an aggregation-prone sequence-specific peptide, PILTIITL, derived from p53, and the inactive state was found to be stable for many generations. Importantly, we provide evidence of a prion-like transmission of these p53 aggregates. This study has significant implications for understanding cancer progression due to p53 malfunctioning without any loss-of-function mutation or occurrence of transcriptional inactivation. Our data might unlock new possibilities for understanding the disease and will lead to rational design of p53 aggregation inhibitors for the development of drugs against cancer.
Collapse
|
32
|
Yi Z, Yuan Z. Aggregation of a hepatitis C virus replicase module induced by ablation of p97/VCP. J Gen Virol 2017; 98:1667-1678. [PMID: 28691899 DOI: 10.1099/jgv.0.000828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hijacking host membranes to assemble a membrane-associated viral replicase is a hallmark of almost all positive-strand RNA viruses. However, how the virus co-opts host factors to facilitate this energy-unfavourable process is incompletely understood. In a previous study, using hepatitis C virus (HCV) as a model and employing affinity purification of the viral replicase, we identified a valosin-containing protein (p97/VCP), a member of the ATPases associated with diverse cellular activities (AAA+ ATPase family), as a viral replicase-associated host factor. It is required for viral replication, depending on its ATPase activity. In this study, we used VCP pharmacological inhibitors and short hairpin (sh) RNA-mediated knockdown to ablate VCP function and then dissected the roles of VCP in viral replicase assembly in an HCV subgenomic replicon system and a viral replicase assembly surrogate system. Ablation of VCP specifically resulted in the pronounced formation of an SDS-resistant aggregation of HCV NS5A and the reduction of hyperphosphorylation of NS5A. The NS5A dimerization domain was indispensable for aggregation and the NS5A disordered regions also contributed to a lesser extent. The reduction of the hyperphosphorylation of NS5A coincided with the aggregation of NS5A. We propose that HCV may co-opt VCP to disaggregate an aggregation-prone replicase module to facilitate its replicase assembly.
Collapse
Affiliation(s)
- Zhigang Yi
- Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhenghong Yuan
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai, PR China.,Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| |
Collapse
|
33
|
Cai X, Xu H, Chen ZJ. Prion-Like Polymerization in Immunity and Inflammation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023580. [PMID: 27881448 DOI: 10.1101/cshperspect.a023580] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The innate immune system relies on receptors that sense common signs of infection to trigger a robust host-defense response. Receptors such as RIG-I and NLRP3 activate downstream adaptors mitochondrial antiviral signaling (MAVS) and apoptosis-associated speck-like protein (ASC), respectively, to propagate immune and inflammatory signaling. Recent studies have indicated that both MAVS and ASC form functional prion-like polymers to propagate immune signaling. Here, we summarize the biochemical, genetic, and structural studies that characterize the prion-like behavior of MAVS and ASC in their respective signaling pathways. We then discuss prion-like polymerization as an evolutionarily conserved mechanism of signal transduction in innate immunity in light of the similarity between the NLRP3-ASC, the NLRP3-ASC pathway in mammals, and the NWD2-HET-s pathway in fungi. We conclude by outlining the unique advantages to signaling through functional prions and potential future directions in the field.
Collapse
Affiliation(s)
- Xin Cai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148
| | - Hui Xu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148
| |
Collapse
|
34
|
Sideri T, Yashiroda Y, Ellis DA, Rodríguez-López M, Yoshida M, Tuite MF, Bähler J. The copper transport-associated protein Ctr4 can form prion-like epigenetic determinants in Schizosaccharomyces pombe. MICROBIAL CELL 2017; 4:16-28. [PMID: 28191457 PMCID: PMC5302157 DOI: 10.15698/mic2017.01.552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prions are protein-based infectious entities associated with fatal brain diseases
in animals, but also modify a range of host-cell phenotypes in the budding
yeast, Saccharomyces cerevisiae. Many questions remain about
the evolution and biology of prions. Although several functionally distinct
prion-forming proteins exist in S. cerevisiae, [HET-s] of
Podospora anserina is the only other known fungal prion.
Here we investigated prion-like, protein-based epigenetic transmission in the
fission yeast Schizosaccharomyces pombe. We show that
S. pombe cells can support the formation and maintenance of
the prion form of the S. cerevisiae Sup35 translation factor
[PSI+], and that the formation and propagation
of these Sup35 aggregates is inhibited by guanidine hydrochloride, indicating
commonalities in prion propagation machineries in these evolutionary diverged
yeasts. A proteome-wide screen identified the Ctr4 copper transporter subunit as
a putative prion with a predicted prion-like domain. Overexpression of
the ctr4 gene resulted in large Ctr4 protein aggregates
that were both detergent and proteinase-K resistant. Cells carrying such
[CTR+] aggregates showed increased sensitivity
to oxidative stress, and this phenotype could be transmitted to aggregate-free
[ctr-] cells by transformation with
[CTR+] cell extracts. Moreover, this
[CTR+] phenotype was inherited in a
non-Mendelian manner following mating with naïve
[ctr-] cells, but intriguingly the
[CTR+] phenotype was not eliminated by
guanidine-hydrochloride treatment. Thus, Ctr4 exhibits multiple features
diagnostic of other fungal prions and is the first example of a prion in fission
yeast. These findings suggest that transmissible protein-based determinants of
traits may be more widespread among fungi.
Collapse
Affiliation(s)
- Theodora Sideri
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| | - Yoko Yashiroda
- Chemical Genetics Laboratory, RIKEN and Chemical Genomics Research Group, RIKEN CSRS, Saitama, Japan
| | - David A Ellis
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| | - María Rodríguez-López
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN and Chemical Genomics Research Group, RIKEN CSRS, Saitama, Japan
| | - Mick F Tuite
- Kent Fungal Group, University of Kent, School of Biosciences, Canterbury, Kent, U.K
| | - Jürg Bähler
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| |
Collapse
|
35
|
Boke E, Ruer M, Wühr M, Coughlin M, Lemaitre R, Gygi SP, Alberti S, Drechsel D, Hyman AA, Mitchison TJ. Amyloid-like Self-Assembly of a Cellular Compartment. Cell 2016; 166:637-650. [PMID: 27471966 DOI: 10.1016/j.cell.2016.06.051] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/06/2016] [Accepted: 06/29/2016] [Indexed: 01/08/2023]
Abstract
Most vertebrate oocytes contain a Balbiani body, a large, non-membrane-bound compartment packed with RNA, mitochondria, and other organelles. Little is known about this compartment, though it specifies germline identity in many non-mammalian vertebrates. We show Xvelo, a disordered protein with an N-terminal prion-like domain, is an abundant constituent of Xenopus Balbiani bodies. Disruption of the prion-like domain of Xvelo, or substitution with a prion-like domain from an unrelated protein, interferes with its incorporation into Balbiani bodies in vivo. Recombinant Xvelo forms amyloid-like networks in vitro. Amyloid-like assemblies of Xvelo recruit both RNA and mitochondria in binding assays. We propose that Xenopus Balbiani bodies form by amyloid-like assembly of Xvelo, accompanied by co-recruitment of mitochondria and RNA. Prion-like domains are found in germ plasm organizing proteins in other species, suggesting that Balbiani body formation by amyloid-like assembly could be a conserved mechanism that helps oocytes function as long-lived germ cells.
Collapse
Affiliation(s)
- Elvan Boke
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Martine Ruer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Martin Wühr
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Margaret Coughlin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Regis Lemaitre
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - David Drechsel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
36
|
Kataoka K, Mochizuki K. Heterochromatin aggregation during DNA elimination in Tetrahymena is facilitated by a prion-like protein. J Cell Sci 2016; 130:480-489. [PMID: 27909245 DOI: 10.1242/jcs.195503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022] Open
Abstract
Regulated aggregations of prion and prion-like proteins play physiological roles in various biological processes. However, their structural roles in the nucleus are poorly understood. Here, we show that the prion-like protein Jub6p is involved in the regulation of chromatin structure in the ciliated protozoan Tetrahymena thermophila Jub6p forms sodium dodecyl sulfate (SDS)-resistant aggregates when it is ectopically expressed in vegetative cells and binds to RNA in vitro Jub6p is a heterochromatin component and is important for the formation of heterochromatin bodies during the process of programmed DNA elimination. We suggest that RNA-protein aggregates formed by Jub6p are an essential architectural component for the assembly of heterochromatin bodies.
Collapse
Affiliation(s)
- Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr Bohr-Gasse 3, Vienna A-1030, Austria
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr Bohr-Gasse 3, Vienna A-1030, Austria .,Institute of Human Genetics (IGH), CNRS UPR1142, 141 rue de la Cardonille, Montpellier Cedex 5 34396, France
| |
Collapse
|
37
|
Chakrabortee S, Byers JS, Jones S, Garcia DM, Bhullar B, Chang A, She R, Lee L, Fremin B, Lindquist S, Jarosz DF. Intrinsically Disordered Proteins Drive Emergence and Inheritance of Biological Traits. Cell 2016; 167:369-381.e12. [PMID: 27693355 DOI: 10.1016/j.cell.2016.09.017] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/17/2016] [Accepted: 09/07/2016] [Indexed: 11/26/2022]
Abstract
Prions are a paradigm-shifting mechanism of inheritance in which phenotypes are encoded by self-templating protein conformations rather than nucleic acids. Here, we examine the breadth of protein-based inheritance across the yeast proteome by assessing the ability of nearly every open reading frame (ORF; ∼5,300 ORFs) to induce heritable traits. Transient overexpression of nearly 50 proteins created traits that remained heritable long after their expression returned to normal. These traits were beneficial, had prion-like patterns of inheritance, were common in wild yeasts, and could be transmitted to naive cells with protein alone. Most inducing proteins were not known prions and did not form amyloid. Instead, they are highly enriched in nucleic acid binding proteins with large intrinsically disordered domains that have been widely conserved across evolution. Thus, our data establish a common type of protein-based inheritance through which intrinsically disordered proteins can drive the emergence of new traits and adaptive opportunities.
Collapse
Affiliation(s)
| | - James S Byers
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Sandra Jones
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - David M Garcia
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Bhupinder Bhullar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Amelia Chang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Richard She
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Laura Lee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Brayon Fremin
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; HHMI and Department of Biology, MIT, Cambridge, MA 02139, USA.
| | - Daniel F Jarosz
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Characterization of aggregate load and pattern in living yeast cells by flow cytometry. Biotechniques 2016; 61:137-48. [PMID: 27625208 DOI: 10.2144/000114452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/07/2016] [Indexed: 11/23/2022] Open
Abstract
Protein aggregation is both a hallmark of and a driving force for a number of diseases. It is therefore important to identify the nature of these aggregates and the mechanism(s) by which the cell counteracts their detrimental properties. Currently, the study of aggregation in vivo is performed primarily using fluorescently tagged versions of proteins and analyzing the aggregates by fluorescence microscopy. While this strategy is considered the gold standard, it has several limitations, particularly with respect to its suitability for high-throughput screening (HTS). Here, using a GFP fusion of the well-characterized yeast prion amyloid protein [PSI+], we demonstrate that flow cytometry, which utilizes the same physical principles as fluorescence microscopy, can be used to determine the aggregate load and pattern in live and fixed yeast cells. Furthermore, our approach can easily be applied to high-throughput analyses such as screenings with a yeast deletion library.
Collapse
|
39
|
Sulatskaya AI, Kuznetsova IM, Belousov MV, Bondarev SA, Zhouravleva GA, Turoverov KK. Stoichiometry and Affinity of Thioflavin T Binding to Sup35p Amyloid Fibrils. PLoS One 2016; 11:e0156314. [PMID: 27228180 PMCID: PMC4882037 DOI: 10.1371/journal.pone.0156314] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/12/2016] [Indexed: 11/25/2022] Open
Abstract
In this work two modes of binding of the fluorescent probe thioflavin T to yeast prion protein Sup35p amyloid fibrils were revealed by absorption spectrometry of solutions prepared by equilibrium microdialysis. These binding modes exhibited significant differences in binding affinity and stoichiometry. Moreover, the absorption spectrum and the molar extinction coefficient of the dye bound in each mode were determined. The fluorescence quantum yield of the dye bound in each mode was determined via a spectrofluorimetric study of the same solutions in which the recorded fluorescence intensity was corrected for the primary inner filter effect. As previously predicted, the existence of one of the detected binding modes may be due to the incorporation of the dye into the grooves along the fiber axis perpendicular to the β-sheets of the fibrils. It was assumed that the second type of binding with higher affinity may be due to the existence of ThT binding sites that are localized to areas where amyloid fibrils are clustered.
Collapse
Affiliation(s)
- Anna I. Sulatskaya
- Laboratory for Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Tikhoretsky Ave. 4, 194064, Russia
| | - Irina M. Kuznetsova
- Laboratory for Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Tikhoretsky Ave. 4, 194064, Russia
| | - Mikhail V. Belousov
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7–9, 199034, Russia
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7–9, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7–9, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Konstantin K. Turoverov
- Laboratory for Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Tikhoretsky Ave. 4, 194064, Russia
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.-Petersburg Polytechnic University, St. Petersburg, Polytechnicheskaya 29, 195251, Russia
- * E-mail:
| |
Collapse
|
40
|
Wang B, Lou Z, Zhang H, Xu B. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level. J Chem Phys 2016; 144:114701. [DOI: 10.1063/1.4943878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Bin Wang
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science, and Engineering Center, University of Georgia, Athens, Georgia 30605, USA
| | - Zhichao Lou
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science, and Engineering Center, University of Georgia, Athens, Georgia 30605, USA
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
| | - Haiqian Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science, and Engineering Center, University of Georgia, Athens, Georgia 30605, USA
| |
Collapse
|
41
|
Sugar and Glycerol Transport in Saccharomyces cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:125-168. [PMID: 26721273 DOI: 10.1007/978-3-319-25304-6_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.
Collapse
|
42
|
Speldewinde SH, Doronina VA, Grant CM. Autophagy protects against de novo formation of the [PSI+] prion in yeast. Mol Biol Cell 2015; 26:4541-51. [PMID: 26490118 PMCID: PMC4678013 DOI: 10.1091/mbc.e15-08-0548] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/14/2015] [Indexed: 11/11/2022] Open
Abstract
The molecular basis by which prions arise spontaneously is poorly understood. The present data point toward oxidative protein damage as one of the triggers of de novo prion formation. Autophagy functions to clear oxidatively damaged proteins before their conversion to the prion form. Prions are self-propagating, infectious proteins that underlie several neurodegenerative diseases. The molecular basis underlying their sporadic formation is poorly understood. We show that autophagy protects against de novo formation of [PSI+], which is the prion form of the yeast Sup35 translation termination factor. Autophagy is a cellular degradation system, and preventing autophagy by mutating its core components elevates the frequency of spontaneous [PSI+] formation. Conversely, increasing autophagic flux by treating cells with the polyamine spermidine suppresses prion formation in mutants that normally show a high frequency of de novo prion formation. Autophagy also protects against the de novo formation of another prion, namely the Rnq1/[PIN+] prion, which is not related in sequence to the Sup35/[PSI+] prion. We show that growth under anaerobic conditions in the absence of molecular oxygen abrogates Sup35 protein damage and suppresses the high frequency of [PSI+] formation in an autophagy mutant. Autophagy therefore normally functions to remove oxidatively damaged Sup35, which accumulates in cells grown under aerobic conditions, but in the absence of autophagy, damaged/misfolded Sup35 undergoes structural transitions favoring its conversion to the propagatable [PSI+] form.
Collapse
Affiliation(s)
- Shaun H Speldewinde
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Victoria A Doronina
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Chris M Grant
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
43
|
Piña FJ, Niwa M. The ER Stress Surveillance (ERSU) pathway regulates daughter cell ER protein aggregate inheritance. eLife 2015; 4. [PMID: 26327697 PMCID: PMC4555637 DOI: 10.7554/elife.06970] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/04/2015] [Indexed: 12/11/2022] Open
Abstract
Stress induced by cytoplasmic protein aggregates can have deleterious consequences for the cell, contributing to neurodegeneration and other diseases. Protein aggregates are also formed within the endoplasmic reticulum (ER), although the fate of ER protein aggregates, specifically during cell division, is not well understood. By simultaneous visualization of both the ER itself and ER protein aggregates, we found that ER protein aggregates that induce ER stress are retained in the mother cell by activation of the ER Stress Surveillance (ERSU) pathway, which prevents inheritance of stressed ER. In contrast, under conditions of normal ER inheritance, ER protein aggregates can enter the daughter cell. Thus, whereas cytoplasmic protein aggregates are retained in the mother cell to protect the functional capacity of daughter cells, the fate of ER protein aggregates is determined by whether or not they activate the ERSU pathway to impede transmission of the cortical ER during the cell cycle.
Collapse
Affiliation(s)
- Francisco J Piña
- Division of Biological Sciences, Section of Molecular Biology, Univeristy of California, San Diego, San Diego, United States
| | - Maho Niwa
- Division of Biological Sciences, Section of Molecular Biology, Univeristy of California, San Diego, San Diego, United States
| |
Collapse
|
44
|
Kroschwald S, Maharana S, Mateju D, Malinovska L, Nüske E, Poser I, Richter D, Alberti S. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife 2015; 4:e06807. [PMID: 26238190 PMCID: PMC4522596 DOI: 10.7554/elife.06807] [Citation(s) in RCA: 412] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/25/2015] [Indexed: 12/27/2022] Open
Abstract
RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine. DOI:http://dx.doi.org/10.7554/eLife.06807.001 Genes consist of long stretches of DNA that code for proteins. The DNA is first ‘transcribed’ to produce an RNA molecule, which is then translated into a protein. In most cells, RNA molecules are present within a structure called ribonucleoprotein (RNP for short) granules. These contain the protein machinery needed to transport, store, and break down RNAs. P bodies and stress granules are two types of RNP granules found in all cells, from yeast to human. P bodies are present at all times, whereas stress granules assemble when a cell experiences stressful conditions, such as a lack of nutrients or high temperatures. Once the stress has been overcome, the stress granules are disassembled. The precise details of how RNP granules assemble in cells remain poorly understood. One theory suggests that RNP granules form through a physical process called ‘phase separation’ in which RNA molecules and proteins above a certain critical concentration condense to form a liquid droplet. Other research has suggested that RNP granules arise when so-called prion-like proteins spontaneously clump together and start aggregating to form fibers. These granules would behave more like solids than liquids. Kroschwald et al. have now analyzed how P bodies and stress granules form in yeast and human cells using a chemical compound that can distinguish between liquid-like and solid-like structures. The results revealed that P bodies and stress granules behave very differently in yeast cells. While P bodies are indeed liquid droplets, stress granules are more solid in nature and act like protein aggregates. So why is there a difference between the two? It is known from previous work that when cells are stressed, many proteins misfold and start aggregating. Kroschwald et al. found that the formation of stress granules coincides with the formation of aggregates, suggesting that stress granules themselves are a type of aggregate. Furthermore, stress granule formation does not seem to involve prion-like fibers, but rather prion-like proteins can easily interact with other proteins in a promiscuous way, thus promoting the seeding of stress granules and their growth. Kroschwald et al. next studied human cells and observed that in these cells, both P bodies and stress granules were liquid droplets. These results together suggest that the physical properties and method of assembling P bodies and stress granules can vary from one organism to another. Future work will investigate whether the ability to form solid rather than liquid stress granules provides extra protection to yeast cells when they are stressed. It also remains to be tested whether and how stress granules convert into the pathological RNP aggregates that are often seen in neurodegenerative diseases. DOI:http://dx.doi.org/10.7554/eLife.06807.002
Collapse
Affiliation(s)
- Sonja Kroschwald
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Shovamayee Maharana
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniel Mateju
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Liliana Malinovska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Nüske
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
45
|
Kroschwald S, Maharana S, Mateju D, Malinovska L, Nüske E, Poser I, Richter D, Alberti S. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife 2015; 4:e06807. [PMID: 26238190 DOI: 10.7554/elife.06807.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/25/2015] [Indexed: 05/23/2023] Open
Abstract
RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine.
Collapse
Affiliation(s)
- Sonja Kroschwald
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Shovamayee Maharana
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniel Mateju
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Liliana Malinovska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Nüske
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
46
|
Zhu X, Chen L, Carlsten JOP, Liu Q, Yang J, Liu B, Gustafsson CM. Mediator tail subunits can form amyloid-like aggregates in vivo and affect stress response in yeast. Nucleic Acids Res 2015; 43:7306-14. [PMID: 26138482 PMCID: PMC4551914 DOI: 10.1093/nar/gkv629] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/07/2015] [Indexed: 12/15/2022] Open
Abstract
The Med2, Med3 and Med15 proteins form a heterotrimeric subdomain in the budding yeast Mediator complex. This Med15 module is an important target for many gene specific transcription activators. A previous proteome wide screen in yeast identified Med3 as a protein with priogenic potential. In the present work, we have extended this observation and demonstrate that both Med3 and Med15 form amyloid-like protein aggregates under H2O2 stress conditions. Amyloid formation can also be stimulated by overexpression of Med3 or of a glutamine-rich domain present in Med15, which in turn leads to loss of the entire Med15 module from Mediator and a change in stress response. In combination with genome wide transcription analysis, our data demonstrate that amyloid formation can change the subunit composition of Mediator and thereby influence transcriptional output in budding yeast.
Collapse
Affiliation(s)
- Xuefeng Zhu
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Göteborg, Sweden
| | - Lihua Chen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Jonas O P Carlsten
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Göteborg, Sweden
| | - Qian Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Junsheng Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Claes M Gustafsson
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Göteborg, Sweden
| |
Collapse
|
47
|
Bonanomi M, Visentin C, Invernizzi G, Tortora P, Regonesi ME. The Toxic Effects of Pathogenic Ataxin-3 Variants in a Yeast Cellular Model. PLoS One 2015; 10:e0129727. [PMID: 26052945 PMCID: PMC4460139 DOI: 10.1371/journal.pone.0129727] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/12/2015] [Indexed: 12/22/2022] Open
Abstract
Ataxin-3 (AT3) is a deubiquitinating enzyme that triggers an inherited neurodegenerative disorder, spinocerebellar ataxia type 3, when its polyglutamine (polyQ) stretch close to the C-terminus exceeds a critical length. AT3 variants carrying the expanded polyQ are prone to associate with each other into amyloid toxic aggregates, which are responsible for neuronal death with ensuing neurodegeneration. We employed Saccharomyces cerevisiae as a eukaryotic cellular model to better clarify the mechanism by which AT3 triggers the disease. We expressed three variants: one normal (Q26), one expanded (Q85) and one truncated for a region lying from the beginning of its polyQ stretch to the end of the protein (291Δ). We found that the expression of the expanded form caused reduction in viability, accumulation of reactive oxygen species, imbalance of the antioxidant defense system and loss in cell membrane integrity, leading to necrotic death. The truncated variant also exerted a qualitatively similar, albeit milder, effect on cell growth and cytotoxicity, which points to the involvement of also non-polyQ regions in cytotoxicity. Guanidine hydrochloride, a well-known inhibitor of the chaperone Hsp104, almost completely restored wild-type survival rate of both 291Δ- and Q85-expressing strains. This suggests that AT3 aggregation and toxicity is mediated by prion forms of yeast proteins, as this chaperone plays a key role in their propagation.
Collapse
Affiliation(s)
- Marcella Bonanomi
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Cristina Visentin
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Gaetano Invernizzi
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Paolo Tortora
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
- Milan Center of Neuroscience (NeuroMI), Milan, Italy
- * E-mail:
| | - Maria Elena Regonesi
- Milan Center of Neuroscience (NeuroMI), Milan, Italy
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
48
|
Stephan J, Fioriti L, Lamba N, Colnaghi L, Karl K, Derkatch I, Kandel E. The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton. Cell Rep 2015; 11:1772-85. [DOI: 10.1016/j.celrep.2015.04.060] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/10/2015] [Accepted: 04/28/2015] [Indexed: 11/24/2022] Open
|
49
|
D'hooge P, Coun C, Van Eyck V, Faes L, Ghillebert R, Mariën L, Winderickx J, Callewaert G. Ca(2+) homeostasis in the budding yeast Saccharomyces cerevisiae: Impact of ER/Golgi Ca(2+) storage. Cell Calcium 2015; 58:226-35. [PMID: 26055636 DOI: 10.1016/j.ceca.2015.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/11/2015] [Accepted: 05/26/2015] [Indexed: 01/09/2023]
Abstract
Yeast has proven to be a powerful tool to elucidate the molecular aspects of several biological processes in higher eukaryotes. As in mammalian cells, yeast intracellular Ca(2+) signalling is crucial for a myriad of biological processes. Yeast cells also bear homologs of the major components of the Ca(2+) signalling toolkit in mammalian cells, including channels, co-transporters and pumps. Using yeast single- and multiple-gene deletion strains of various plasma membrane and organellar Ca(2+) transporters, combined with manipulations to estimate intracellular Ca(2+) storage, we evaluated the contribution of individual transport systems to intracellular Ca(2+) homeostasis. Yeast strains lacking Pmr1 and/or Cod1, two ion pumps implicated in ER/Golgi Ca(2+) homeostasis, displayed a fragmented vacuolar phenotype and showed increased vacuolar Ca(2+) uptake and Ca(2+) influx across the plasma membrane. In the pmr1Δ strain, these effects were insensitive to calcineurin activity, independent of Cch1/Mid1 Ca(2+) channels and Pmc1 but required Vcx1. By contrast, in the cod1Δ strain increased vacuolar Ca(2+) uptake was not affected by Vcx1 deletion but was largely dependent on Pmc1 activity. Our analysis further corroborates the distinct roles of Vcx1 and Pmc1 in vacuolar Ca(2+) uptake and point to the existence of not-yet identified Ca(2+) influx pathways.
Collapse
Affiliation(s)
- Petra D'hooge
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Catherina Coun
- Functional Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Vincent Van Eyck
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Liesbeth Faes
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Ruben Ghillebert
- Functional Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Lore Mariën
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Joris Winderickx
- Functional Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium.
| | - Geert Callewaert
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
| |
Collapse
|
50
|
Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation. Proc Natl Acad Sci U S A 2015; 112:E2620-9. [PMID: 25941378 DOI: 10.1073/pnas.1504459112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many protein-misfolding diseases are caused by proteins carrying prion-like domains. These proteins show sequence similarity to yeast prion proteins, which can interconvert between an intrinsically disordered and an aggregated prion state. The natural presence of prions in yeast has provided important insight into disease mechanisms and cellular proteostasis. However, little is known about prions in other organisms, and it is not yet clear whether the findings in yeast can be generalized. Using bioinformatics tools, we show that Dictyostelium discoideum has the highest content of prion-like proteins of all organisms investigated to date, suggesting that its proteome has a high overall aggregation propensity. To study mechanisms regulating these proteins, we analyze the behavior of several well-characterized prion-like proteins, such as an expanded version of human huntingtin exon 1 (Q103) and the prion domain of the yeast prion protein Sup35 (NM), in D. discoideum. We find that these proteins remain soluble and are innocuous to D. discoideum, in contrast to other organisms, where they form cytotoxic cytosolic aggregates. However, when exposed to conditions that compromise molecular chaperones, these proteins aggregate and become cytotoxic. We show that the disaggregase Hsp101, a molecular chaperone of the Hsp100 family, dissolves heat-induced aggregates and promotes thermotolerance. Furthermore, prion-like proteins accumulate in the nucleus, where they are targeted by the ubiquitin-proteasome system. Our data suggest that D. discoideum has undergone specific adaptations that increase the proteostatic capacity of this organism and allow for an efficient regulation of its prion-like proteome.
Collapse
|