1
|
Halawa M, Cortleven A, Schmülling T, Heyl A. Characterization of CHARK, an unusual cytokinin receptor of rice. Sci Rep 2021; 11:1722. [PMID: 33462253 PMCID: PMC7814049 DOI: 10.1038/s41598-020-80223-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/21/2020] [Indexed: 11/14/2022] Open
Abstract
The signal transduction of the plant hormone cytokinin is mediated by a His-to-Asp phosphorelay. The canonical cytokinin receptor consists of an extra cytoplasmic hormone binding domain named cyclase/histidine kinase associated sensory extracellular (CHASE) and cytoplasmic histidine kinase and receiver domains. In addition to classical cytokinin receptors, a different type receptor—named CHASE domain receptor serine/threonine kinase (CHARK)—is also present in rice. It contains the same ligand binding domain as other cytokinin receptors but has a predicted Ser/Thr—instead of a His-kinase domain. Bioinformatic analysis indicates that CHARK is a retrogene and a product of trans-splicing. Here, we analyzed whether CHARK can function as a bona fide cytokinin receptor. A biochemical assay demonstrated its ability to bind cytokinin. Transient expression of CHARK in protoplasts increased their response to cytokinin. Expression of CHARK in an Arabidopsis receptor double mutant complemented its growth defects and restored the ability to activate cytokinin response genes, clearly demonstrating that CHARK functions as a cytokinin receptor. We propose that the CHARK gene presents an evolutionary novelty in the cytokinin signaling system.
Collapse
Affiliation(s)
- Mhyeddeen Halawa
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Science, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Science, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Science, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Alexander Heyl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Science, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany. .,Biology Department, Adelphi University, 1 South Avenue, Garden City, NY, 11530-0701, USA.
| |
Collapse
|
2
|
Cytokinin and Ethylene Cell Signaling Pathways from Prokaryotes to Eukaryotes. Cells 2020; 9:cells9112526. [PMID: 33238457 PMCID: PMC7700396 DOI: 10.3390/cells9112526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cytokinins (CKs) and ethylene (ET) are among the most ancient organic chemicals on Earth. A wide range of organisms including plants, algae, fungi, amoebae, and bacteria use these substances as signaling molecules to regulate cellular processes. Because of their ancestral origin and ubiquitous occurrence, CKs and ET are also considered to be ideal molecules for inter-kingdom communication. Their signal transduction pathways were first historically deciphered in plants and are related to the two-component systems, using histidine kinases as primary sensors. Paradoxically, although CKs and ET serve as signaling molecules in different kingdoms, it has been supposed for a long time that the canonical CK and ET signaling pathways are restricted to terrestrial plants. These considerations have now been called into question following the identification over recent years of genes encoding CK and ET receptor homologs in many other lineages within the tree of life. These advances shed new light on the dissemination and evolution of these hormones as both intra- and inter-specific communication molecules in prokaryotic and eukaryotic organisms.
Collapse
|
3
|
Klimeš P, Turek D, Mazura P, Gallová L, Spíchal L, Brzobohatý B. High Throughput Screening Method for Identifying Potential Agonists and Antagonists of Arabidopsis thaliana Cytokinin Receptor CRE1/AHK4. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28642766 PMCID: PMC5463364 DOI: 10.3389/fpls.2017.00947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The CRE1/AHK4 cytokinin receptor is an important component of plants' hormone signaling systems, and compounds that can alter its activity have potential utility for studying the receptor's functions and/or developing new plant growth regulators. A high throughput method was developed for screening compounds with agonist or antagonist properties toward the CRE1/AHK4 cytokinin receptor in a single experiment using the Nanodrop II liquid handling system and 384-well plates. Potential ligands are screened directly, using a reporter system in which receptor signaling activity triggers expression of β-galactosidase in Escherichia coli. This enzyme generates a fluorescent product from a non-fluorescent substrate, allowing the agonistic/antagonistic behavior of tested compounds to be assayed in relation to that of an internal standard (here the natural ligand, trans-zeatin). The method includes a robust control procedure to determine false positive or false negative effects of the tested compounds arising from their fluorescent or fluorescent-quenching properties. The presented method enables robust, automated screening of large libraries of compounds for ability to activate or inhibit the Arabidopsis thaliana cytokinin receptor CRE1/AHK4.
Collapse
Affiliation(s)
- Pavel Klimeš
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR v.v.i. and Central European Institute of Technology, Mendel University in BrnoBrno, Czechia
| | - Dušan Turek
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR v.v.i. and Central European Institute of Technology, Mendel University in BrnoBrno, Czechia
| | - Pavel Mazura
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR v.v.i. and Central European Institute of Technology, Mendel University in BrnoBrno, Czechia
- *Correspondence: Pavel Mazura,
| | - Lucia Gallová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, OlomoucOlomouc, Czechia
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, OlomoucOlomouc, Czechia
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR v.v.i. and Central European Institute of Technology, Mendel University in BrnoBrno, Czechia
| |
Collapse
|
4
|
von Schwartzenberg K, Lindner AC, Gruhn N, Šimura J, Novák O, Strnad M, Gonneau M, Nogué F, Heyl A. CHASE domain-containing receptors play an essential role in the cytokinin response of the moss Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:667-79. [PMID: 26596764 PMCID: PMC4737067 DOI: 10.1093/jxb/erv479] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
While the molecular basis for cytokinin action is quite well understood in flowering plants, little is known about the cytokinin signal transduction in early diverging land plants. The genome of the bryophyte Physcomitrella patens (Hedw.) B.S. encodes three classical cytokinin receptors, the CHASE domain-containing histidine kinases, CHK1, CHK2, and CHK3. In a complementation assay with protoplasts of receptor-deficient Arabidopsis thaliana as well as in cytokinin binding assays, we found evidence that CHK1 and CHK2 receptors can function in cytokinin perception. Using gene targeting, we generated a collection of CHK knockout mutants comprising single (Δchk1, Δchk2, Δchk3), double (Δchk1,2, Δchk1,3, Δchk2,3), and triple (Δchk1,2,3) mutants. Mutants were characterized for their cytokinin response and differentiation capacities. While the wild type did not grow on high doses of cytokinin (1 µM benzyladenine), the Δchk1,2,3 mutant exhibited normal protonema growth. Bud induction assays showed that all three cytokinin receptors contribute to the triggering of budding, albeit to different extents. Furthermore, while the triple mutant showed no response in this bioassay, the remaining mutants displayed budding responses in a diverse manner to different types and concentrations of cytokinins. Determination of cytokinin levels in mutants showed no drastic changes for any of the cytokinins; thus, in contrast to Arabidopsis, revealing only small impacts of cytokinin signaling on homeostasis. In summary, our study provides a first insight into the molecular action of cytokinin in an early diverging land plant and demonstrates that CHK receptors play an essential role in bud induction and gametophore development.
Collapse
Affiliation(s)
| | - Ann-Cathrin Lindner
- Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | - Njuscha Gruhn
- Institute for Biology/ Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | - Jan Šimura
- Laboratory of Growth Regulators & Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators & Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators & Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Martine Gonneau
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St-Cyr, 78026 Versailles Cedex, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St-Cyr, 78026 Versailles Cedex, France
| | - Alexander Heyl
- Institute for Biology/ Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany Biology Department, Adelphi University, Science 116, 1 South Avenue, PO Box 701, Garden City, NY 11530-070, USA
| |
Collapse
|
5
|
Lomin SN, Krivosheev DM, Steklov MY, Arkhipov DV, Osolodkin DI, Schmülling T, Romanov GA. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1851-63. [PMID: 25609827 PMCID: PMC4378623 DOI: 10.1093/jxb/eru522] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 05/18/2023]
Abstract
Cytokinin receptors play a key role in cytokinin-dependent processes regulating plant growth, development, and adaptation; therefore, the functional properties of these receptors are of great importance. Previously the properties of cytokinin receptors were investigated in heterologous assay systems using unicellular microorganisms, mainly bacteria, expressing receptor proteins. However, within microorganisms receptors reside in an alien environment that might distort the receptor properties. Therefore, a new assay system has been developed allowing studies of individual receptors within plant membranes (i.e. closer to their natural environment). The main ligand-binding characteristics of receptors from Arabidopsis [AHK2, AHK3, and AHK4] and maize (ZmHK1) were refined in this new system, and the properties of full-length Arabidopsis receptor AHK2 were characterized for the first time. Ligand specificity profiles of receptors towards cytokinin bases were comparable with the profiles retrieved in bacterial assay systems. In contrast, cytokinin-9-ribosides displayed a strongly reduced affinity for receptors in the plant assay system, indicating that ribosides as the common transport form of cytokinins have no or very weak cytokinin activity. This underpins the central role of free bases as the sole biologically active cytokinin compounds. According to molecular modelling and docking studies, N (9)-ribosylation alters the bonding pattern in cytokinin-receptor interaction and prevents β6-β7 loop movement important for tight hormone binding. A common feature of all receptors was a greatly reduced ligand binding at low (5.0-5.5) pH. The particularly high sensitivity of ZmHK1 to pH changes leads to the suggestion that some cytokinin receptors may play an additional role as pH sensors in the lumen of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Sergey N Lomin
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry M Krivosheev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Mikhail Yu Steklov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry V Arkhipov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry I Osolodkin
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | - Georgy A Romanov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia
| |
Collapse
|
6
|
Gruhn N, Halawa M, Snel B, Seidl MF, Heyl A. A subfamily of putative cytokinin receptors is revealed by an analysis of the evolution of the two-component signaling system of plants. PLANT PHYSIOLOGY 2014; 165:227-37. [PMID: 24520157 PMCID: PMC4012582 DOI: 10.1104/pp.113.228080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/07/2014] [Indexed: 05/05/2023]
Abstract
The two-component signaling system--the major signaling pathway of bacteria--is found among higher eukaryotes only in plants, where it regulates diverse processes, such as the signaling of the phytohormone cytokinin. Cytokinin is perceived by a hybrid histidine (His) kinase receptor, and the signal is transduced by a multistep phosphorelay system of His phosphotransfer proteins and different classes of response regulators (RRs). To shed light on the origin and evolution of the two-component signaling system members in plants, we conducted a comprehensive domain-based phylogenetic study across the relevant kingdoms, including Charophyceae algae, the group of green algae giving rise to land plants. Surprisingly, we identified a subfamily of cytokinin receptors with members only from the early diverging land plants Marchantia polymorpha and Physcomitrella patens and then experimentally characterized two members of this subfamily. His phosphotransfer proteins of Charophyceae seemed to be more closely related to land plants than to other groups of green algae. Farther down the signaling pathway, the type-B RRs were found across all plant clades, but many members lack either the canonical Asp residue or the DNA binding domain. In contrast, the type-A RRs seemed to be limited to land plants. Finally, the analysis provided hints that one additional group of RRs, the type-C RRs, might be degenerated receptors and thus, of a different evolutionary origin than bona fide RRs.
Collapse
Affiliation(s)
- Nijuscha Gruhn
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität, 14195 Berlin, Germany (N.G., M.H., A.H.)
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands (B.S., M.F.S.); and
- Centre for BioSystems Genomics, 6700 AB, Wageningen, The Netherlands (B.S., M.F.S.)
| | - Mhyeddeen Halawa
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität, 14195 Berlin, Germany (N.G., M.H., A.H.)
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands (B.S., M.F.S.); and
- Centre for BioSystems Genomics, 6700 AB, Wageningen, The Netherlands (B.S., M.F.S.)
| | - Berend Snel
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität, 14195 Berlin, Germany (N.G., M.H., A.H.)
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands (B.S., M.F.S.); and
- Centre for BioSystems Genomics, 6700 AB, Wageningen, The Netherlands (B.S., M.F.S.)
| | | | | |
Collapse
|
7
|
Podlešáková K, Fardoux J, Patrel D, Bonaldi K, Novák O, Strnad M, Giraud E, Spíchal L, Nouwen N. Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene legumes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1232-8. [PMID: 23777431 DOI: 10.1094/mpmi-03-13-0076-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cytokinins (CK) play an important role in the formation of nitrogen-fixing root nodules. It has been known for years that rhizobia secrete CK in the extracellular medium but whether they play a role in nodule formation is not known. We have examined this question using the photosynthetic Bradyrhizobium sp. strain ORS285 which is able to nodulate Aeschynomene afraspera and A. indica using a Nod-dependent or Nod-independent symbiotic process, respectively. CK profiling showed that the most abundant CK secreted by Bradyrhizobium sp. strain ORS285 are the 2MeS (2-methylthiol) derivatives of trans-zeatin and isopentenyladenine. In their pure form, these CK can activate legume CK receptors in vitro, and their exogenous addition induced nodule-like structures on host plants. Deletion of the miaA gene showed that transfer RNA degradation is the source of CK production in Bradyrhizobium sp. strain ORS285. In nodulation studies performed with A. indica and A. afraspera, the miaA mutant had a 1-day delay in nodulation and nitrogen fixation. Moreover, A. indica plants formed considerably smaller but more abundant nodules when inoculated with the miaA mutant. These data show that CK produced by Bradyrhizobium sp. strain ORS285 are not the key signal triggering nodule formation during the Nod-independent symbiosis but they contribute positively to nodule development in Aeschynomene plants.
Collapse
MESH Headings
- Acetylene/metabolism
- Bradyrhizobium/genetics
- Bradyrhizobium/metabolism
- Bradyrhizobium/physiology
- Cytokinins/metabolism
- Cytokinins/pharmacology
- Dose-Response Relationship, Drug
- Ethylenes/metabolism
- Fabaceae/drug effects
- Fabaceae/growth & development
- Fabaceae/metabolism
- Fabaceae/microbiology
- Genes, Reporter
- Nitrogen Fixation
- Nitrogenase
- Phylogeny
- Plant Growth Regulators/metabolism
- Plant Growth Regulators/pharmacology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Root Nodulation
- Plant Roots/drug effects
- Plant Roots/growth & development
- Plant Roots/metabolism
- Plant Roots/microbiology
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Root Nodules, Plant/drug effects
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/metabolism
- Root Nodules, Plant/microbiology
- Sequence Deletion
- Signal Transduction
- Symbiosis
Collapse
|
8
|
Morey KJ, Antunes MS, Barrow MJ, Solorzano FA, Havens KL, Smith JJ, Medford J. Crosstalk between endogenous and synthetic components--synthetic signaling meets endogenous components. Biotechnol J 2012; 7:846-55. [PMID: 22649041 DOI: 10.1002/biot.201100487] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/12/2012] [Accepted: 05/02/2012] [Indexed: 12/17/2022]
Abstract
Synthetic biology uses biological components to engineer new functionality in living organisms. We have used the tools of synthetic biology to engineer detector plants that can sense man-made chemicals, such as the explosive trinitrotoluene, and induce a response detectable by eye or instrumentation. A goal of this type of work is to make the designed system orthogonal, that is, able to function independently of systems in the host. In this review, the design and function of two partially synthetic signaling pathways for use in plants is discussed. We describe observed interactions (crosstalk) with endogenous signaling components. This crosstalk can be beneficial, allowing the creation of hybrid synthetic/endogenous signaling pathways, or detrimental, resulting in system noise and/or false positives. Current approaches in the field of synthetic biology applicable to the design of orthogonal signaling systems, including the design of synthetic components, partially synthetic systems that utilize crosstalk to signal through endogenous components, computational redesign of proteins, and the use of heterologous components, are discussed.
Collapse
Affiliation(s)
- Kevin J Morey
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Hothorn M, Dabi T, Chory J. Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat Chem Biol 2011; 7:766-8. [PMID: 21964459 PMCID: PMC3197759 DOI: 10.1038/nchembio.667] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 08/02/2011] [Indexed: 11/22/2022]
Abstract
Cytokinins are classic hormones that orchestrate plant growth and development and the integrity of stem cell populations. Cytokinin receptors are eukaryotic sensor histidine kinases that are activated by both naturally occurring adenine-type cytokinins and urea-based synthetic compounds. Crystal structures of the Arabidopsis thaliana histidine kinase 4 sensor domain in complex with different cytokinin ligands now rationalize the hormone-binding specificity of the receptor and may spur the design of new cytokinin ligands.
Collapse
Affiliation(s)
- Michael Hothorn
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Tsegaye Dabi
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
10
|
Morey KJ, Antunes MS, Albrecht KD, Bowen TA, Troupe JF, Havens KL, Medford JI. Developing a synthetic signal transduction system in plants. Methods Enzymol 2011; 497:581-602. [PMID: 21601104 DOI: 10.1016/b978-0-12-385075-1.00025-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One area of focus in the emerging field of plant synthetic biology is the manipulation of systems involved in sensing and response to environmental signals. Sensing and responding to signals, including ligands, typically involves biological signal transduction. Plants use a wide variety of signaling systems to sense and respond to their environment. One of these systems, a histidine kinase (HK) based signaling system, lends itself to manipulation using the tools of synthetic biology. Both plants and bacteria use HKs to relay signals, which in bacteria can involve as few as two proteins (two-component systems or TCS). HK proteins are evolutionarily conserved between plants and bacteria and plant HK components have been shown to be functional in bacteria. We found that this conservation also applies to bacterial HK components which can function in plants. This conservation of function led us to hypothesize that synthetic HK signaling components can be designed and rapidly tested in bacteria. These novel HK signaling components form the foundation for a synthetic signaling system in plants, but typically require modifications such as codon optimization and proper targeting to allow optimal function. We describe the process and methodology of producing a synthetic signal transduction system in plants. We discovered that the bacterial response regulator (RR) PhoB shows HK-dependent nuclear translocation in planta. Using this discovery, we engineered a partial synthetic pathway in which a synthetic promoter (PlantPho) is activated using a plant-adapted PhoB (PhoB-VP64) and the endogenous HK-based cytokinin signaling pathway. Building on this work, we adapted an input or sensing system based on bacterial chemotactic binding proteins and HKs, resulting in a complete eukaryotic signal transduction system. Input to our eukaryotic signal transduction system is provided by a periplasmic binding protein (PBP), ribose-binding protein (RBP). RBP interacts with the membrane-localized chemotactic receptor Trg. PBPs like RBP have been computationally redesigned to bind small ligands, such as the explosive 2,4,6-trinitrotoluene (TNT). A fusion between the chemotactic receptor Trg and the HK, PhoR, enables signal transduction via PhoB, which undergoes nuclear translocation in response to phosphorylation, resulting in transcriptional activation of an output gene under control of a synthetic plant promoter. Collectively, these components produce a novel ligand-responsive signal transduction system in plants and provide a means to engineer a eukaryotic synthetic signaling system.
Collapse
Affiliation(s)
- Kevin J Morey
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | | | | | | |
Collapse
|