1
|
Halma MTJ, Tuszynski JA, Wuite GJL. Optical tweezers for drug discovery. Drug Discov Today 2023; 28:103443. [PMID: 36396117 DOI: 10.1016/j.drudis.2022.103443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
The time taken and the cost of producing novel therapeutic drugs presents a significant burden - a typical target-based drug discovery process involves computational screening of drug libraries, compound assays and expensive clinical trials. This review summarises the value of dynamic conformational information obtained by optical tweezers and how this information can target 'undruggable' proteins. Optical tweezers provide insights into the link between biological mechanisms and structural conformations, which can be used in drug discovery. Developing workflows including software and sample preparation will improve throughput, enabling adoption of optical tweezers in biopharma. As a complementary tool, optical tweezers increase the number of drug candidates, improve the understanding of a target's complex structural dynamics and elucidate interactions between compounds and their targets.
Collapse
Affiliation(s)
- Matthew T J Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands; LUMICKS B.V, Paalbergweg 3, 1105 AG Amsterdam, The Netherlands
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, 116 St 85 Ave, Edmonton, Alberta T6G 2R3, Canada
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Maffeo C, Chou HY, Aksimentiev A. Single-molecule biophysics experiments in silico: Toward a physical model of a replisome. iScience 2022; 25:104264. [PMID: 35521518 PMCID: PMC9062759 DOI: 10.1016/j.isci.2022.104264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
The interpretation of single-molecule experiments is frequently aided by computational modeling of biomolecular dynamics. The growth of computing power and ongoing validation of computational models suggest that it soon may be possible to replace some experiments outright with computational mimics. Here, we offer a blueprint for performing single-molecule studies in silico using a DNA-binding protein as a test bed. We demonstrate how atomistic simulations, typically limited to sub-millisecond durations and zeptoliter volumes, can guide development of a coarse-grained model for use in simulations that mimic single-molecule experiments. We apply the model to recapitulate, in silico, force-extension characterization of protein binding to single-stranded DNA and protein and DNA replacement assays, providing a detailed portrait of the underlying mechanics. Finally, we use the model to simulate the trombone loop of a replication fork, a large complex of proteins and DNA. Coarse-grained model derived from all-atom simulation recapitulates experiments Model reproduces the elastic response to force and exchange dynamics Model reveals structure of intermediate states usually inaccessible to experiment Model applied to viral replisome with trombone loop containing tens of SSB proteins
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, 61801 IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Matthews Avenue, Urbana, 61801 IL, USA
| | - Han-Yi Chou
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, 61801 IL, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, 61801 IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Matthews Avenue, Urbana, 61801 IL, USA
- Corresponding author
| |
Collapse
|
3
|
Mitra J, Ha T. Streamlining effects of extra telomeric repeat on telomeric DNA folding revealed by fluorescence-force spectroscopy. Nucleic Acids Res 2020; 47:11044-11056. [PMID: 31617570 PMCID: PMC6868435 DOI: 10.1093/nar/gkz906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 01/26/2023] Open
Abstract
A human telomere ends in a single-stranded 3′ tail, composed of repeats of T2AG3. G-quadruplexes (GQs) formed from four consecutive repeats have been shown to possess high-structural and mechanical diversity. In principle, a GQ can form from any four repeats that are not necessarily consecutive. To understand the dynamics of GQs with positional multiplicity, we studied five and six repeats human telomeric sequence using a combination of single molecule FRET and optical tweezers. Our results suggest preferential formation of GQs at the 3′ end both in K+ and Na+ solutions, with minor populations of 5′-GQ or long-loop GQs. A vectorial folding assay which mimics the directional nature of telomere extension showed that the 3′ preference holds even when folding is allowed to begin from the 5′ side. In 100 mM K+, the unassociated T2AG3 segment has a streamlining effect in that one or two mechanically distinct species was observed at a single position instead of six or more observed without an unassociated repeat. We did not observe such streamlining effect in 100 mM Na+. Location of GQ and reduction in conformational diversity in the presence of extra repeats have implications in telomerase inhibition, T-loop formation and telomere end protection.
Collapse
Affiliation(s)
- Jaba Mitra
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana IL 61801, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Mitra J, Ha T. Nanomechanics and co-transcriptional folding of Spinach and Mango. Nat Commun 2019; 10:4318. [PMID: 31541108 PMCID: PMC6754394 DOI: 10.1038/s41467-019-12299-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/03/2019] [Indexed: 11/24/2022] Open
Abstract
Recent advances in fluorogen-binding “light-up” RNA aptamers have enabled protein-free detection of RNA in cells. Detailed biophysical characterization of folding of G-Quadruplex (GQ)-based light-up aptamers such as Spinach, Mango and Corn is still lacking despite the potential implications on their folding and function. In this work we employ single-molecule fluorescence-force spectroscopy to examine mechanical responses of Spinach2, iMangoIII and MangoIV. Spinach2 unfolds in four discrete steps as force is increased to 7 pN and refolds in reciprocal steps upon force relaxation. In contrast, GQ-core unfolding in iMangoIII and MangoIV occurs in one discrete step at forces >10 pN and refolding occurred at lower forces showing hysteresis. Co-transcriptional folding using superhelicases shows reduced misfolding propensity and allowed a folding pathway different from refolding. Under physiologically relevant pico-Newton levels of force, these aptamers may unfold in vivo and subsequently misfold. Understanding of the dynamics of RNA aptamers will aid engineering of improved fluorogenic modules for cellular applications. Light-up aptamers are widely used for fluorescence visualization of non-coding RNA in vivo. Here the authors employ single-molecule fluorescence-force spectroscopy to characterize the mechanical responses of the G-Quadruplex based light-up aptamers Spinach2, iMangoIII and MangoIV, which is of interest for the development of improved fluorogenic modules for imaging applications.
Collapse
Affiliation(s)
- Jaba Mitra
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Howard Hughes Medical Institute, Baltimore, MD, 21218, USA.
| |
Collapse
|
5
|
Extreme mechanical diversity of human telomeric DNA revealed by fluorescence-force spectroscopy. Proc Natl Acad Sci U S A 2019; 116:8350-8359. [PMID: 30944218 DOI: 10.1073/pnas.1815162116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes (GQs) can adopt diverse structures and are functionally implicated in transcription, replication, translation, and maintenance of telomere. Their conformational diversity under physiological levels of mechanical stress, however, is poorly understood. We used single-molecule fluorescence-force spectroscopy that combines fluorescence resonance energy transfer with optical tweezers to measure human telomeric sequences under tension. Abrupt GQ unfolding with K+ in solution occurred at as many as four discrete levels of force. Added to an ultrastable state and a gradually unfolding state, there were six mechanically distinct structures. Extreme mechanical diversity was also observed with Na+, although GQs were mechanically weaker. Our ability to detect small conformational changes at low forces enabled the determination of refolding forces of about 2 pN. Refolding was rapid and stochastically redistributed molecules to mechanically distinct states. A single guanine-to-thymine substitution mutant required much higher ion concentrations to display GQ-like unfolding and refolded via intermediates, contrary to the wild type. Contradicting an earlier proposal, truncation to three hexanucleotide repeats resulted in a single-stranded DNA-like mechanical behavior under all conditions, indicating that at least four repeats are required to form mechanically stable structures.
Collapse
|
6
|
Single-molecule fluorescence imaging: Generating insights into molecular interactions in virology. J Biosci 2018. [DOI: 10.1007/s12038-018-9769-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Lin CT, Ha T. Probing Single Helicase Dynamics on Long Nucleic Acids Through Fluorescence-Force Measurement. Methods Mol Biol 2017; 1486:295-316. [PMID: 27844433 DOI: 10.1007/978-1-4939-6421-5_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Helicases are nucleic acid-dependent ATPases which can bind and remodel nucleic acids, protein-nucleic acid complexes, or both. They are involved in almost every step in cells related to nucleic acid metabolisms, including DNA replication and repair, transcription, RNA maturation and splicing, and nuclear export processes. Using single-molecule fluorescence-force spectroscopy, we have previously directly observed helicase translocation on long single-stranded DNA and revealed that two monomers of UvrD helicase are required for the initiation of unwinding function. Here, we present the details of fluorescence-force spectroscopy instrumentation, calibration, and activity assays in detail for observing the biochemical activities of helicases in real time and revealing how mechanical forces are involved in protein-nucleic acid interaction. These single-molecule approaches are generally applicable to many other protein-nucleic acid systems.
Collapse
Affiliation(s)
- Chang-Ting Lin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Thomas C. Jenkins Department of Biophysics and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
8
|
Kemmerich FE, Swoboda M, Kauert DJ, Grieb MS, Hahn S, Schwarz FW, Seidel R, Schlierf M. Simultaneous Single-Molecule Force and Fluorescence Sampling of DNA Nanostructure Conformations Using Magnetic Tweezers. NANO LETTERS 2016; 16:381-6. [PMID: 26632021 DOI: 10.1021/acs.nanolett.5b03956] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present a hybrid single-molecule technique combining magnetic tweezers and Förster resonance energy transfer (FRET) measurements. Through applying external forces to a paramagnetic sphere, we induce conformational changes in DNA nanostructures, which are detected in two output channels simultaneously. First, by tracking a magnetic bead with high spatial and temporal resolution, we observe overall DNA length changes along the force axis. Second, the measured FRET efficiency between two fluorescent probes monitors local conformational changes. The synchronized orthogonal readout in different observation channels will facilitate deciphering the complex mechanisms of biomolecular machines.
Collapse
Affiliation(s)
- Felix E Kemmerich
- Institute for Molecular Cell Biology, University of Münster , 48149 Münster, Germany
- Institute of Experimental Physics I, Universität Leipzig , 04103 Leipzig, Germany
| | - Marko Swoboda
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
| | - Dominik J Kauert
- Institute for Molecular Cell Biology, University of Münster , 48149 Münster, Germany
- Institute of Experimental Physics I, Universität Leipzig , 04103 Leipzig, Germany
| | - M Svea Grieb
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
| | - Steffen Hahn
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
| | - Friedrich W Schwarz
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
- cfaed - Center for Advancing Electronics Dresden, TU Dresden , 01307 Dresden, Germany
| | - Ralf Seidel
- Institute for Molecular Cell Biology, University of Münster , 48149 Münster, Germany
- Institute of Experimental Physics I, Universität Leipzig , 04103 Leipzig, Germany
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
9
|
Shon MJ, Cohen AE. Nano-mechanical measurements of protein-DNA interactions with a silicon nitride pulley. Nucleic Acids Res 2015; 44:e7. [PMID: 26338777 PMCID: PMC4705685 DOI: 10.1093/nar/gkv866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/15/2015] [Indexed: 01/13/2023] Open
Abstract
Proteins adhere to DNA at locations and with strengths that depend on the protein conformation, the underlying DNA sequence and the ionic content of the solution. A facile technique to probe the positions and strengths of protein-DNA binding would aid in understanding these important interactions. Here, we describe a 'DNA pulley' for position-resolved nano-mechanical measurements of protein-DNA interactions. A molecule of λ DNA is tethered by one end to a glass surface, and by the other end to a magnetic bead. The DNA is stretched horizontally by a magnet, and a nanoscale knife made of silicon nitride is manipulated to contact, bend and scan along the DNA. The mechanical profile of the DNA at the contact with the knife is probed via nanometer-precision optical tracking of the magnetic bead. This system enables detection of protein bumps on the DNA and localization of their binding sites. We study theoretically the technical requirements to detect mechanical heterogeneities in the DNA itself.
Collapse
Affiliation(s)
- Min Ju Shon
- Department of Chemistry and Chemical Biology and Department of Physics, Harvard University and Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology and Department of Physics, Harvard University and Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| |
Collapse
|
10
|
Ngo TTM, Zhang Q, Zhou R, Yodh JG, Ha T. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 2015; 160:1135-44. [PMID: 25768909 PMCID: PMC4409768 DOI: 10.1016/j.cell.2015.02.001] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/07/2014] [Accepted: 01/17/2015] [Indexed: 02/06/2023]
Abstract
Dynamics of the nucleosome and exposure of nucleosomal DNA play key roles in many nuclear processes, but local dynamics of the nucleosome and its modulation by DNA sequence are poorly understood. Using single-molecule assays, we observed that the nucleosome can unwrap asymmetrically and directionally under force. The relative DNA flexibility of the inner quarters of nucleosomal DNA controls the unwrapping direction such that the nucleosome unwraps from the stiffer side. If the DNA flexibility is similar on two sides, it stochastically unwraps from either side. The two ends of the nucleosome are orchestrated such that the opening of one end helps to stabilize the other end, providing a mechanism to amplify even small differences in flexibility to a large asymmetry in nucleosome stability. Our discovery of DNA flexibility as a critical factor for nucleosome dynamics and mechanical stability suggests a novel mechanism of gene regulation by DNA sequence and modifications.
Collapse
Affiliation(s)
- Thuy T M Ngo
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2902, USA
| | - Qiucen Zhang
- Department of Physics, Center for Physics in Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2902, USA
| | - Ruobo Zhou
- Department of Physics, Center for Physics in Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2902, USA
| | - Jaya G Yodh
- Department of Physics, Center for Physics in Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2902, USA.
| | - Taekjip Ha
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2902, USA; Department of Physics, Center for Physics in Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2902, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2902, USA; Howard Hughes Medical Institute, University of Illinois, Urbana, IL 61801-2902, USA.
| |
Collapse
|
11
|
Chen Y, Radford SE, Brockwell DJ. Force-induced remodelling of proteins and their complexes. Curr Opin Struct Biol 2015; 30:89-99. [PMID: 25710390 PMCID: PMC4499843 DOI: 10.1016/j.sbi.2015.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 11/23/2022]
Abstract
Force can drive conformational changes in proteins, as well as modulate their stability and the affinity of their complexes, allowing a mechanical input to be converted into a biochemical output. These properties have been utilised by nature and force is now recognised to be widely used at the cellular level. The effects of force on the biophysical properties of biological systems can be large and varied. As these effects are only apparent in the presence of force, studies on the same proteins using traditional ensemble biophysical methods can yield apparently conflicting results. Where appropriate, therefore, force measurements should be integrated with other experimental approaches to understand the physiological context of the system under study.
Collapse
Affiliation(s)
- Yun Chen
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
12
|
Abstract
A cell can be thought of as a highly sophisticated micro factory: in a pool of billions of molecules - metabolites, structural proteins, enzymes, oligonucleotides - multi-subunit complexes assemble to perform a large number of basic cellular tasks, such as DNA replication, RNA/protein synthesis or intracellular transport. By purifying single components and using them to reconstitute molecular processes in a test tube, researchers have gathered crucial knowledge about mechanistic, dynamic and structural properties of biochemical pathways. However, to sort this information into an accurate cellular road map, we need to understand reactions in their relevant context within the cellular hierarchy, which is at the individual molecule level within a crowded, cellular environment. Reactions occur in a stochastic fashion, have short-lived and not necessarily well-defined intermediates, and dynamically form functional entities. With the use of single-molecule techniques these steps can be followed and detailed kinetic information that otherwise would be hidden in ensemble averaging can be obtained. One of the first complex cellular tasks that have been studied at the single-molecule level is the replication of DNA. The replisome, the multi-protein machinery responsible for copying DNA, is built from a large number of proteins that function together in an intricate and efficient fashion allowing the complex to tolerate DNA damage, roadblocks or fluctuations in subunit concentration. In this review, we summarize advances in single-molecule studies, both in vitro and in vivo, that have contributed to our current knowledge of the mechanistic principles underlying DNA replication.
Collapse
Affiliation(s)
- S A Stratmann
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, The Netherlands.
| | | |
Collapse
|
13
|
Savinov A, Perez CF, Block SM. Single-molecule studies of riboswitch folding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1030-1045. [PMID: 24727093 DOI: 10.1016/j.bbagrm.2014.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/27/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
The folding dynamics of riboswitches are central to their ability to modulate gene expression in response to environmental cues. In most cases, a structural competition between the formation of a ligand-binding aptamer and an expression platform (or some other competing off-state) determines the regulatory outcome. Here, we review single-molecule studies of riboswitch folding and function, predominantly carried out using single-molecule FRET or optical trapping approaches. Recent results have supplied new insights into riboswitch folding energy landscapes, the mechanisms of ligand binding, the roles played by divalent ions, the applicability of hierarchical folding models, and kinetic vs. thermodynamic control schemes. We anticipate that future work, based on improved data sets and potentially combining multiple experimental techniques, will enable the development of more complete models for complex RNA folding processes. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Andrew Savinov
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | | | - Steven M Block
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Brucale M, Schuler B, Samorì B. Single-molecule studies of intrinsically disordered proteins. Chem Rev 2014; 114:3281-317. [PMID: 24432838 DOI: 10.1021/cr400297g] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marco Brucale
- Institute for the Study of Nanostructured Materials (ISMN), Italian National Council of Research (CNR) , Area della Ricerca Roma1, Via Salaria km 29.3 00015 Monterotondo (Rome), Italy
| | | | | |
Collapse
|
15
|
Scholl ZN, Li Q, Marszalek PE. Single molecule mechanical manipulation for studying biological properties of proteins,
DNA
, and sugars. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:211-29. [DOI: 10.1002/wnan.1253] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/10/2013] [Accepted: 10/17/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Zackary N. Scholl
- Department of Computational Biology and Bioinformatics Duke University Durham NC USA
| | - Qing Li
- Department of Mechanical Engineering and Materials Science Duke University Durham NC USA
| | - Piotr E. Marszalek
- Department of Mechanical Engineering and Materials Science, Center for Biologically Inspired Materials and Material Systems Duke University Durham NC USA
| |
Collapse
|
16
|
Affiliation(s)
- Sanghwa Lee
- Department
of Physics and Astronomy, Department of Biophysics and Chemical Biology,
and National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea
| | - Sungchul Hohng
- Department
of Physics and Astronomy, Department of Biophysics and Chemical Biology,
and National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
17
|
Abstract
SSB proteins bind to and control the accessibility of single-stranded (ss) DNA generated as a transient intermediate during a variety of cellular processes. For subsequent DNA processing, however, SSB needs to be removed and yield to other proteins while avoiding ssDNA exposure to nucleases. Using single-molecule two- and three-color fluorescence resonance energy transfer (FRET) and fluorescence-force spectroscopy, we recently showed that the SSB/DNA complex is a highly dynamic system and SSB functions as a sliding platform that migrates on ssDNA for recruiting other proteins in DNA repair, replication, and recombination. Here, we present the activity assays in detail for observing the transitions between different SSB binding modes and SSB diffusion on ssDNA in real time by using single-molecule FRET microscopy and for studying how mechanical forces regulate SSB-DNA interactions using fluorescence-force spectroscopy. These single-molecule approaches are generally applicable to many other protein-nucleic acid systems.
Collapse
Affiliation(s)
- Ruobo Zhou
- Department of Physics and Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, IL, USA.
| | | |
Collapse
|
18
|
Kim H, Ha T. Single-molecule nanometry for biological physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:016601. [PMID: 23249673 PMCID: PMC3549428 DOI: 10.1088/0034-4885/76/1/016601] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Precision measurement is a hallmark of physics but the small length scale (∼nanometer) of elementary biological components and thermal fluctuations surrounding them challenge our ability to visualize their action. Here, we highlight the recent developments in single-molecule nanometry where the position of a single fluorescent molecule can be determined with nanometer precision, reaching the limit imposed by the shot noise, and the relative motion between two molecules can be determined with ∼0.3 nm precision at ∼1 ms time resolution, as well as how these new tools are providing fundamental insights into how motor proteins move on cellular highways. We will also discuss how interactions between three and four fluorescent molecules can be used to measure three and six coordinates, respectively, allowing us to correlate the movements of multiple components. Finally, we will discuss recent progress in combining angstrom-precision optical tweezers with single-molecule fluorescent detection, opening new windows for multi-dimensional single-molecule nanometry for biological physics.
Collapse
Affiliation(s)
- Hajin Kim
- Howard Hughes Medical Institute, Urbana, IL 61801, USA
| | | |
Collapse
|
19
|
Zoldák G, Rief M. Force as a single molecule probe of multidimensional protein energy landscapes. Curr Opin Struct Biol 2012; 23:48-57. [PMID: 23279960 DOI: 10.1016/j.sbi.2012.11.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/26/2012] [Accepted: 11/26/2012] [Indexed: 01/06/2023]
Abstract
Force spectroscopy has developed into an indispensable tool for studying folding and binding of proteins on a single molecule level in real time. Design of the pulling geometry allows tuning the reaction coordinate in a very precise manner. Many recent experiments have taken advantage of this possibility and have provided detailed insight the folding pathways on the complex high dimensional energy landscape. Beyond its potential to provide control over the reaction coordinate, force is also an important physiological parameter that affects protein conformation under in vivo conditions. Single molecule force spectroscopy studies have started to unravel the response and adaptation of force bearing protein structures to mechanical loads.
Collapse
Affiliation(s)
- Gabriel Zoldák
- Physik Department E22, Technische Universität München, James-Franck-Strasse, 85748 Garching, Germany
| | | |
Collapse
|
20
|
Lee JY, Wang F, Fazio T, Wind S, Greene EC. Measuring intermolecular rupture forces with a combined TIRF-optical trap microscope and DNA curtains. Biochem Biophys Res Commun 2012; 426:565-70. [PMID: 22967893 DOI: 10.1016/j.bbrc.2012.08.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 01/18/2023]
Abstract
We report a new approach to probing DNA-protein interactions by combining optical tweezers with a high-throughput DNA curtains technique. Here we determine the forces required to remove the individual lipid-anchored DNA molecules from the bilayer. We demonstrate that DNA anchored to the bilayer through a single biotin-streptavidin linkage withstands ∼20pN before being pulled free from the bilayer, whereas molecules anchored to the bilayer through multiple attachment points can withstand ⩾65pN; access to this higher force regime is sufficient to probe the responses of protein-DNA interactions to force changes. As a proof-of-principle, we concurrently visualized DNA-bound fluorescently-tagged RNA polymerase while simultaneously stretching the DNA molecules. This work presents a step towards a powerful experimental platform that will enable concurrent visualization of DNA curtains while applying defined forces through optical tweezers.
Collapse
Affiliation(s)
- Ja Yil Lee
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
The last 15 years have witnessed the development of tools that allow the observation and manipulation of single molecules. The rapidly expanding application of these technologies for investigating biological systems of ever-increasing complexity is revolutionizing our ability to probe the mechanisms of biological reactions. Here, we compare the mechanistic information available from single-molecule experiments with the information typically obtained from ensemble studies and show how these two experimental approaches interface with each other. We next present a basic overview of the toolkit for observing and manipulating biology one molecule at a time. We close by presenting a case study demonstrating the impact that single-molecule approaches have had on our understanding of one of life's most fundamental biochemical reactions: the translation of a messenger RNA into its encoded protein by the ribosome.
Collapse
Affiliation(s)
- Ignacio Tinoco
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
22
|
Bienert R, Zimmermann B, Rombach‐Riegraf V, Gräber P. Time‐Dependent FRET with Single Enzymes: Domain Motions and Catalysis in H
+
‐ATP Synthases. Chemphyschem 2011; 12:510-7. [DOI: 10.1002/cphc.201000921] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Indexed: 11/10/2022]
Affiliation(s)
- Roland Bienert
- Department of Physical Chemistry, University of Freiburg, Albertstrasse 23A, 79104 Freiburg (Germany), Fax: (+49) 761‐203‐6189
| | - Boris Zimmermann
- Department of Physical Chemistry, University of Freiburg, Albertstrasse 23A, 79104 Freiburg (Germany), Fax: (+49) 761‐203‐6189
| | - Verena Rombach‐Riegraf
- Department of Physical Chemistry, University of Freiburg, Albertstrasse 23A, 79104 Freiburg (Germany), Fax: (+49) 761‐203‐6189
| | - Peter Gräber
- Department of Physical Chemistry, University of Freiburg, Albertstrasse 23A, 79104 Freiburg (Germany), Fax: (+49) 761‐203‐6189
| |
Collapse
|