1
|
Gill S, Mandigo TR, Elmali AD, Leger BS, Yang B, Tran S, Laosuntisuk K, Lane JM, Bannister D, Aonbangkhen C, Ormerod KG, Mahama B, Schuch KN, Elya C, Akhund-Zade J, Math SR, LoRocco NC, Seo S, Maher M, Kanca O, Bebek N, Karadeniz D, Senel GB, Courage C, Lehesjoki AE, Winkelman JW, Bellen HJ, de Bivort B, Hart AC, Littleton JT, Baykan B, Doherty CJ, Melkani GC, Prober DA, Woo CM, Saxena R, Schreiber SL, Walker JA. A conserved role for ALG10/ALG10B and the N -glycosylation pathway in the sleep-epilepsy axis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.11.24318624. [PMID: 39711723 PMCID: PMC11661338 DOI: 10.1101/2024.12.11.24318624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Congenital disorders of glycosylation (CDG) comprise a class of inborn errors of metabolism resulting from pathogenic variants in genes coding for enzymes involved in the asparagine-linked glycosylation of proteins. Unexpectedly to date, no CDG has been described for ALG10 , encoding the alpha-1,2-glucosyltransferase catalyzing the final step of lipid-linked oligosaccharide biosynthesis. Genome-wide association studies (GWAS) of human traits in the UK Biobank revealed significant SNP associations with short sleep duration, reduced napping frequency, later sleep timing and evening diurnal preference as well as cardiac traits at a genomic locus containing a pair of paralogous enzymes ALG10 and ALG10B . Modeling Alg10 loss in Drosophila, we identify an essential role for the N -glycosylation pathway in maintaining appropriate neuronal firing activity, healthy sleep, preventing seizures, and cardiovascular homeostasis. We further confirm the broader relevance of neurological findings associated with Alg10 from humans and flies using zebrafish and nematodes and demonstrate conserved biochemical roles for N -glycosylation in Arabidopsis . We report a human subject homozygous for variants in both ALG10 and ALG10B arising from a consanguineous marriage, with epilepsy, brain atrophy, and sleep abnormalities as predicted by the fly phenotype. Quantitative glycoproteomic analysis in our Drosophila model identifies potential key molecular targets for neurological symptoms of CDGs.
Collapse
|
2
|
Loeslakwiboon K, Li HH, Tsai S, Wen ZH, Lin C. Effects of chilling and cryoprotectants on glycans in shrimp embryos. Cryobiology 2024; 116:104930. [PMID: 38871207 DOI: 10.1016/j.cryobiol.2024.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Glycans are carbohydrates present in every organism that bind to specific molecules such as lectins, a diverse group of proteins. Glycans are vital to cell proliferation and protein trafficking. In addition, embryogenesis is a critical phase in the development of marine organisms. This study investigated the effects of chilling and cryoprotective agents (CPAs) on glycans in the embryos of Stenopus hispidus. The glycan profiles of embryos of S. hispidus at the heartbeat stage were analyzed using lectin arrays. The results of analyses revealed that mannose was the most abundant glycan in the S. hispidus embryos; mannose is crucial to cell proliferation, providing the energy required for embryonic growth. Additionally, the results reveled that chilling altered the content of several glycans, including fucose and Gla-GlcNAc. Chilling may promote monosaccharide accumulation, facilitating osmotic regulation of cells and signal molecules to aid S. hispidus embryos in adapting to cold conditions. Changes were also observed in the lectins NPA, orysata, PALa, ASA, discoidin II, discoidin I, UDA, PA-IIL, and PHA-P after the samples were treated with different CPAs. DMSO may minimize cell damage during exposure to chilling by preserving cell structures, membrane properties, and functions. The present study is the first to investigate the profiles and functions of glycans in shrimp embryos subjected to low-temperature injuries. This study enhances the understanding of cell reproduction during embryogenesis and provides valuable information for the study of glycans in embryos.
Collapse
Affiliation(s)
- Kanokpron Loeslakwiboon
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; National Museum of Marine Biology & Aquarium, Pingtung, Taiwan; Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Hsing-Hui Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; National Museum of Marine Biology & Aquarium, Pingtung, Taiwan
| | - Sujune Tsai
- Department of Post Modern Agriculture, Mingdao University, Chang Hua, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chiahsin Lin
- National Museum of Marine Biology & Aquarium, Pingtung, Taiwan; Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan.
| |
Collapse
|
3
|
Chinchankar MN, Taylor WB, Ko SH, Apple EC, Rodriguez KA, Chen L, Fisher AL. A novel endoplasmic reticulum adaptation is critical for the long-lived Caenorhabditis elegans rpn-10 proteasomal mutant. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194957. [PMID: 37355092 PMCID: PMC10528105 DOI: 10.1016/j.bbagrm.2023.194957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
The loss of proteostasis due to reduced efficiency of protein degradation pathways plays a key role in multiple age-related diseases and is a hallmark of the aging process. Paradoxically, we have previously reported that the Caenorhabditis elegans rpn-10(ok1865) mutant, which lacks the RPN-10/RPN10/PSMD4 subunit of the 19S regulatory particle of the 26S proteasome, exhibits enhanced cytosolic proteostasis, elevated stress resistance and extended lifespan, despite possessing reduced proteasome function. However, the response of this mutant against threats to endoplasmic reticulum (ER) homeostasis and proteostasis was unknown. Here, we find that the rpn-10 mutant is highly ER stress resistant compared to the wildtype. Under unstressed conditions, the ER unfolded protein response (UPR) is activated in the rpn-10 mutant as signified by increased xbp-1 splicing. This primed response appears to alter ER homeostasis through the upregulated expression of genes involved in ER protein quality control (ERQC), including those in the ER-associated protein degradation (ERAD) pathway. Pertinently, we find that ERQC is critical for the rpn-10 mutant longevity. These changes also alter ER proteostasis, as studied using the C. elegans alpha-1 antitrypsin (AAT) deficiency model, which comprises an intestinal ER-localised transgenic reporter of an aggregation-prone form of AAT called ATZ. The rpn-10 mutant shows a significant reduction in the accumulation of the ATZ reporter, thus indicating that its ER proteostasis is augmented. Via a genetic screen for suppressors of decreased ATZ aggregation in the rpn-10 mutant, we then identified ecps-2/H04D03.3, a novel ortholog of the proteasome-associated adaptor and scaffold protein ECM29/ECPAS. We further show that ecps-2 is required for improved ER proteostasis as well as lifespan extension of the rpn-10 mutant. Thus, we propose that ECPS-2-proteasome functional interactions, alongside additional putative molecular processes, contribute to a novel ERQC adaptation which underlies the superior proteostasis and longevity of the rpn-10 mutant.
Collapse
Affiliation(s)
- Meghna N Chinchankar
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - William B Taylor
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Su-Hyuk Ko
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Ellen C Apple
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Karl A Rodriguez
- Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Alfred L Fisher
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America.
| |
Collapse
|
4
|
Kanaki N, Matsuda A, Dejima K, Murata D, Nomura KH, Ohkura T, Gengyo-Ando K, Yoshina S, Mitani S, Nomura K. UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase is indispensable for oogenesis, oocyte-to-embryo transition, and larval development of the nematode Caenorhabditis elegans. Glycobiology 2019; 29:163-178. [PMID: 30445613 DOI: 10.1093/glycob/cwy104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
N-linked glycosylation of proteins is the most common post-translational modification of proteins. The enzyme UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase (DPAGT1) catalyses the first step of N-glycosylation, and DPAGT1 knockout is embryonic lethal in mice. In this study, we identified the sole orthologue (algn-7) of the human DPAGT1 in the nematode C. elegans. The gene activity was disrupted by RNAi and deletion mutagenesis, which resulted in larval lethality, defects in oogenesis and oocyte-to-embryo transition. Endomitotic oocytes, abnormal fusion of pronuclei, abnormal AB cell rotation, disruption of permeation barriers of eggs, and abnormal expression of chitin and chitin synthase in oocytes and eggs were the typical phenotypes observed. The results indicate that N-glycosylation is indispensable for these processes. We further screened an N-glycosylated protein database of C. elegans, and identified 456 germline-expressed genes coding N-glycosylated proteins. By examining RNAi phenotypes, we identified five germline-expressed genes showing similar phenotypes to the algn-7 (RNAi) animals. They were ribo-1, stt-3, ptc-1, ptc-2, and vha-19. We identified known congenital disorders of glycosylation (CDG) genes (ribo-1 and stt-3) and a recently found CDG gene (vha-19). The results show that phenotype analyses using the nematode could be a powerful tool to detect new CDG candidate genes and their associated gene networks.
Collapse
Affiliation(s)
- Nanako Kanaki
- Department of Systems Life Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Ayako Matsuda
- Department of Systems Life Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Katsufumi Dejima
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Daisuke Murata
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuko H Nomura
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Ohkura
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, Japan
| | - Keiko Gengyo-Ando
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Kazuya Nomura
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Papale A, Kummer E, Galbiati V, Marinovich M, Galli CL, Corsini E. Understanding chemical allergen potency: role of NLRP12 and Blimp-1 in the induction of IL-18 in human keratinocytes. Arch Toxicol 2016; 91:1783-1794. [PMID: 27585668 DOI: 10.1007/s00204-016-1806-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
Keratinocytes (KCs) play a key role in all phases of skin sensitization. We recently identified interleukin-18 (IL-18) production as useful end point for determination of contact sensitization potential of low molecular weight chemicals. The aim of this study was to identify genes involved in skin sensitizer-induced inflammasome activation and to establish their role in IL-18 production. For gene expression analysis, cells were treated for 6 h with p-phenylenediamine (PPD) as reference contact allergen; total RNA was extracted and examined with a commercially available Inflammasome Polymerase Chain Reaction (PCR) array. Among genes induced, NLRP12 (Nod-like receptor P12) was selected for further investigation. NLRP12 promoter region contains Blimp-1 (B-lymphocyte-induced maturation protein-1)/PRDM1 binding site, and from the literature, it is reported that Blimp-1 reduces NLRP12 activity and expression in monocytes/macrophages. Their expression and role in KCs are currently unknown. To confirm NLRP12 expression and to investigate its relationship with Blimp-1, cells were exposed for different times (3, 6 and 24 h) to the extreme sensitizer 2,4-dinitrochlorobenzene (DNCB) and the strong sensitizer PPD. Allergens were able to induce both genes, however, with different kinetic, with DNCB more rapidly upregulating Blimp-1 and inducing IL-18 production, compared to PPD. NLRP12 and Blimp-1 expression appeared to be inversely correlated: Blimp-1 silencing resulted in increased NLRP12 expression and reduced contact allergen-induced IL-18 production. Overall results indicate that contact allergens of different potency differently modulate Blimp-1/NLRP12 expression, with strong allergen more rapidly downregulating NLRP12, thus more rapidly inducing IL-18 production. Data confirm that also in KCs, NLRP12 has an inhibitory effect on inflammasome activation assessed by IL-18 maturation.
Collapse
|
6
|
Zhang SB, Jiang P, Wang ZQ, Long SR, Liu RD, Zhang X, Yang W, Ren HJ, Cui J. DsRNA-mediated silencing of Nudix hydrolase in Trichinella spiralis inhibits the larval invasion and survival in mice. Exp Parasitol 2016; 162:35-42. [PMID: 26778819 DOI: 10.1016/j.exppara.2016.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/13/2015] [Accepted: 01/07/2016] [Indexed: 01/15/2023]
Abstract
The aim of this study was to investigate the functions of Trichinella spiralis Nudix hydrolase (TsNd) during the larval invasion of intestinal epithelial cells (IECs), development and survival in host by RNAi. The TsNd-specific double-stranded RNA (dsRNA) was designed to silence the expression of TsNd in T. spiralis larvae. DsRNA were delivered to the larvae by soaking incubation or electroporation. Silencing effect of TsNd transcription and expression was determined by real-time PCR and Western blotting, respectively. The infectivity of larvae treated with dsRNA was investigated by the in vitro larval invasion of IECs and experimental infection in mice. After being soaked with 40 ng/μl of dsRNA-TsNd, the transcription and expression level of TsNd gene was inhibited 65.8% and 56.4%, respectively. After being electroporated with 40 ng/μl of dsRNA-TsNd, the transcription and expression level of TsNd gene was inhibited 74.2% and 58.2%, respectively. Silencing TsNd expression by both soaking and electroporation inhibited significantly the larval invasion of IECs in a dose-dependent manner (r1 = -0.96798, r2 = -0.98707). Compared with the mice inoculated with untreated larvae, mice inoculated with larvae soaked with TsNd dsRNA displayed a 49.9% reduction in adult worms and 39.9% reduction in muscle larvae, while mice inoculated with larvae electroporated with TsNd dsRNA displayed a 83.4% reduction in adult worms and 69.5% reduction in muscle larvae, indicating that electroporation has a higher efficiency than soaking in inhibiting the larval development and survival in mice. Our results showed that silencing TsNd expression in T. spiralis inhibited significantly the larval invasion and survival in host.
Collapse
Affiliation(s)
- Shuai Bing Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China.
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Wei Yang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Hui Jun Ren
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China.
| |
Collapse
|
7
|
Wang ZQ, Zhang SB, Jiang P, Liu RD, Long SR, Zhang X, Ren HJ, Cui J. The siRNA-mediated silencing of Trichinella spiralis nudix hydrolase results in reduction of larval infectivity. Parasitol Res 2015; 114:3551-7. [PMID: 26231837 DOI: 10.1007/s00436-015-4650-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/23/2015] [Indexed: 12/12/2022]
Abstract
Previous studies showed that Trichinella spiralis Nudix hydrolase (TsNd) bound to intestinal epithelial cells (IECs), and vaccination of mice with rTsNd or TsNd DNA produced a partial protective immunity against T. spiralis infection. In this study, three TsNd specific small interfering RNA (siRNA) were designed to silence the expression of TsNd in T. spiralis larvae. SiRNAs were delivered to the larvae by electroporation. Silencing effect of TsNd transcription and expression was determined by real-time PCR and Western blotting, respectively. The infectivity of the larvae treated with siRNA was investigated by the in vitro larval invasion of IECs and experimental infection in mice. The results showed that siRNAs were efficiently delivered into T. spiralis larvae through electroporation. Real-time PCR and Western blotting showed that transcription and expression level of TsNd gene was inhibited 73.3 and 76.7 %, respectively, after being electroporated with 2 μM of siRNA-275 for 1 day. Silencing TsNd expression inhibited significantly the larval invasion of IECs (P < 0.01) and was in a dose-dependent manner (r = -0.97941). The mice with infected larvae treated with TsNd siRNA displayed a 63.6 % reduction in intestinal adult worms and 68.8 % reduction in muscle larval burden compared with mice infected with control siRNA-treated larvae. Our results showed that silencing TsNd expression in T. spiralis significantly reduced the larval infectivity and survival in host.
Collapse
Affiliation(s)
- Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China,
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Stombaugh J, Licon A, Strezoska Ž, Stahl J, Anderson SB, Banos M, van Brabant Smith A, Birmingham A, Vermeulen A. The Power Decoder Simulator for the Evaluation of Pooled shRNA Screen Performance. ACTA ACUST UNITED AC 2015; 20:965-75. [PMID: 25777298 PMCID: PMC4543901 DOI: 10.1177/1087057115576715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/17/2015] [Indexed: 12/30/2022]
Abstract
RNA interference screening using pooled, short hairpin RNA (shRNA) is a powerful, high-throughput tool for determining the biological relevance of genes for a phenotype. Assessing an shRNA pooled screen’s performance is difficult in practice; one can estimate the performance only by using reproducibility as a proxy for power or by employing a large number of validated positive and negative controls. Here, we develop an open-source software tool, the Power Decoder simulator, for generating shRNA pooled screening experiments in silico that can be used to estimate a screen’s statistical power. Using the negative binomial distribution, it models both the relative abundance of multiple shRNAs within a single screening replicate and the biological noise between replicates for each individual shRNA. We demonstrate that this simulator can successfully model the data from an actual laboratory experiment. We then use it to evaluate the effects of biological replicates and sequencing counts on the performance of a pooled screen, without the necessity of gathering additional data. The Power Decoder simulator is written in R and Python and is available for download under the GNU General Public License v3.0.
Collapse
Affiliation(s)
| | - Abel Licon
- Dharmacon, part of GE Healthcare, Lafayette, CO, USA
| | | | - Joshua Stahl
- Dharmacon, part of GE Healthcare, Lafayette, CO, USA
| | | | - Michael Banos
- Dharmacon, part of GE Healthcare, Lafayette, CO, USA
| | | | | | | |
Collapse
|
9
|
Progress of targeting transforming growth factor-β1 small interfering RNA in liver fibrosis. ACTA ACUST UNITED AC 2015; 29:231-5. [PMID: 25429748 DOI: 10.1016/s1001-9294(14)60076-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liver fibrosis is a common pathological consequence of a variety of chronic stimuli, including viral, autoimmune, drug-induced, cholestatic and metabolic diseases. Fibrosis is driven by a dynamic process involving increased synthesis of matrix components and a failure of physiological mechanisms of matrix turnover. Activation of hepatic stellate cells (HSCs) remains a central event in fibrosis. HSCs are the main source of extracellular matrix (ECM). Transforming growth factor-beta (TGF-Β), which is the fibrogenic master cytokine, can induce the activation of HSCs to produce a large amount of ECM, and is capable of inducing apoptosis of liver cells. RNA interference (RNAi) is a novel gene disruption technology. Studies have shown that small interfering RNA (siRNA) targeting TGF-Β1 may inhibit the activation and proliferation of HSCs, suppress ECM synthesis and block liver fibrosis. TGF-Β1 siRNA-mediated gene silencing therapy provides a new avenue for liver fibrosis. This review summarizes recent progresses in research on HSCs, TGF-Β1 and TGF-Β1 siRNA in liver fibrosis.
Collapse
|
10
|
Akiyoshi S, Nomura KH, Dejima K, Murata D, Matsuda A, Kanaki N, Takaki T, Mihara H, Nagaishi T, Furukawa S, Ando KG, Yoshina S, Mitani S, Togayachi A, Suzuki Y, Shikanai T, Narimatsu H, Nomura K. RNAi screening of human glycogene orthologs in the nematode Caenorhabditis elegans and the construction of the C. elegans glycogene database. Glycobiology 2015; 25:8-20. [PMID: 25091817 PMCID: PMC4245905 DOI: 10.1093/glycob/cwu080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/16/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022] Open
Abstract
In this study, we selected 181 nematode glycogenes that are orthologous to human glycogenes and examined their RNAi phenotypes. The results are deposited in the Caenorhabditis elegans Glycogene Database (CGGDB) at AIST, Tsukuba, Japan. The most prominent RNAi phenotypes observed are disruptions of cell cycle progression in germline mitosis/meiosis and in early embryonic cell mitosis. Along with the previously reported roles of chondroitin proteoglycans, glycosphingolipids and GPI-anchored proteins in cell cycle progression, we show for the first time that the inhibition of the functions of N-glycan synthesis genes (cytoplasmic alg genes) resulted in abnormal germline formation, ER stress and small body size phenotypes. The results provide additional information on the roles of glycoconjugates in the cell cycle progression mechanisms of germline and embryonic cells.
Collapse
Affiliation(s)
| | - Kazuko H Nomura
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Katsufumi Dejima
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Daisuke Murata
- Graduate School of Systems Life Sciences, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | | | - Nanako Kanaki
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Tetsuro Takaki
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiroyuki Mihara
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Takayuki Nagaishi
- Graduate School of Systems Life Sciences, and Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Shuhei Furukawa
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Keiko-Gengyo Ando
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Akira Togayachi
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Yoshinori Suzuki
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Toshihide Shikanai
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Hisashi Narimatsu
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Kazuya Nomura
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
11
|
RNAi-mediated silencing of paramyosin expression in Trichinella spiralis results in impaired viability of the parasite. PLoS One 2012. [PMID: 23185483 PMCID: PMC3503832 DOI: 10.1371/journal.pone.0049913] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Trichinella spiralis expresses paramyosin (Ts-PMY) not only as a structural protein but also as an immunomodulatory protein to protect the worm from being attacked by host complement components. In this study, the functions of PMY in the viability and the growth development of T. spiralis were confirmed at the first time by silencing the gene function with RNA interference technique. METHODS AND FINDINGS To understand its functions in the viability of the worm, we used RNA interference to silence the expression of Ts-pmy mRNA and protein in the parasite. Significant silencing of Ts-pmy mRNA expression in larval and adult T. spiralis was achieved by siRNA and dsRNA through soaking and electroporation. Electroporation of T. spiralis larvae with 8 µM siRNA1743 or 100 ng/µl dsRNA-PF3 resulted in 66.3% and 60.4% decrease in Ts-pmy transcript and 52.0% and 64.7% decrease in Ts-PMY protein expression, respectively, compared with larvae treated with irrelevant control siRNA or dsRNA. Larvae treated with siRNA1743 displayed significant reduction in molting (40.8%) and serious surface damage as detected with SYTOX fluorescent staining. Infection of mice with larvae electroporated with Ts-pmy siRNA1743 resulted in 37.6% decrease in adult worm burden and 23.2% decrease in muscle larvae burden compared with mice infected with control siRNA-treated larvae. In addition, adult worms recovered from mice infected with siRNA-treated larvae released 24.8% less newborn larvae. CONCLUSION It is the first time RNAi was used on T. spiralis to demonstrate that silencing PMY expression in T. spiralis significantly reduces the parasite's viability and infectivity, further confirming that Ts-PMY plays an important role in the survival of T. spiralis and therefore is a promising target for vaccine development.
Collapse
|
12
|
Therapies and therapeutic approaches in Congenital Disorders of Glycosylation. Glycoconj J 2012; 30:77-84. [DOI: 10.1007/s10719-012-9447-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/03/2012] [Indexed: 01/05/2023]
|
13
|
Adler LN, Gomez TA, Clarke SG, Linster CL. A novel GDP-D-glucose phosphorylase involved in quality control of the nucleoside diphosphate sugar pool in Caenorhabditis elegans and mammals. J Biol Chem 2011; 286:21511-23. [PMID: 21507950 DOI: 10.1074/jbc.m111.238774] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The plant VTC2 gene encodes GDP-L-galactose phosphorylase, a rate-limiting enzyme in plant vitamin C biosynthesis. Genes encoding apparent orthologs of VTC2 exist in both mammals, which produce vitamin C by a distinct metabolic pathway, and in the nematode worm Caenorhabditis elegans where vitamin C biosynthesis has not been demonstrated. We have now expressed cDNAs of the human and worm VTC2 homolog genes (C15orf58 and C10F3.4, respectively) and found that the purified proteins also display GDP-hexose phosphorylase activity. However, as opposed to the plant enzyme, the major reaction catalyzed by these enzymes is the phosphorolysis of GDP-D-glucose to GDP and D-glucose 1-phosphate. We detected activities with similar substrate specificity in worm and mouse tissue extracts. The highest expression of GDP-D-glucose phosphorylase was found in the nervous and male reproductive systems. A C. elegans C10F3.4 deletion strain was found to totally lack GDP-D-glucose phosphorylase activity; this activity was also found to be decreased in human HEK293T cells transfected with siRNAs against the human C15orf58 gene. These observations confirm the identification of the worm C10F3.4 and the human C15orf58 gene expression products as the GDP-D-glucose phosphorylases of these organisms. Significantly, we found an accumulation of GDP-D-glucose in the C10F3.4 mutant worms, suggesting that the GDP-D-glucose phosphorylase may function to remove GDP-D-glucose formed by GDP-D-mannose pyrophosphorylase, an enzyme that has previously been shown to lack specificity for its physiological D-mannose 1-phosphate substrate. We propose that such removal may prevent the misincorporation of glucosyl residues for mannosyl residues into the glycoconjugates of worms and mammals.
Collapse
Affiliation(s)
- Lital N Adler
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|