1
|
Alamer S, Kageyama Y, Gundersen RE. Localization of palmitoylated and activated G protein α-subunit in Dictyostelium discoideum. J Cell Biochem 2018; 119:4975-4989. [PMID: 29352733 DOI: 10.1002/jcb.26689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/19/2018] [Indexed: 01/01/2023]
Abstract
Guanine nucleotide-binding proteins (G proteins) act as molecular switches to regulate many fundamental cellular processes. The lipid modification, palmitoylation, can be considered as a key factor for proper G protein function and plasma membrane localization. In Dictyostelium discoidum, Gα2 is essential for the chemotactic response to cAMP in their developmental life cycle. However, the regulation of Gα2 with respect to palmitoylation, activation and Gβγ association is less clear. In this study, Gα2 is shown to be palmitoylated on Cys-4 by [3 H]palmitate labeling. Loss of this palmitoylation site results in redistribution of Gα2 within the cell and poor D. discoideum development. Cellular re-localization is also observed for activated Gα2. In the membrane fraction, Gα2-wt (YFP) is highly enriched in a low-density membrane fraction, which is palmitoylation-dependent. Activated Gα2 monomer and heterotrimer are shifted to two different higher-density fractions. These results broaden our understanding of how G protein localization and function are regulated inside the cells.
Collapse
Affiliation(s)
- Sarah Alamer
- Department of Molecular and Biomedical Sciences, University of Maine, Hitchner Hall, Orono, Maine.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| | - Yusuke Kageyama
- Department of Molecular and Biomedical Sciences, University of Maine, Hitchner Hall, Orono, Maine.,Johns Hopkins University Medical School, Baltimore, Maryland
| | - Robert E Gundersen
- Department of Molecular and Biomedical Sciences, University of Maine, Hitchner Hall, Orono, Maine.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| |
Collapse
|
2
|
GPCR-controlled membrane recruitment of negative regulator C2GAP1 locally inhibits Ras signaling for adaptation and long-range chemotaxis. Proc Natl Acad Sci U S A 2017; 114:E10092-E10101. [PMID: 29109256 DOI: 10.1073/pnas.1703208114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Eukaryotic cells chemotax in a wide range of chemoattractant concentration gradients, and thus need inhibitory processes that terminate cell responses to reach adaptation while maintaining sensitivity to higher-concentration stimuli. However, the molecular mechanisms underlying inhibitory processes are still poorly understood. Here, we reveal a locally controlled inhibitory process in a GPCR-mediated signaling network for chemotaxis in Dictyostelium discoideum We identified a negative regulator of Ras signaling, C2GAP1, which localizes at the leading edge of chemotaxing cells and is activated by and essential for GPCR-mediated Ras signaling. We show that both C2 and GAP domains are required for the membrane targeting of C2GAP1, and that GPCR-triggered Ras activation is necessary to recruit C2GAP1 from the cytosol and retains it on the membrane to locally inhibit Ras signaling. C2GAP1-deficient c2gapA- cells have altered Ras activation that results in impaired gradient sensing, excessive polymerization of F actin, and subsequent defective chemotaxis. Remarkably, these cellular defects of c2gapA- cells are chemoattractant concentration dependent. Thus, we have uncovered an inhibitory mechanism required for adaptation and long-range chemotaxis.
Collapse
|
3
|
Sergé A, de Keijzer S, Van Hemert F, Hickman MR, Hereld D, Spaink HP, Schmidt T, Snaar-Jagalska BE. Quantification of GPCR internalization by single-molecule microscopy in living cells. Integr Biol (Camb) 2011; 3:675-83. [PMID: 21541374 DOI: 10.1039/c0ib00121j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Receptor internalization upon ligand stimulation is a key component of a cell's response and allows a cell to correctly sense its environment. Novel fluorescent methods have enabled the direct visualization of the agonist-stimulated G-protein-coupled receptors (GPCR) trafficking in living cells. However, it is difficult to observe internalization of GPCRs in vivo due to intrinsic autofluorescence and cytosolic signals of fluorescently labeled GPCRs. This study uses the superior positional accuracy of single-molecule fluorescence microscopy to visualize in real time the internalization of Dictyostelium discoideum cAMP receptors, cAR1, genetically encoded with eYFP. This technique made it possible to follow the number of receptors in time revealing that the fraction of cytosolic receptors increases after persistent agonist stimulation and that the majority of the receptors were degraded after internalization. The observed internalization process was phosphorylation dependent, as shown with the use of a phosphorylation deficient cAR1 mutant, cm1234-eYFP, or stimulation with an antagonist, Rp-cAMPS that does not induce receptor phosphorylation. Furthermore, experiments done in mound-stage cells suggest that intrinsic, phosphorylation-induced internalization of cAR1 is necessary for Dictyostelium wild type cells to progress properly through multicellular development. To our knowledge, this observation illustrates for the first time phosphorylation-dependent internalization of single cAR1 molecules in living cells and its involvement in multicellular development. This very sensitive imaging of receptor internalization can be a useful and universal approach for pharmacological characterization of GPCRs in other cell types.
Collapse
Affiliation(s)
- Arnauld Sergé
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, P.O. Box 9504, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Teo R, Lewis KJ, Forde JE, Ryves WJ, Reddy JV, Rogers BJ, Harwood AJ. Glycogen synthase kinase-3 is required for efficient Dictyostelium chemotaxis. Mol Biol Cell 2010; 21:2788-96. [PMID: 20534815 PMCID: PMC2912363 DOI: 10.1091/mbc.e09-10-0891] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We present a new role for glycogen synthase kinase (GSK) in the regulation of aggregation and chemotaxis in Dictyostelium. GSK regulates two chemotactic pathways, PIP3 and TORC2; hence, a loss of function of GSK leads to poor chemotaxis, an observation not previously seen when only one chemotactic pathway was targeted. Glycogen synthase kinase-3 (GSK3) is a highly conserved protein kinase that is involved in several important cell signaling pathways and is associated with a range of medical conditions. Previous studies indicated a major role of the Dictyostelium homologue of GSK3 (gskA) in cell fate determination during morphogenesis of the fruiting body; however, transcriptomic and proteomic studies have suggested that GSK3 regulates gene expression much earlier during Dictyostelium development. To investigate a potential earlier role of GskA, we examined the effects of loss of gskA on cell aggregation. We find that cells lacking gskA exhibit poor chemotaxis toward cAMP and folate. Mutants fail to activate two important regulatory signaling pathways, mediated by phosphatidylinositol 3,4,5-trisphosphate (PIP3) and target of rapamycin complex 2 (TORC2), which in combination are required for chemotaxis and cAMP signaling. These results indicate that GskA is required during early stages of Dictyostelium development, in which it is necessary for both chemotaxis and cell signaling.
Collapse
Affiliation(s)
- Regina Teo
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
5
|
King JS, Teo R, Ryves J, Reddy JV, Peters O, Orabi B, Hoeller O, Williams RSB, Harwood AJ. The mood stabiliser lithium suppresses PIP3 signalling in Dictyostelium and human cells. Dis Model Mech 2009; 2:306-12. [PMID: 19383941 PMCID: PMC2675811 DOI: 10.1242/dmm.001271] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/21/2009] [Indexed: 12/12/2022] Open
Abstract
Bipolar mood disorder (manic depression) is a major psychiatric disorder whose molecular origins are unknown. Mood stabilisers offer patients both acute and prophylactic treatment, and experimentally, they provide a means to probe the underlying biology of the disorder. Lithium and other mood stabilisers deplete intracellular inositol and it has been proposed that bipolar mood disorder arises from aberrant inositol (1,4,5)-trisphosphate [IP(3), also known as Ins(1,4,5)P(3)] signalling. However, there is no definitive evidence to support this or any other proposed target; a problem exacerbated by a lack of good cellular models. Phosphatidylinositol (3,4,5)-trisphosphate [PIP(3), also known as PtdIns(3,4,5)P(3)] is a prominent intracellular signal molecule within the central nervous system (CNS) that regulates neuronal survival, connectivity and synaptic function. By using the genetically tractable organism Dictyostelium, we show that lithium suppresses PIP(3)-mediated signalling. These effects extend to the human neutrophil cell line HL60. Mechanistically, we show that lithium attenuates phosphoinositide synthesis and that its effects can be reversed by overexpression of inositol monophosphatase (IMPase), consistent with the inositol-depletion hypothesis. These results demonstrate a lithium target that is compatible with our current knowledge of the genetic predisposition for bipolar disorder. They also suggest that lithium therapy might be beneficial for other diseases caused by elevated PIP(3) signalling.
Collapse
Affiliation(s)
- Jason S. King
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
- Present address: CRUK-Beatson Institute for Cancer research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Regina Teo
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Jonathan Ryves
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Jonathan V. Reddy
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Owen Peters
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Ben Orabi
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Oliver Hoeller
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | - Robin S. B. Williams
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Adrian J. Harwood
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
6
|
Biochemical responses to chemoattractants in Dictyostelium: ligand-receptor interactions and downstream kinase activation. Methods Mol Biol 2009; 571:271-81. [PMID: 19763973 DOI: 10.1007/978-1-60761-198-1_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dictyostelium discoideum is one of the most facile eukaryotic systems for the study of chemotactic response to secreted chemical ligands. Dictyostelium grow as individual cells, using bacteria and fungi as primary nutrient sources; during growth, Dictyostelium moves directionally toward folate, a bacterial byproduct. Upon nutrient depletion Dictyostelium initiates a multicellular development program characterized by the production and secretion of cAMP. Cell surface receptors specifically recognize extracellular cAMP, which serves as both a morphogen to promote development and a chemoattractant to organize multicellularity. We discuss several approaches for the study of ligand-receptor interaction, with focus on affinity class determination and quantification of ligand binding sites (i.e., receptors) per cell. We further present examples for the application of biochemical assays to characterize the ligand-induced kinase activation of PI3K, GSK3, and ERK2.
Collapse
|
7
|
Bolourani P, Spiegelman GB, Weeks G. Rap1 activation in response to cAMP occurs downstream of ras activation during Dictyostelium aggregation. J Biol Chem 2008; 283:10232-40. [PMID: 18180289 DOI: 10.1074/jbc.m707459200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have used a doubly disrupted rasC(-)/rasG(-) strain of Dictyostelium discoideum, which ectopically expresses the carA gene, to explore the relationship between the activation of RasC and RasG, the two proteins that are necessary for optimum cAMP signaling, and the activation of Rap1, a Ras subfamily protein, that is also activated by cAMP. The ectopic expression of carA restored early developmental gene expression to the rasC(-)/rasG(-) strain, rendering it suitable for an analysis of cAMP signal transduction. Because there was negligible signaling through both the cAMP chemotactic pathway and the adenylyl cyclase activation pathway in the rasC(-)/rasG(-)/[act15]:carA strain, it is clear that RasG and RasC are the only two Ras subfamily proteins that directly control these pathways. The position of Rap1 in the signal transduction cascade was clarified by the finding that Rap1 activation was totally abolished in rasC(-)/rasG(-)/[act15]:carA and rasG(-) cells but only slightly reduced in rasC(-) cells. Rap1 activation, therefore, occurs downstream of the Ras proteins and predominantly, if not exclusively, downstream of RasG. The finding that in vitro guanylyl cyclase activation is also abolished in the rasC(-)/rasG(-)/[act15]:carA strain identifies RasG/RasC as the presumptive monomeric GTPases required for this activation.
Collapse
Affiliation(s)
- Parvin Bolourani
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
8
|
Loovers HM, Postma M, Keizer-Gunnink I, Huang YE, Devreotes PN, van Haastert PJM. Distinct roles of PI(3,4,5)P3 during chemoattractant signaling in Dictyostelium: a quantitative in vivo analysis by inhibition of PI3-kinase. Mol Biol Cell 2006; 17:1503-13. [PMID: 16421252 PMCID: PMC1415331 DOI: 10.1091/mbc.e05-09-0825] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The role of PI(3,4,5)P(3) in Dictyostelium signal transduction and chemotaxis was investigated using the PI3-kinase inhibitor LY294002 and pi3k-null cells. The increase of PI(3,4,5)P(3) levels after stimulation with the chemoattractant cAMP was blocked >95% by 60 microM LY294002 with half-maximal effect at 5 microM. This correlated well with the inhibition of the membrane translocation of the PH-domain protein, PHcracGFP. LY294002 did not reduce cAMP-mediated cGMP production, but significantly reduced the cAMP response up to 75% in wild type and completely in pi3k-null cells. LY294002-treated cells were round, not elongated as control cells. Interestingly, cAMP induced a time and dose-dependent recovery of cell elongation. These elongated LY294002-treated wild-type and pi3k-null cells exhibited chemotactic orientation toward cAMP that is statistically identical to chemotactic orientation of control cells. In control cells, PHcrac-GFP and F-actin colocalize upon cAMP stimulation. However, inhibition of PI3-kinases does not affect the first phase of the actin polymerization at a wide range of chemoattractant concentrations. Our data show that severe inhibition of cAMP-mediated PI(3,4,5)P(3) accumulation leads to inhibition of cAMP relay, cell elongation and cell aggregation, but has no detectable effect on chemotactic orientation, provided that cAMP had sufficient time to induce cell elongation.
Collapse
Affiliation(s)
- Harriët M Loovers
- Department of Molecular Cell Biology, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
Gundersen RE, You J, Rauch S, Farnham K, McCarty C, Willis N, Prince A. Loss-of-function mutations identified in the Helical domain of the G protein alpha-subunit, G alpha2, of Dictyostelium discoideum. Biochim Biophys Acta Gen Subj 2005; 1722:262-70. [PMID: 15715993 DOI: 10.1016/j.bbagen.2004.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 12/15/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
The guanine nucleotide binding regulatory proteins (G proteins) play essential roles in a wide variety of physiological processes, such as vision, hormone responses, olfaction, immune response, and development. The heterotrimeric G proteins consist of alpha-, beta-, and gamma-subunits and act as molecular switches to relay information from transmembrane receptors to intracellular effectors. The switch mechanism is a function of the inherent GTPase activity of the alpha-subunit. The alpha-subunit is comprised of two domains, the GTPase domain and the Helical domain. The GTPase domain performs all of the known alpha-subunit functions while little is know about the role of the Helical domain. To gain a better understanding of alpha-subunit function, we performed a screen for loss-of-function mutations, using the G alpha2-subunit of Dictyostelium. G alpha2 is essential for the developmental life cycle of Dictyostelium. It is known that the loss of G alpha2 function results in a failure of cells to enter the developmental phase, producing a visibly abnormal phenotype. This allows the easy identification of amino acids essential to G alpha2 function. A library of random point mutations in the g alpha2 cDNA was constructed using low fidelity polymerase chain reaction (PCR). The library was then expressed in a g alpha2 null cell line and screened for loss-of-function mutations. Mutations were identified in isolated clones by sequencing the g alpha2 insert. To date, sixteen single amino acids changes have been identified in G alpha2 which result in loss-of-function. Of particular interest are seven mutations found in the Helical domain of the alpha-subunit. These loss-of-function mutations in the alpha-subunit Helical domain may provide important insight into its function.
Collapse
Affiliation(s)
- Robert E Gundersen
- Department of Biochemistry, Microbiology and Molecular Biology, 5735 Hitchner Hall, University of Maine, Orono, ME 04469-5735, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Veltman DM, Roelofs J, Engel R, Visser AJWG, Van Haastert PJM. Activation of soluble guanylyl cyclase at the leading edge during Dictyostelium chemotaxis. Mol Biol Cell 2004; 16:976-83. [PMID: 15601898 PMCID: PMC545927 DOI: 10.1091/mbc.e04-08-0701] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dictyostelium contains two guanylyl cyclases, GCA, a 12-transmembrane enzyme, and sGC, a homologue of mammalian soluble adenylyl cyclase. sGC provides nearly all chemoattractant-stimulated cGMP formation and is essential for efficient chemotaxis toward cAMP. We show that in resting cells the major fraction of the sGC-GFP fusion protein localizes to the cytosol, and a small fraction is associated to the cell cortex. With the artificial substrate Mn2+/GTP, sGC activity and protein exhibit a similar distribution between soluble and particulate fraction of cell lysates. However, with the physiological substrate Mg2+/GTP, sGC in the cytosol is nearly inactive, whereas the particulate enzyme shows high enzyme activity. Reconstitution experiments reveal that inactive cytosolic sGC acquires catalytic activity with Mg2+/GTP upon association to the membrane. Stimulation of cells with cAMP results in a twofold increase of membrane-localized sGC-GFP, which is accompanied by an increase of the membrane-associated guanylyl cyclase activity. In a cAMP gradient, sGC-GFP localizes to the anterior cell cortex, suggesting that in chemotacting cells, sGC is activated at the leading edge of the cell.
Collapse
Affiliation(s)
- Douwe M Veltman
- Department of Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Brzostowski JA, Parent CA, Kimmel AR. A G alpha-dependent pathway that antagonizes multiple chemoattractant responses that regulate directional cell movement. Genes Dev 2004; 18:805-15. [PMID: 15059962 PMCID: PMC387420 DOI: 10.1101/gad.1173404] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chemotactic cells, including neutrophils and Dictyostelium discoideum, orient and move directionally in very shallow chemical gradients. As cells polarize, distinct structural and signaling components become spatially constrained to the leading edge or rear of the cell. It has been suggested that complex feedback loops that function downstream of receptor signaling integrate activating and inhibiting pathways to establish cell polarity within such gradients. Much effort has focused on defining activating pathways, whereas inhibitory networks have remained largely unexplored. We have identified a novel signaling function in Dictyostelium involving a Galpha subunit (Galpha9) that antagonizes broad chemotactic response. Mechanistically, Galpha9 functions rapidly following receptor stimulation to negatively regulate PI3K/PTEN, adenylyl cyclase, and guanylyl cyclase pathways. The coordinated activation of these pathways is required to establish the asymmetric mobilization of actin and myosin that typifies polarity and ultimately directs chemotaxis. Most dramatically, cells lacking Galpha9 have extended PI(3,4,5)P(3), cAMP, and cGMP responses and are hyperpolarized. In contrast, cells expressing constitutively activated Galpha9 exhibit a reciprocal phenotype. Their second message pathways are attenuated, and they have lost the ability to suppress lateral pseudopod formation. Potentially, functionally similar Galpha-mediated inhibitory signaling may exist in other eukaryotic cells to regulate chemoattractant response.
Collapse
Affiliation(s)
- Joseph A Brzostowski
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive Kidney Diseases, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
12
|
Veltman DM, De Boer JS, Van Haastert PJM. Chemoattractant-stimulated calcium influx in Dictyostelium discoideum does not depend on cGMP. Biochim Biophys Acta Gen Subj 2003; 1623:129-34. [PMID: 14572910 DOI: 10.1016/j.bbagen.2003.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chemoattractant stimulation of Dictyostelium cells leads to the opening of calcium channels in the plasma membrane, causing extracellular calcium to flux into the cell. The genetically uncharacterised mutants stmF and KI8 show strongly altered chemoattractant-stimulated cGMP responses. The aberrant calcium influx in these strains has provided evidence that the chemoattractant-stimulated calcium influx is potentiated by cGMP. We have tested this hypothesis in genetically defined mutants by measuring the calcium influx in a strain that lacks intracellular cGMP due to the disruption of two guanylyl cyclases, and in a strain with increased cGMP levels caused by the disruption of two cGMP-degrading phosphodiesterases. The results reveal that the calcium influx stimulated by cAMP or folic acid is essentially identical in these strains. We conclude that cGMP is not involved in chemoattractant-stimulated calcium influx.
Collapse
Affiliation(s)
- Douwe M Veltman
- GBB Research School, Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
13
|
Blaauw M, Knol JC, Kortholt A, Roelofs J, Postma M, Visser AJWG, van Haastert PJM. Phosducin-like proteins in Dictyostelium discoideum: implications for the phosducin family of proteins. EMBO J 2003; 22:5047-57. [PMID: 14517243 PMCID: PMC204491 DOI: 10.1093/emboj/cdg508] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinal phosducin is known to sequester transducin Gbetagamma, thereby modulating transducin activity. Phosducin is a member of a family of phosducin-like proteins (PhLP) found in eukaryotes. Phylogeny of 33 phosducin-like proteins from metazoa, plants and lower eukaryotes identified three distinct groups named phosducin-I-III. We discovered three phlp genes in Dictyostelium, each encoding a phosducin-like protein of a different group. Disruption of the phlp1 gene strongly impaired G-protein signalling, apparently due to mislocalization of Gbetagamma in phlp1-null cells. GFP-Gbeta and GFP-Ggamma are membrane associated in wild-type cells, but cytosolic in phlp1-null cells. Phlp2 disruption is lethal due to a synchronous collapse of the cells after 16-17 cell divisions. Phlp3 disruptants show no abnormal phenotype. These results establish a role for phosducin-like proteins in facilitating folding, localization or function of proteins, in addition to modulating G-protein signalling.
Collapse
Affiliation(s)
- Mieke Blaauw
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Roelofs J, Van Haastert PJM. Characterization of two unusual guanylyl cyclases from dictyostelium. J Biol Chem 2002; 277:9167-74. [PMID: 11777934 DOI: 10.1074/jbc.m111437200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanylyl cyclase A (GCA) and soluble guanylyl cyclase (sGC) encode GCs in Dictyostelium and have a topology similar to 12-transmembrane and soluble adenylyl cyclase, respectively. We demonstrate that all detectable GC activity is lost in a cell line in which both genes have been inactivated. Cell lines with one gene inactivated were used to characterize the other guanylyl cyclase (i.e. GCA in sgc(minus sign) null cells and sGC in gca(minus sign) null cells). Despite the different topologies, the enzymes have many properties in common. In vivo, extracellular cAMP activates both enzymes via a G-protein-coupled receptor. In vitro, both enzymes are activated by GTPgammaS (K(a) = 11 and 8 microm for GCA and sGC, respectively). The addition of GTPgammaS leads to a 1.5-fold increase of V(max) and a 3.5-fold increase of the affinity for GTP. Ca(2+) inhibits both GCA and sGC with K(i) of about 50 and 200 nm, respectively. Other biochemical properties are very different; GCA is expressed mainly during growth and multicellular development, whereas sGC is expressed mainly during cell aggregation. Folic acid and cAMP activate GCA maximally about 2.5-fold, whereas sGC is activated about 8-fold. Osmotic stress strongly stimulates sGC but has no effect on GCA activity. Finally, GCA is exclusively membrane-bound and is active mainly with Mg(2+), whereas sGC is predominantly soluble and more active with Mn(2+).
Collapse
Affiliation(s)
- Jeroen Roelofs
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
15
|
Roelofs J, Loovers HM, Van Haastert PJ. GTPgammaS regulation of a 12-transmembrane guanylyl cyclase is retained after mutation to an adenylyl cyclase. J Biol Chem 2001; 276:40740-5. [PMID: 11522784 DOI: 10.1074/jbc.m105154200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DdGCA is a Dictyostelium guanylyl cyclase with a topology typical for mammalian adenylyl cyclases containing 12 transmembrane-spanning regions and two cyclase domain. In Dictyostelium cells heterotrimeric G-proteins are essential for guanylyl cyclase activation by extracellular cAMP. In lysates, guanylyl cyclase activity is strongly stimulated by guanosine 5'-3-O-(thio) triphosphate (GTPgammaS), which is also a substrate of the enzyme. DdGCA was converted to an adenylyl cyclase by introducing three point mutations. Expression of the obtained DdGCA(kqd) in adenylyl cyclase-defective cells restored the phenotype of the mutant. GTPgammaS stimulated the adenylyl cyclase activity of DdGCA(kqd) with properties similar to those of the wild-type enzyme (decrease of K(m) and increase of V(max)), demonstrating that GTPgammaS stimulation is independent of substrate specificity. Furthermore, GTPgammaS activation of DdGCA(kqd) is retained in several null mutants of Galpha and Gbeta proteins, indicating that GTPgammaS activation is not mediated by a heterotrimeric G-protein but possibly by a monomeric G-protein.
Collapse
Affiliation(s)
- J Roelofs
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | | | | |
Collapse
|
16
|
Roelofs J, Meima M, Schaap P, Van Haastert PJ. The Dictyostelium homologue of mammalian soluble adenylyl cyclase encodes a guanylyl cyclase. EMBO J 2001; 20:4341-8. [PMID: 11500361 PMCID: PMC125260 DOI: 10.1093/emboj/20.16.4341] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2001] [Revised: 06/08/2001] [Accepted: 06/20/2001] [Indexed: 11/12/2022] Open
Abstract
A new Dictyostelium discoideum cyclase gene was identified that encodes a protein (sGC) with 35% similarity to mammalian soluble adenylyl cyclase (sAC). Gene disruption of sGC has no effect on adenylyl cyclase activity and results in a >10-fold reduction in guanylyl cyclase activity. The scg- null mutants show reduced chemotactic sensitivity and aggregate poorly under stringent conditions. With Mn(2+)/GTP as substrate, most of the sGC activity is soluble, but with the more physiological Mg(2+)/GTP the activity is detected in membranes and stimulated by GTPgammaS. Unexpectedly, orthologues of sGC and sAC are present in bacteria and vertebrates, but absent from Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
| | - Marcel Meima
- GBB, Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands and
Department of Biochemistry, University of Dundee, Dundee DD1 5EH, UK Corresponding authors e-mail or
J.Roelofs and M.Meima contributed equally to this work
| | - Pauline Schaap
- GBB, Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands and
Department of Biochemistry, University of Dundee, Dundee DD1 5EH, UK Corresponding authors e-mail or
J.Roelofs and M.Meima contributed equally to this work
| | - Peter J.M. Van Haastert
- GBB, Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands and
Department of Biochemistry, University of Dundee, Dundee DD1 5EH, UK Corresponding authors e-mail or
J.Roelofs and M.Meima contributed equally to this work
| |
Collapse
|
17
|
Tang L, Ammann R, Gao T, Gomer RH. A cell number-counting factor regulates group size in Dictyostelium by differentially modulating cAMP-induced cAMP and cGMP pulse sizes. J Biol Chem 2001; 276:27663-9. [PMID: 11371560 DOI: 10.1074/jbc.m102205200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A secreted counting factor (CF), regulates the size of Dictyostelium discoideum fruiting bodies in part by regulating cell-cell adhesion. Aggregation and the expression of adhesion molecules are mediated by relayed pulses of cAMP. Cells also respond to cAMP with a short cGMP pulse. We find that CF slowly down-regulates the cAMP-induced cGMP pulse by inhibiting guanylyl cyclase activity. A 1-min exposure of cells to purified CF increases the cAMP-induced cAMP pulse. CF does not affect the cAMP receptor or its interaction with its associated G proteins or the translocation of the cytosolic regulator of adenylyl cyclase to the membrane in response to cAMP. Pulsing streaming wild-type cells with a high concentration of cAMP results in the formation of small groups, whereas reducing cAMP pulse size with exogenous cAMP phosphodiesterase during stream formation causes cells to form large groups. Altering the extracellular cAMP pulse size does not phenocopy the effects of CF on the cAMP-induced cGMP pulse size or cell-cell adhesion, indicating that CF does not regulate cGMP pulses and adhesion via CF's effects on cAMP pulses. The results suggest that regulating cell-cell adhesion, the cGMP pulse size, or the cAMP pulse size can control group size and that CF regulates all three of these independently.
Collapse
Affiliation(s)
- L Tang
- Howard Hughes Medical Institute and the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | |
Collapse
|
18
|
Roelofs J, Snippe H, Kleineidam RG, Van Haastert PJ. Guanylate cyclase in Dictyostelium discoideum with the topology of mammalian adenylate cyclase. Biochem J 2001; 354:697-706. [PMID: 11237875 PMCID: PMC1221702 DOI: 10.1042/0264-6021:3540697] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The core of adenylate and guanylate cyclases is formed by an intramolecular or intermolecular dimer of two cyclase domains arranged in an antiparallel fashion. Metazoan membrane-bound adenylate cyclases are composed of 12 transmembrane spanning regions, and two cyclase domains which function as a heterodimer and are activated by G-proteins. In contrast, membrane-bound guanylate cyclases have only one transmembrane spanning region and one cyclase domain, and are activated by extracellular ligands to form a homodimer. In the cellular slime mould, Dictyostelium discoideum, membrane-bound guanylate cyclase activity is induced after cAMP stimulation; a G-protein-coupled cAMP receptor and G-proteins are essential for this activation. We have cloned a Dictyostelium gene, DdGCA, encoding a protein with 12 transmembrane spanning regions and two cyclase domains. Sequence alignment demonstrates that the two cyclase domains are transposed, relative to these domains in adenylate cyclases. DdGCA expressed in Dictyostelium exhibits high guanylate cyclase activity and no detectable adenylate cyclase activity. Deletion of the gene indicates that DdGCA is not essential for chemotaxis or osmo-regulation. The knock-out strain still exhibits substantial guanylate cyclase activity, demonstrating that Dictyostelium contains at least one other guanylate cyclase.
Collapse
Affiliation(s)
- J Roelofs
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
19
|
Root PA, Prince A, Gundersen RE. Aggregation ofDictyostelium discoideum is dependent on myristoylation and membrane localization of the G protein ?-subunit, G?2. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990801)74:2<301::aid-jcb14>3.0.co;2-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Lindsey DF, Amerik A, Deery WJ, Bishop JD, Hochstrasser M, Gomer RH. A deubiquitinating enzyme that disassembles free polyubiquitin chains is required for development but not growth in Dictyostelium. J Biol Chem 1998; 273:29178-87. [PMID: 9786928 DOI: 10.1074/jbc.273.44.29178] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although cell differentiation usually involves synthesis of new proteins, little is known about the role of protein degradation. In eukaryotes, conjugation to ubiquitin polymers often targets a protein for destruction. This process is regulated by deubiquitinating enzymes, which can disassemble ubiquitin polymers or ubiquitin-substrate conjugates. We find that a deubiquitinating enzyme, UbpA, is required for Dictyostelium development. ubpA cells have normal protein profiles on gels, grow normally, and show normal responses to starvation such as differentiation and secretion of conditioned medium factor. However, ubpA cells have defective aggregation, chemotaxis, cAMP relay, and cell adhesion. These defects result from low expression of cAMP pulse-induced genes such as those encoding the cAR1 cAMP receptor, phosphodiesterase, and the gp80 adhesion protein. Treatment of ubpA cells with pulses of exogenous cAMP allows them to aggregate and express these genes like wild-type cells, but they still fail to develop fruiting bodies. Unlike wild type, ubpA cells accumulate ubiquitin-containing species that comigrate with ubiquitin polymers, suggesting a defect in polyubiquitin metabolism. UbpA has sequence similarity with yeast Ubp14, which disassembles free ubiquitin chains. Yeast ubp14 cells have a defect in proteolysis, due to excess ubiquitin chains competing for substrate binding to proteasomes. Cross-species complementation and enzyme specificity assays indicate that UbpA and Ubp14 are functional homologs. We suggest that specific developmental transitions in Dictyostelium require the degradation of specific proteins and that this process in turn requires the disassembly of polyubiquitin chains by UbpA.
Collapse
Affiliation(s)
- D F Lindsey
- Howard Hughes Medical Institute, Rice University, Houston, Texas 77251-1892, USA
| | | | | | | | | | | |
Collapse
|
21
|
Otsuka H, Van Haastert PJ. A novel Myb homolog initiates Dictyostelium development by induction of adenylyl cyclase expression. Genes Dev 1998; 12:1738-48. [PMID: 9620859 PMCID: PMC316870 DOI: 10.1101/gad.12.11.1738] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dictyostelium development is induced by starvation. The adenylyl cyclase gene ACA is one of the first genes expressed upon starvation. ACA produces extracellular cAMP that induces chemotaxis, aggregation, and differentiation in neighboring cells. Using insertional mutagenesis we have isolated a mutant that does not aggregate upon starvation but is rescued by adding extracellular cAMP. Sequencing of the mutated locus revealed a new gene, DdMYB2, whose product contains three Myb repeats, the DNA-binding motif of Myb-related transcription factors. Ddmyb2-null cells show undetectable levels of ACA transcript and no cAMP production. Ectopic expression of ACA from a constitutive promotor rescues differentiation and morphogenesis of Ddmyb2-null mutants. The results suggest that development in Dictyostelium starts by starvation-mediated DdMyb2 activation, which induces adenylyl cyclase activity producing the differentiation-inducing signal cAMP.
Collapse
Affiliation(s)
- H Otsuka
- Department of Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
22
|
Gundersen RE. Phosphorylation of the G protein α-subunit, Gα2, ofDictyostelium discoideum requires a functional and activated Gα2. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(19970801)66:2<268::aid-jcb13>3.0.co;2-d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Gütlich M, Witter K, Bourdais J, Veron M, Rödl W, Ziegler I. Control of 6-(D-threo-1',2'-dihydroxypropyl) pterin (dictyopterin) synthesis during aggregation of Dictyostelium discoideum. Involvement of the G-protein-linked signalling pathway in the regulation of GTP cyclohydrolase I activity. Biochem J 1996; 314 ( Pt 1):95-101. [PMID: 8660315 PMCID: PMC1217057 DOI: 10.1042/bj3140095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
6-(D-threo-1',2'-Dihydroxypropylpterin (dictyopterin) has been identified in extracts of growing Dictyostelium dicoideum cells [Klein, Thiery and Tatischeff (1990) Eur. J. Biochem. 187, 665-669]. We demonstrate that it originates from GTP by de novo biosynthesis and that the first committed step is catalysed by GTP cyclohydrolase I, yielding dihydroneopterin triphosphate [neopterin is 6-(D-erythro-1',2',3'-trihydroxypropyl) pterin]. The GTP cyclohydrolase I activity is found in the cytosolic fraction and in a membrane-associated form. The level of a 0.9 kb mRNA coding for GTP cyclohydrolase I decreases to about 10% of its initial value within 2 h after Dictyostelium cells start development induced by starvation. In the cytosolic fraction, the specific activities of GTP cyclohydrolase I, as well as the concentrations of (6R/S)-5,6,7,8-tetrahydrodictyopterin (H4dictyopterin), follow this decline of the mRNA level. In the particulate fraction, however, the specific activities of GTP cyclohydrolase I and, in consequence, H4dictyopterin synthesis, transiently increase and reach a maximum after 4-5 h of development. The time-course of H4dictyopterin concentrations in the starvation medium closely correlates with its production in the membrane fraction. The activity of membrane-associated GTP cyclohydrolase I can be increased by pre-incubation of the cell lysate with guanosine 5'-[gamma-thio]triphosphate and Mg2+. This GTP analogue does not serve as a substrate and has no direct effect on the enzyme activity, indicating that a G-protein-linked signalling pathway is involved in the regulation of GTP cyclohydrolase I activity and thus in H4dictyopterin production during early development of D. discoideum.
Collapse
Affiliation(s)
- M Gütlich
- GSF-Institut für Klinische Molekularbiologie und Tumorgenetik, München, Germany
| | | | | | | | | | | |
Collapse
|