1
|
Jones CV, Jarboe BG, Majer HM, Ma AT, Beld J. Escherichia coli Nissle 1917 secondary metabolism: aryl polyene biosynthesis and phosphopantetheinyl transferase crosstalk. Appl Microbiol Biotechnol 2021; 105:7785-7799. [PMID: 34546406 DOI: 10.1007/s00253-021-11546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Escherichia coli Nissle 1917 (EcN) is a Gram-negative bacterium that is used to treat inflammatory bowel diseases. The probiotic character of EcN is not well-understood, but its ability to produce secondary metabolites plays an important role in its activity. The EcN genome encodes for an aryl polyene (APE) biosynthetic gene cluster (BGC), and APE products have a role in biofilm formation. We show here that this unusual polyketide assembly line synthase produces four APE molecules which are likely cis/trans isomers. Within the APE BGC, two acyl carrier proteins are involved in biosynthesis. Acyl carrier proteins require activation by post-translational modification with a phosphopantetheinyl transferase (PPTase). Through analysis of single, double, and triple mutants of three PPTases, the PPTase-BGC crosstalk relationship in EcN was characterized. Understanding PPTase-BGC crosstalk is important for the engineering of secondary metabolite production hosts and for targeting of PPTases with new antibiotics. KEY POINTS: • Escherichia coli Nissle 1917 biosynthesizes four aryl polyene isoforms. • Phosphopantetheinyl transferase crosstalk is important for biosynthesis.
Collapse
Affiliation(s)
- Courtney V Jones
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Brianna G Jarboe
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Haley M Majer
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Amy T Ma
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA.
| |
Collapse
|
2
|
Marcella AM, Culbertson SJ, Shogren-Knaak MA, Barb AW. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex. J Mol Biol 2017; 429:3763-3775. [DOI: 10.1016/j.jmb.2017.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023]
|
3
|
Cyanobacterial Sfp-type phosphopantetheinyl transferases functionalize carrier proteins of diverse biosynthetic pathways. Sci Rep 2017; 7:11888. [PMID: 28928426 PMCID: PMC5605751 DOI: 10.1038/s41598-017-12244-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria produce structurally and functionally diverse polyketides, nonribosomal peptides and their hybrids. Sfp-type phosphopantetheinyl transferases (PPTases) are essential to the production of these compounds via functionalizing carrier proteins (CPs) of biosynthetic megaenzymes. However, cyanobacterial Sfp-type PPTases remain poorly characterized, posing a significant barrier to the exploitation of cyanobacteria for biotechnological and biomedical applications. Herein, we describe the detailed characterization of multiple cyanobacterial Sfp-type PPTases that were rationally selected. Biochemical characterization of these enzymes along with the prototypic enzyme Sfp from Bacillus subtilis demonstrated their varying specificities toward 11 recombinant CPs of different types of biosynthetic pathways from cyanobacterial and Streptomyces strains. Kinetic analysis further indicated that PPTases possess the higher binding affinity and catalytic efficiency toward their cognate CPs in comparison with noncognate substrates. Moreover, when chromosomally replacing the native PPTase gene of Synechocystis sp. PCC6803, two selected cyanobacterial PPTases and Sfp supported the growth of resulted mutants. Cell lysates of the cyanobacterial mutants further functionalized recombinant CP substrates. Collectively, these studies reveal the versatile catalysis of selected cyanobacterial PPTases and provide new tools to synthesize cyanobacterial natural products using in vitro and in vivo synthetic biology approaches.
Collapse
|
4
|
Paul S, Ishida H, Nguyen LT, Liu Z, Vogel HJ. Structural and dynamic characterization of a freestanding acyl carrier protein involved in the biosynthesis of cyclic lipopeptide antibiotics. Protein Sci 2017; 26:946-959. [PMID: 28187530 PMCID: PMC5405426 DOI: 10.1002/pro.3138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/08/2022]
Abstract
Friulimicin is a cyclic lipodecapeptide antibiotic that is produced by Actinoplanes friuliensis. Similar to the related lipopeptide drug daptomycin, the peptide skeleton of friulimicin is synthesized by a large multienzyme nonribosomal peptide synthetase (NRPS) system. The LipD protein plays a major role in the acylation reaction of friulimicin. The attachment of the fatty acid group promotes its antibiotic activity. Phylogenetic analysis reveals that LipD is most closely related to other freestanding acyl carrier proteins (ACPs), for which the genes are located near to NRPS gene clusters. Here, we report that the solution NMR structure of apo-LipD is very similar to other four-helix bundle forming ACPs from fatty acid synthase (FAS), polyketide synthase, and NRPS systems. By recording NMR dynamics data, we found that the backbone motions in holo-LipD are more restricted than in apo-LipD due to the attachment of phosphopantetheine moiety. This enhanced stability of holo-LipD was also observed in differential scanning calorimetry experiments. Furthermore, we demonstrate that, unlike several other ACPs, the folding of LipD does not depend on the presence of divalent cations, although the presence of Mg2+ or Ca2+ can increase the protein stability. We propose that small structural rearrangements in the tertiary structure of holo-LipD which lead to the enhanced stability are important for the cognate enzyme recognition for the acylation reaction. Our results also highlight the different surface charges of LipD and FAS-ACP from A. friuliensis that would allow the acyl-CoA ligase to interact preferentially with the LipD instead of binding to the FAS-ACP.
Collapse
Affiliation(s)
- Subrata Paul
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| | - Hiroaki Ishida
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| | - Leonard T. Nguyen
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| | - Zhihong Liu
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| | - Hans J. Vogel
- Biochemistry Research GroupDepartment of Biological Sciences, University of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
5
|
Abstract
The pathways in Escherichia coli and (largely by analogy) S. enterica remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of E. coli and S. enterica for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to E. coli introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.
Collapse
|
6
|
Rodríguez MFR, Sánchez-García A, Salas JJ, Garcés R, Martínez-Force E. Characterization of soluble acyl-ACP desaturases from Camelina sativa, Macadamia tetraphylla and Dolichandra unguis-cati. JOURNAL OF PLANT PHYSIOLOGY 2015; 178:35-42. [PMID: 25765361 DOI: 10.1016/j.jplph.2015.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 05/12/2023]
Abstract
Acyl-acyl carrier protein (ACP) desaturases (EC 1.14.19.2) are soluble enzymes that catalyse the insertion of a double bond into saturated fatty acid bound in saturated acyl chains bound to ACP in higher plants, producing cis-monounsaturated fatty acids. Three types of soluble acyl-ACP desaturases have been described: Δ(9)-acyl-ACP, Δ(6)-acyl-ACP and Δ(4)-acyl-ACP desaturases, which differ in the substrate specificity and the position in which the double bond is introduced. In the present work, Camelina sativa (CsSAD), Macadamia tetraphylla (MtSAD) and Dolichandra unguis-cati (DuSAD) desaturases were cloned, sequenced and characterized. Single copies of CsSAD, MtSAD and DuSAD with three, one and two different alleles, respectively, were found. The corresponding mature proteins were heterologously expressed in Escherichia coli for biochemical characterization in protein extracts. The recombinant CsSAD enzyme showed 300-fold higher specificity towards 18:0-ACP than 16:0-ACP. Similar profile exhibited MtSAD although the differences in the specificity were lower, around 170-fold higher for 18:0-ACP than 16:0-ACP. Furthermore, DuSAD presented a profile showing preference towards 16:0-ACP against 18:0-ACP, around twice more, being so a Δ(9) palmitoyl-ACP desaturase. Also, we reported the expression profile of CsSAD, which showed the highest levels of expression in expanding tissues that typically are very active in lipid biosynthesis such as developing seed endosperm. Moreover, the possibility to express a new desaturase in C. sativa (oilseed crop that store high levels of oil and is easy to transform) to create a new line rich in short monounsaturated fatty acid is discussed.
Collapse
Affiliation(s)
| | | | - Joaquín J Salas
- Instituto de la Grasa, CSIC, Avda. Padre García Tejero 4, 41012 Seville, Spain.
| | - Rafael Garcés
- Instituto de la Grasa, CSIC, Avda. Padre García Tejero 4, 41012 Seville, Spain.
| | | |
Collapse
|
7
|
Wang YY, Zhang XS, Ren NN, Guo YY, Jiang XH, Jiang H, Li YD, Li YQ. Two bacterial group II phosphopantetheinyl transferases involved in both primary metabolism and secondary metabolism. Curr Microbiol 2014; 70:390-7. [PMID: 25413605 DOI: 10.1007/s00284-014-0735-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
Abstract
It is known that bacterial group II phosphopantetheinyl transferases (PPTases) usually phosphopantetheinylate acyl carrier proteins (ACPs) involved in the secondary metabolism. For example, a bacterial group II PPTase SchPPT has been known to phosphopantetheinylate only ACPs involved in secondary metabolism, such as scn ACP0-2 and scn ACP7. In this study, we found two bacterial group II PPTases, Hppt and Sppt, could phosphopantetheinylate not only scn ACP0-2 and scn ACP7, but also sch FAS ACP, an ACP involved in primary metabolism. Swapping of the N terminus and C terminus of PPTases showed that (i) both the hybrids Hppt-Sppt and Sppt-Hppt could phosphopantetheinylate sch FAS ACP but not scn ACP0-2; (ii) both the hybrids Sppt-SchPPT and SchPPT-Sppt lost abilities to phosphopantetheinylate sch FAS ACP and scn ACP0-2. Hppt and Sppt represent group II PPTases which phosphopantetheinylate both ACPs involved in primary metabolism and ACPs involved in secondary metabolism.
Collapse
Affiliation(s)
- Yue-Yue Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Rodríguez-Rodríguez MF, Salas JJ, Garcés R, Martínez-Force E. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition. PHYTOCHEMISTRY 2014; 107:7-15. [PMID: 25212866 DOI: 10.1016/j.phytochem.2014.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/16/2014] [Accepted: 08/15/2014] [Indexed: 05/19/2023]
Abstract
Acyl-acyl carrier protein (ACP) thioesterases are intraplastidial enzymes that terminate de novo fatty acid biosynthesis in the plastids of higher plants by hydrolyzing the thioester bond between ACP and the fatty acid synthesized. Free fatty acids are then esterified with coenzyme A prior to being incorporated into the glycerolipids synthesized through the eukaryotic pathway. Acyl-ACP thioesterases belong to the TE14 family of thioester-active enzymes and can be classified as FatAs and FatBs, which differ in their amino acid sequence and substrate specificity. Here, the FatA and FatB thioesterases from Camelina sativa seeds, a crop of interest in plant biotechnology, were cloned, sequenced and characterized. The mature proteins encoded by these genes were characterized biochemically after they were heterologously expressed in Escherichia coli and purified. C. sativa contained three different alleles of both the FatA and FatB genes. These genes were expressed most strongly in expanding tissues in which lipids are very actively synthesized, such as developing seed endosperm. The CsFatA enzyme displayed high catalytic efficiency on oleoyl-ACP and CsFatB acted efficiently on palmitoyl-ACP. The contribution of these two enzymes to the synthesis of C. sativa oil was discussed in the light of these results.
Collapse
Affiliation(s)
| | - Joaquín J Salas
- Instituto de la Grasa, CSIC, Avda Padre García Tejero 4, 41012 Seville, Spain.
| | - Rafael Garcés
- Instituto de la Grasa, CSIC, Avda Padre García Tejero 4, 41012 Seville, Spain
| | | |
Collapse
|
9
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
10
|
Hur GH, Vickery CR, Burkart MD. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat Prod Rep 2012; 29:1074-98. [PMID: 22802156 DOI: 10.1039/c2np20025b] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many pharmaceuticals on the market today belong to a large class of natural products called nonribosomal peptides (NRPs). Originating from bacteria and fungi, these peptide-based natural products consist not only of the 20 canonical L-amino acids, but also non-proteinogenic amino acids, heterocyclic rings, sugars, and fatty acids, generating tremendous chemical diversity. As a result, these secondary metabolites exhibit a broad array of bioactivity, ranging from antimicrobial to anticancer. The biosynthesis of these complex compounds is carried out by large multimodular megaenzymes called nonribosomal peptide synthetases (NRPSs). Each module is responsible for incorporation of a monomeric unit into the natural product peptide and is composed of individual domains that perform different catalytic reactions. Biochemical and bioinformatic investigations of these enzymes have uncovered the key principles of NRP synthesis, expanding the pharmaceutical potential of their enzymatic processes. Progress has been made in the manipulation of this biosynthetic machinery to develop new chemoenzymatic approaches for synthesizing novel pharmaceutical agents with increased potency. This review focuses on the recent discoveries and breakthroughs in the structural elucidation, molecular mechanism, and chemical biology underlying the discrete domains within NRPSs.
Collapse
|
11
|
Chan DI, Chu BCH, Lau CKY, Hunter HN, Byers DM, Vogel HJ. NMR solution structure and biophysical characterization of Vibrio harveyi acyl carrier protein A75H: effects of divalent metal ions. J Biol Chem 2010; 285:30558-66. [PMID: 20659901 DOI: 10.1074/jbc.m110.128298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial acyl carrier protein (ACP) is a highly anionic, 9 kDa protein that functions as a cofactor protein in fatty acid biosynthesis. Escherichia coli ACP is folded at neutral pH and in the absence of divalent cations, while Vibrio harveyi ACP, which is very similar at 86% sequence identity, is unfolded under the same conditions. V. harveyi ACP adopts a folded conformation upon the addition of divalent cations such as Ca(2+) and Mg(2+) and a mutant, A75H, was previously identified that restores the folded conformation at pH 7 in the absence of divalent cations. In this study we sought to understand the unique folding behavior of V. harveyi ACP using NMR spectroscopy and biophysical methods. The NMR solution structure of V. harveyi ACP A75H displays the canonical ACP structure with four helices surrounding a hydrophobic core, with a narrow pocket closed off from the solvent to house the acyl chain. His-75, which is charged at neutral pH, participates in a stacking interaction with Tyr-71 in the far C-terminal end of helix IV. pH titrations and the electrostatic profile of ACP suggest that V. harveyi ACP is destabilized by anionic charge repulsion around helix II that can be partially neutralized by His-75 and is further reduced by divalent cation binding. This is supported by differential scanning calorimetry data which indicate that calcium binding further increases the melting temperature of V. harveyi ACP A75H by ∼20 °C. Divalent cation binding does not alter ACP dynamics on the ps-ns timescale as determined by (15)N NMR relaxation experiments, however, it clearly stabilizes the protein fold as observed by hydrogen-deuterium exchange studies. Finally, we demonstrate that the E. coli ACP H75A mutant is similarly unfolded as wild-type V. harveyi ACP, further stressing the importance of this particular residue for proper protein folding.
Collapse
Affiliation(s)
- David I Chan
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Foley TL, Burkart MD. A homogeneous resonance energy transfer assay for phosphopantetheinyl transferase. Anal Biochem 2009; 394:39-47. [PMID: 19573516 DOI: 10.1016/j.ab.2009.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 11/25/2022]
Abstract
Phosphopantetheinyl transferase plays an essential role in activating fatty acid, polyketide, and nonribosomal peptide biosynthetic pathways, catalyzing covalent attachment of a 4'-phosphopantetheinyl group to a conserved residue within carrier protein domains. This enzyme has been validated as an essential gene to primary metabolism and presents a target for the identification of antibiotics with a new mode of action. Here we report the development of a homogeneous resonance energy transfer assay using fluorescent coenzyme A derivatives and a surrogate peptide substrate that can serve to identify inhibitors of this enzyme class. This assay lays a blueprint for translation of these techniques to other transferase enzymes that accept fluorescent substrate analogues.
Collapse
Affiliation(s)
- Timothy L Foley
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
13
|
Chan YA, Thomas MG. Formation and characterization of acyl carrier protein-linked polyketide synthase extender units. Methods Enzymol 2009; 459:143-63. [PMID: 19362639 DOI: 10.1016/s0076-6879(09)04607-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Polyketide natural products are assembled by the condensation of an initiating precursor, or starter unit, with a series of additional precursors referred to as extender units. While there are a number of polyketide synthase starter units, there are currently only seven known polyketide synthase extender units. Polyketide synthase extender units thioesterified to coenzyme A have been known for some time; however, polyketide synthase extender units thioesterified to acyl carrier proteins (ACPs) have been identified only recently. Two of them, (2R)-hydroxymalonyl-ACP and (2S)-aminomalonyl-ACP, are found in the biosynthetic pathway of the antibiotic zwittermicin A in Bacillus cereus UW85. The focus of this chapter is the in vitro formation of (2R)-hydroxymalonyl-ACP and (2S)-aminomalonyl-ACP and the characterization of these extender units using high performance liquid chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
Collapse
Affiliation(s)
- Yolande A Chan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
14
|
Cronan JE, Thomas J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 2009; 459:395-433. [PMID: 19362649 DOI: 10.1016/s0076-6879(09)04617-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This review presents the most thoroughly studied bacterial fatty acid synthetic pathway, that of Escherichia coli and then discusses the exceptions to the E. coli pathway present in other bacteria. The known interrelationships between the fatty acid and polyketide synthetic pathways are also assessed, mainly in the Streptomyces group of bacteria. Finally, we present a compendium of methods for analysis of bacterial fatty acid synthetic pathways.
Collapse
Affiliation(s)
- John E Cronan
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | | |
Collapse
|
15
|
Tryptophan fluorescence reveals induced folding of Vibrio harveyi acyl carrier protein upon interaction with partner enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1835-43. [DOI: 10.1016/j.bbapap.2008.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/30/2008] [Accepted: 07/29/2008] [Indexed: 11/22/2022]
|
16
|
Paliy O, Gargac SM, Cheng Y, Uversky VN, Dunker AK. Protein disorder is positively correlated with gene expression in Escherichia coli. J Proteome Res 2008; 7:2234-45. [PMID: 18465893 PMCID: PMC2754758 DOI: 10.1021/pr800055r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We considered, on a global scale, the relationship between the predicted fraction of protein disorder and the RNA and protein expression in Escherichia coli. Fraction of protein disorder correlated positively with both measured RNA expression levels of E. coli genes in three different growth media and with predicted abundance levels of E. coli proteins. Though weak, the correlation was highly significant. Correlation of protein disorder with RNA expression did not depend on the growth rate of E. coli cultures and was not caused by a small subset of genes showing exceptionally high concordance in their disorder and expression levels. Global analysis was complemented by detailed consideration of several groups of proteins.
Collapse
Affiliation(s)
- Oleg Paliy
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435, USA.
| | | | | | | | | |
Collapse
|
17
|
Gong H, Murphy A, McMaster CR, Byers DM. Neutralization of acidic residues in helix II stabilizes the folded conformation of acyl carrier protein and variably alters its function with different enzymes. J Biol Chem 2006; 282:4494-4503. [PMID: 17179150 DOI: 10.1074/jbc.m608234200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acyl carrier protein (ACP), a small protein essential for bacterial growth and pathogenesis, interacts with diverse enzymes during the biosynthesis of fatty acids, phospholipids, and other specialized products such as lipid A. NMR and hydrodynamic studies have previously shown that divalent cations stabilize native helical ACP conformation by binding to conserved acidic residues at two sites (A and B) at either end of the "recognition" helix II. To examine the roles of these amino acids in ACP structure and function, site-directed mutagenesis was used to replace individual site A (Asp-30, Asp-35, Asp-38) and site B (Glu-47, Glu-53, Asp-56) residues in recombinant Vibrio harveyi ACP with the corresponding amides, along with combined mutations at each site (SA, SB) or both sites (SA/SB). Like native V. harveyi ACP, all individual mutants were unfolded at neutral pH but adopted a helical conformation in the presence of millimolar Mg(2+) or upon fatty acylation. Mg(2+) binding to sites A or B independently stabilized native ACP conformation, whereas mutant SA/SB was folded in the absence of Mg(2+), suggesting that charge neutralization is largely responsible for ACP stabilization by divalent cations. Asp-35 in site A was critical for holo-ACP synthase activity, while acyl-ACP synthetase and UDP-N-acetylglucosamine acyltransferase (LpxA) activities were more affected by mutations in site B. Both sites were required for fatty acid synthase activity. Overall, our results indicate that divalent cation binding site mutations have predicted effects on ACP conformation but unpredicted and variable consequences on ACP function with different enzymes.
Collapse
Affiliation(s)
- Huansheng Gong
- Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | - Anne Murphy
- Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | - Christopher R McMaster
- Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | - David M Byers
- Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| |
Collapse
|
18
|
Liu Q, Ma Y, Zhou L, Zhang Y. Gene cloning, expression and functional characterization of an acyl carrier protein AcpV from Vibrio anguillarum. Arch Microbiol 2006; 185:159-63. [PMID: 16429280 DOI: 10.1007/s00203-005-0058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 09/10/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
Acyl carrier protein (ACP) is a small acidic protein that acts as an essential cofactor in many biosynthetic pathways depending on acyl transfer reactions. In this work, a Vibrio anguillarum ACP encoding gene, acpV, was first cloned from the chromosome of a virulent V. anguillarum strain MVM425. acpV was over-expressed in Escherichia coli and the resultant protein AcpV was purified. The purified AcpV was incubated with purified phosphopantetheinyl transferase (PPtase) in the presence of CoA to assay the 4'-phosphopantetheinylation of AcpV in vitro; and on the other hand, the acpV gene was co-expressed with PPtase-encoding gene in E. coli to examine the 4'-phosphopantetheinylation of AcpV in vivo. Our results suggested that acpV encoded a functional ACP of V. anguillarum, which can be 4'-phosphopantetheinylated well by AcpS-type PPtase (E. coli AcpS) both in vitro and in vivo, but cannot serve as a good substrate for Sfp-type PPtase (V. anguillarum AngD).
Collapse
Affiliation(s)
- Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | | | | | | |
Collapse
|
19
|
Thomas J, Cronan JE. The enigmatic acyl carrier protein phosphodiesterase of Escherichia coli: genetic and enzymological characterization. J Biol Chem 2005; 280:34675-83. [PMID: 16107329 DOI: 10.1074/jbc.m505736200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acyl carrier proteins (ACPs) of fatty acid synthesis are functional only when modified by attachment of the prosthetic group, 4'-phosphopantetheine (4'-PP), which is transferred from CoA to the hydroxyl group of a specific serine residue. Almost 40 years ago Vagelos and Larrabee reported an enzyme from Escherichia coli that removed the prosthetic group. We report that this enzyme, called ACP hydrolyase or ACP phosphodiesterase, is encoded by a gene (yajB) of previously unknown function that we have renamed acpH. A mutant E. coli strain having a total deletion of the acpH gene has been constructed that grows normally, showing that phosphodiesterase activity is not essential for growth, although it is required for turnover of the ACP prosthetic group in vivo. ACP phosphodiesterase (AcpH) has been purified to homogeneity for the first time and is a soluble protein that very readily aggregates upon overexpression in vivo or concentration in vitro. The purified enzyme has been shown to cleave acyl-ACP species with acyl chains of 6-16 carbon atoms and is active on some, but not all, non-native ACP species tested. Possible physiological roles for AcpH are discussed.
Collapse
Affiliation(s)
- Jacob Thomas
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
20
|
Nesbitt NM, Baleanu-Gogonea C, Cicchillo RM, Goodson K, Iwig DF, Broadwater JA, Haas JA, Fox BG, Booker SJ. Expression, purification, and physical characterization of Escherichia coli lipoyl(octanoyl)transferase. Protein Expr Purif 2005; 39:269-82. [PMID: 15642479 DOI: 10.1016/j.pep.2004.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 10/26/2004] [Indexed: 10/26/2022]
Abstract
Lipoic acid is a sulfur-containing 8-carbon fatty acid that functions as a central cofactor in multienzyme complexes that are involved in the oxidative decarboxylation of glycine and several alpha-keto acids. In its functional form, it is bound covalently in an amide linkage to the epsilon-amino group of a conserved lysine residue of the "lipoyl bearing subunit," resulting in a long "swinging arm" that shuttles intermediates among the requisite active sites. In Escherichia coli and many other organisms, the lipoyl cofactor can be synthesized endogenously. The 8-carbon fatty-acyl chain is constructed via the type II fatty acid biosynthetic pathway as an appendage to the acyl carrier protein (ACP). Lipoyl(octanoyl)transferase (LipB) transfers the octanoyl chain from ACP to the target lysine acceptor, generating the substrate for lipoyl synthase (LS), which subsequently catalyzes insertion of both sulfur atoms into the C-6 and C-8 positions of the octanoyl chain. In this study, we present a three-step isolation procedure that results in a 14-fold purification of LipB to >95% homogeneity in an overall yield of 25%. We also show that the protein catalyzes the transfer of the octanoyl group from octanoyl-ACP to apo-H protein, which is the lipoyl bearing subunit of the glycine cleavage system. The specific activity of the purified protein is 0.541 U mg(-1), indicating a turnover number of approximately 0.2 s(-1), and the apparent Km values for octanoyl-ACP and apo-H protein are 10.2+/-4.4 and 13.2+/-2.9 microM, respectively.
Collapse
Affiliation(s)
- Natasha M Nesbitt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gross F, Gottschalk D, Müller R. Posttranslational modification of myxobacterial carrier protein domains in Pseudomonas sp. by an intrinsic phosphopantetheinyl transferase. Appl Microbiol Biotechnol 2005; 68:66-74. [PMID: 15635461 DOI: 10.1007/s00253-004-1836-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 11/08/2004] [Indexed: 11/25/2022]
Abstract
We demonstrate the ability of Pseudomonas putida KT2440, Pseudomonas syringae pv. tomato DC3000 and Pseudomonas stutzeri DSM10701 to posttranslationally activate carrier protein (CP) domains of various polyketide synthases, nonribosomal peptide synthetases, and fatty acid synthase by their intrinsic phosphopantetheinyl transferase. The apo-form is modified to the holo-form of the CP by attaching a phosphopantetheine moiety from coenzymeA to a conserved serine residue. The coding regions of the respective domains were cloned in order to generate C-terminal fusions with intein-chitin. The constructs were subcloned into a broad host range vector and transferred into the three pseudomonad hosts. The resulting recombinant pseudomonad strains were cultivated and each fusion protein was purified by affinity chromatography. Each purified CP was analysed using MALDI/TOF for the expected mass increase. Of the seven CPs tested, six could be purified from P. putida, which was chosen as the general host strain. Out of the six domains, five were completely activated, whereas only 5% of the protein of the sixth domain was in holo-form. Four domains were also expressed in the other hosts.
Collapse
Affiliation(s)
- Frank Gross
- Institut für Pharmazeutische Biologie, Technische Universität Carolo-Wilhelmina, Mendelssohnstrasse 1, 38106 Braunschweig, Germany
| | | | | |
Collapse
|
22
|
Abstract
Bacteria and fungi use large multifunctional enzymes, the so-called nonribosomal peptide synthetases (NRPSs), to produce peptides of broad structural and biological activity. Biochemical studies have contributed substantially to the understanding of the key principles of these modular enzymes that can draw on a much larger number of catalytic tools for the incorporation of unusual features compared with the ribosomal system. Several crystal structures of NRPS-domains have yielded deep insight into the catalytic mechanisms involved and have led to a better prediction of the products assembled and to the construction of hybrid enzymes. In addition to the structure-function relationship of the core- and tailoring-domains of NRPSs, which is the main focus of this review, different biosynthetic strategies and essential enzymes for posttranslational modification and editing are discussed.
Collapse
Affiliation(s)
- Robert Finking
- Philipps-Universität Marburg, Fachbereich Chemie/Biochemie, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| | | |
Collapse
|
23
|
Liu Q, Ma Y, Zhou L, Zhang Y. Gene cloning, expression and functional characterization of a phosphopantetheinyl transferase from Vibrio anguillarum serotype O1. Arch Microbiol 2004; 183:37-44. [PMID: 15551118 DOI: 10.1007/s00203-004-0745-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 10/15/2004] [Accepted: 10/15/2004] [Indexed: 11/26/2022]
Abstract
Phosphopantetheinyl transferases (PPTases) catalyze the essential post-translational activation of carrier proteins from fatty acid synthetases (FASs) in primary metabolism and polyketide synthetases (PKSs) and non-ribosomal polypeptide synthetases (NRPSs) in secondary metabolism. Bacteria typically harbor one PPTase specific for carrier proteins of primary metabolism (ACPS-type PPTases) and at least one capable of modifying carrier proteins involved in secondary metabolism (Sfp-type PPTases). Anguibactin, an important virulent factor in Vibrio anguillarum serotype O1, has been reported to be synthesized by a nonribosomal peptide synthetases (NRPS) system encoded on a 65-kb virulent plasmid pJM1 from strain 775 of V. anguillarum serotype O1, and the PPTase, necessary for the activation of the anguibactin-NRPS, is therefore expected to lie on the pJM1 plasmid. In this work, a putative PPTase gene, angD, was first identified on pEIB1 plasmid (a pJM1-like plasmid) from a virulent strain MVM425 of V. anguillarum serotype O1. A recombinant clone carrying complete angD was able to complement an Escherichia coli entD mutant deficient in Sfp-type PPTase. angD was overexpressed in E. coli and the resultant protein, AngD, was purified. Simultaneously, two carrier proteins involved in anguibactin-NRPS, ArCP and PCP, were overproduced in E. coli and purified. The purified AngD, PCP and ArCP were used to establish an in vitro enzyme reaction, and the PPTase activity of AngD was proved through HPLC analysis to detect the conversion of inactive carrier proteins to active carrier proteins in the reaction mixture. Co-expression of AngD with PCP or ArCP showed that AngD functioned well as a PPTase in vivo in E. coli, modifying PCP and ArCP completely.
Collapse
Affiliation(s)
- Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | |
Collapse
|
24
|
Leonardi R, Chohnan S, Zhang YM, Virga KG, Lee RE, Rock CO, Jackowski S. A pantothenate kinase from Staphylococcus aureus refractory to feedback regulation by coenzyme A. J Biol Chem 2004; 280:3314-22. [PMID: 15548531 DOI: 10.1074/jbc.m411608200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The key regulatory step in CoA biosynthesis in bacteria and mammals is pantothenate kinase (CoaA), which governs the intracellular concentration of CoA through feedback regulation by CoA and its thioesters. CoaA from Staphylococcus aureus (SaCoaA) has a distinct primary sequence that is more similar to the mammalian pantothenate kinases than the prototypical bacterial CoaA of Escherichia coli. In contrast to all known pantothenate kinases, SaCoaA activity is not feedback-regulated by CoA or CoA thioesters. Metabolic labeling of S. aureus confirms that CoA levels are not controlled by CoaA or at steps downstream from CoaA. The pantothenic acid antimetabolite N-heptylpantothenamide (N7-Pan) possesses potent antimicrobial activity against S. aureus and has multiple cellular targets. N7-Pan is a substrate for SaCoaA and is converted to the inactive butyldethia-CoA analog by the downstream pathway enzymes. The analog is also incorporated into acyl carrier protein and D-alanyl carrier protein, the prosthetic groups of which are derived from CoA. The inactivation of acyl carrier protein and the cessation of fatty acid synthesis are the most critical causes of growth inhibition by N7-Pan because the toxicity of the drug is ameliorated by supplementing the growth medium with fatty acids. The absence of feedback regulation at the pantothenate kinase step allows the accumulation of high concentrations of intracellular CoA, consistent with the physiology of S. aureus, which lacks glutathione and relies on the CoA/CoA disulfide reductase redox system for protection from oxidative damage.
Collapse
Affiliation(s)
- Roberta Leonardi
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Chu M, Mierzwa R, Xu L, Yang SW, He L, Patel M, Stafford J, Macinga D, Black T, Chan TM, Gullo V. Structure elucidation of Sch 538415, a novel acyl carrier protein synthase inhibitor from a microorganism. Bioorg Med Chem Lett 2003; 13:3827-9. [PMID: 14552789 DOI: 10.1016/j.bmcl.2003.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel acyl carrier protein synthase inhibitor, Sch 538415 (1), was isolated from an unidentified bacterial microbe. Structure elucidation of 1 was accomplished based on analysis of spectroscopic data including UV, MS and 2D-NMR spectra. Compound 1 exhibited inhibitory activity in the acyl carrier protein synthase (AcpS) assay with an IC(50) value of 4.19 microM and showed antibacterial activity against Staphylococcus aureus in the agar diffusion assay.
Collapse
Affiliation(s)
- Min Chu
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mootz HD, Finking R, Marahiel MA. 4'-phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. J Biol Chem 2001; 276:37289-98. [PMID: 11489886 DOI: 10.1074/jbc.m103556200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
4'-Phosphopantetheine transferases (PPTases) transfer the 4'-phosphopantetheine moiety of coenzyme A onto a conserved serine residue of acyl carrier proteins (ACPs) of fatty acid and polyketide synthases as well as peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases. This posttranslational modification converts ACPs and PCPs from their inactive apo into the active holo form. We have investigated the 4'-phosphopantetheinylation reaction in Bacillus subtilis, an organism containing in total 43 ACPs and PCPs but only two PPTases, the acyl carrier protein synthase AcpS of primary metabolism and Sfp, a PPTase of secondary metabolism associated with the nonribosomal peptide synthetase for the peptide antibiotic surfactin. We identified and cloned ydcB encoding AcpS from B. subtilis, which complemented an Escherichia coli acps disruption mutant. B. subtilis AcpS and its substrate ACP were biochemically characterized. AcpS also modified the d-alanyl carrier protein but failed to recognize PCP and an acyl carrier protein of secondary metabolism discovered in this study, designated AcpK, that was not identified by the Bacillus genome project. On the other hand, Sfp was able to modify in vitro all acyl carrier proteins tested. We thereby extend the reported broad specificity of this enzyme to the homologous ACP. This in vitro cross-interaction between primary and secondary metabolism was confirmed under physiological in vivo conditions by the construction of a ydcB deletion in a B. subtilis sfp(+) strain. The genes coding for Sfp and its homolog Gsp from Bacillus brevis could also complement the E. coli acps disruption. These results call into question the essential role of AcpS in strains that contain a Sfp-like PPTase and consequently the suitability of AcpS as a microbial target in such strains.
Collapse
Affiliation(s)
- H D Mootz
- Philipps-Universität Marburg, Fachbereich Chemie/Biochemie, Hans-Meerwein-Str., Marburg D-35032, Germany
| | | | | |
Collapse
|
27
|
Flaman AS, Chen JM, Van Iderstine SC, Byers DM. Site-directed mutagenesis of acyl carrier protein (ACP) reveals amino acid residues involved in ACP structure and acyl-ACP synthetase activity. J Biol Chem 2001; 276:35934-9. [PMID: 11443113 DOI: 10.1074/jbc.m101849200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl carrier protein (ACP) interacts with many different enzymes during the synthesis of fatty acids, phospholipids, and other specialized products in bacteria. To examine the structural and functional roles of amino acids previously implicated in interactions between the ACP polypeptide and fatty acids attached to the phosphopantetheine prosthetic group, recombinant Vibrio harveyi ACP and mutant derivatives of conserved residues Phe-50, Ile-54, Ala-59, and Tyr-71 were prepared from glutathione S-transferase fusion proteins. Circular dichroism revealed that, unlike Escherichia coli ACP, V. harveyi-derived ACPs are unfolded at neutral pH in the absence of divalent cations; all except F50A and I54A recovered native conformation upon addition of MgCl(2). Mutant I54A was not processed to the holo form by ACP synthase. Some mutations significantly decreased catalytic efficiency of ACP fatty acylation by V. harveyi acyl-ACP synthetase relative to recombinant ACP, e.g. F50A (4%), I54L (20%), and I54V (31%), whereas others (V12G, Y71A, and A59G) had less effect. By contrast, all myristoylated ACPs examined were effective substrates for the luminescence-specific V. harveyi myristoyl-ACP thioesterase. Conformationally sensitive gel electrophoresis at pH 9 indicated that fatty acid attachment stabilizes mutant ACPs in a chain length-dependent manner, although stabilization was decreased for mutants F50A and A59G. Our results indicate that (i) residues Ile-54 and Phe-50 are important in maintaining native ACP conformation, (ii) residue Ala-59 may be directly involved in stabilization of ACP structure by acyl chain binding, and (iii) acyl-ACP synthetase requires native ACP conformation and involves interaction with fatty acid binding pocket residues, whereas myristoyl-ACP thioesterase is insensitive to acyl donor structure.
Collapse
Affiliation(s)
- A S Flaman
- Atlantic Research Centre, Departments of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | |
Collapse
|
28
|
Perham RN. Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu Rev Biochem 2001; 69:961-1004. [PMID: 10966480 DOI: 10.1146/annurev.biochem.69.1.961] [Citation(s) in RCA: 464] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Multistep chemical reactions are increasingly seen as important in a growing number of complex biotransformations. Covalently attached prosthetic groups or swinging arms, and their associated protein domains, are essential to the mechanisms of active-site coupling and substrate channeling in a number of the multifunctional enzyme systems responsible. The protein domains, for which the posttranslational machinery in the cell is highly specific, are crucially important, contributing to the processes of molecular recognition that define and protect the substrates and the catalytic intermediates. The domains have novel folds and move by virtue of conformationally flexible linker regions that tether them to other components of their respective multienzyme complexes. Structural and mechanistic imperatives are becoming apparent as the assembly pathways and the coupling of multistep reactions catalyzed by these dauntingly complex molecular machines are unraveled.
Collapse
Affiliation(s)
- R N Perham
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
29
|
Abstract
Recently, considerable insight has been gained into the modular organization of nonribosomal peptide synthetases (NRPS). The three-dimensional structures of domains associated with substrate adenylation and covalent binding have been solved as well as the structure of a priming enzyme required for the post-translational modification of NRPS. Taken together, these studies will help us to understand the architecture of these mega-enzymes.
Collapse
Affiliation(s)
- T Weber
- Biochemie/Fachbereich Chemie, Philipps-Universität, 35032 Marburg, Germany
| | | |
Collapse
|
30
|
Fowler CA, Tian F, Al-Hashimi HM, Prestegard JH. Rapid determination of protein folds using residual dipolar couplings. J Mol Biol 2000; 304:447-60. [PMID: 11090286 DOI: 10.1006/jmbi.2000.4199] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the next few years, various genome projects will sequence many new genes and yield many new gene products. Many of these products will have no known function and little, if any, sequence homology to existing proteins. There is reason to believe that a rapid determination of a protein fold, even at low resolution, can aid in the identification of function and expedite the determination of structure at higher resolution. Recently devised NMR methods of measuring residual dipolar couplings provide one route to the determination of a fold. They do this by allowing the alignment of previously identified secondary structural elements with respect to each other. When combined with constraints involving loops connecting elements or other short-range experimental distance information, a fold is produced. We illustrate this approach to protein fold determination on (15)N-labeled Eschericia coli acyl carrier protein using a limited set of (15)N-(1)H and (1)H-(1)H dipolar couplings. We also illustrate an approach using a more extended set of heteronuclear couplings on a related protein, (13)C, (15)N-labeled NodF protein from Rhizobium leguminosarum.
Collapse
Affiliation(s)
- C A Fowler
- Complex Carbohydrate Research Center, The University of Georgia, 220 Riverbend Road, Athens, GA, 30602-4712, USA
| | | | | | | |
Collapse
|
31
|
McAllister KA, Peery RB, Meier TI, Fischl AS, Zhao G. Biochemical and molecular analyses of the Streptococcus pneumoniae acyl carrier protein synthase, an enzyme essential for fatty acid biosynthesis. J Biol Chem 2000; 275:30864-72. [PMID: 10903317 DOI: 10.1074/jbc.m004475200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl carrier protein synthase (AcpS) is an essential enzyme in the biosynthesis of fatty acids in all bacteria. AcpS catalyzes the transfer of 4'-phosphopantetheine from coenzyme A (CoA) to apo-ACP, thus converting apo-ACP to holo-ACP that serves as an acyl carrier for the biosynthesis of fatty acids and lipids. To further understand the physiological role of AcpS, we identified, cloned, and expressed the acpS and acpP genes of Streptococcus pneumoniae and purified both products to homogeneity. Both acpS and acpP form operons with the genes whose functions are required for other cellular metabolism. The acpS gene complements an Escherichia coli mutant defective in the production of AcpS and appears to be essential for the growth of S. pneumoniae. Gel filtration and cross-linking analyses establish that purified AcpS exists as a homotrimer. AcpS activity was significantly stimulated by apo-ACP at concentrations over 10 microm and slightly inhibited at concentrations of 5-10 microm. Double reciprocal analysis of initial velocities of AcpS at various concentrations of CoA or apo-ACP indicated a random or compulsory ordered bi bi type of reaction mechanism. Further analysis of the inhibition kinetics of the product (3',5'-ADP) suggested that it is competitive with respect to CoA but mixed (competitive and noncompetitive) with respect to apo-ACP. Finally, apo-ACP bound tightly to AcpS in the absence of CoA, but CoA failed to do so in the absence of apo-ACP. Together, these results suggest that AcpS may be allosterically regulated by apo-ACP and probably proceeds by an ordered reaction mechanism with the first formation of the AcpS-apo-ACP complex and the subsequent transfer of 4'-phosphopantetheine to the apo-ACP of the complex.
Collapse
Affiliation(s)
- K A McAllister
- Lilly Research Laboratories, the Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | |
Collapse
|
32
|
Parris KD, Lin L, Tam A, Mathew R, Hixon J, Stahl M, Fritz CC, Seehra J, Somers WS. Crystal structures of substrate binding to Bacillus subtilis holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites. Structure 2000; 8:883-95. [PMID: 10997907 DOI: 10.1016/s0969-2126(00)00178-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Holo-(acyl carrier protein) synthase (AcpS), a member of the phosphopantetheinyl transferase superfamily, plays a crucial role in the functional activation of acyl carrier protein (ACP) in the fatty acid biosynthesis pathway. AcpS catalyzes the attachment of the 4'-phosphopantetheinyl moiety of coenzyme A (CoA) to the sidechain of a conserved serine residue on apo-ACP. RESULTS We describe here the first crystal structure of a type II ACP from Bacillus subtilis in complex with its activator AcpS at 2.3 A. We also have determined the structures of AcpS alone (at 1.8 A) and AcpS in complex with CoA (at 1.5 A). These structures reveal that AcpS exists as a trimer. A catalytic center is located at each of the solvent-exposed interfaces between AcpS molecules. Site-directed mutagenesis studies confirm the importance of trimer formation in AcpS activity. CONCLUSIONS The active site in AcpS is only formed when two AcpS molecules dimerize. The addition of a third molecule allows for the formation of two additional active sites and also permits a large hydrophobic surface from each molecule of AcpS to be buried in the trimer. The mutations Ile5-->Arg, Gln113-->Glu and Gln113-->Arg show that AcpS is inactive when unable to form a trimer. The co-crystal structures of AcpS-CoA and AcpS-ACP allow us to propose a catalytic mechanism for this class of 4'-phosphopantetheinyl transferases.
Collapse
Affiliation(s)
- K D Parris
- Biological Chemistry, Wyeth-Ayerst Research, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Stanley P, Hyland C, Koronakis V, Hughes C. An ordered reaction mechanism for bacterial toxin acylation by the specialized acyltransferase HlyC: formation of a ternary complex with acylACP and protoxin substrates. Mol Microbiol 1999; 34:887-901. [PMID: 10594816 DOI: 10.1046/j.1365-2958.1999.01648.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The 110 kDa haemolysin protoxin (proHlyA) is activated in the Escherichia coli cytosol by acyl carrier protein-dependent fatty acylation of two internal lysine residues, directed by the co-synthesized protein HlyC. Using an in vitro maturation reaction containing purified protoxin peptides and acylACP, we show unambiguously that HlyC possesses an apparently unique acyltransferase activity fully described by Michaelis-Menten analysis. The Vmax of HlyC at saturating levels of both substrates was approximately 115 nmol acyl group min-1 mg-1 with KMacylACP of 260 nM and KMproHlyA of 27 nM, kinetic parameters sufficient to explain why in vivo HlyC is required at a concentration equimolar to proHlyA. HlyC bound the fatty acyl group from acylACP to generate an acylated HlyC intermediate that was depleted in the presence of proHlyA, but enriched in the presence of proHlyA derivatives lacking acylation target sites. HlyC was also able to bind in vivo 4'-phosphopantetheine. Substitution of conserved amino acids that could act as putative covalent attachment sites did not prevent binding of the fatty acyl or 4'-phosphopantetheine groups. These data and substrate variation analyses suggest that the unique acylation reaction does not involve covalent attachment of fatty acid to the acyltransferase, but rather that it proceeds via a sequential ordered Bi-Bi reaction mechanism, requiring the formation of a non-covalent ternary acylACP-HlyC-proHlyA complex.
Collapse
Affiliation(s)
- P Stanley
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | | | | | |
Collapse
|
34
|
Stanley P, Koronakis V, Hughes C. Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol Biol Rev 1998; 62:309-33. [PMID: 9618444 PMCID: PMC98917 DOI: 10.1128/mmbr.62.2.309-333.1998] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pore-forming hemolysin (HlyA) of Escherichia coli represents a unique class of bacterial toxins that require a posttranslational modification for activity. The inactive protoxin pro-HlyA is activated intracellularly by amide linkage of fatty acids to two internal lysine residues 126 amino acids apart, directed by the cosynthesized HlyC protein with acyl carrier protein as the fatty acid donor. This action distinguishes HlyC from all bacterial acyltransferases such as the lipid A, lux-specific, and nodulation acyltransferases, and from eukaryotic transferases such as N-myristoyl transferases, prenyltransferases, and thioester palmitoyltransferases. Most lipids directly attached to proteins may be classed as N-terminal amide-linked and internal ester-linked acyl groups and C-terminal ether-linked isoprenoid groups. The acylation of HlyA and related toxins does not equate to these but does appear related to a small number of eukaryotic proteins that include inflammatory cytokines and mitogenic and cholinergic receptors. While the location and structure of lipid moieties on proteins vary, there are common effects on membrane affinity and/or protein-protein interactions. Despite being acylated at two residues, HlyA does not possess a "double-anchor" motif and does not have an electrostatic switch, although its dependence on calcium binding for activity suggests that the calcium-myristoyl switch may have relevance. The acyl chains on HlyA may provide anchorage points onto the surface of the host cell lipid bilayer. These could then enhance protein-protein interactions either between HlyA and components of a host signal transduction pathway to influence cytokine production or between HlyA monomers to bring about oligomerization during pore formation.
Collapse
Affiliation(s)
- P Stanley
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.
| | | | | |
Collapse
|
35
|
Gehring AM, Lambalot RH, Vogel KW, Drueckhammer DG, Walsh CT. Ability of Streptomyces spp. acyl carrier proteins and coenzyme A analogs to serve as substrates in vitro for E. coli holo-ACP synthase. CHEMISTRY & BIOLOGY 1997; 4:17-24. [PMID: 9070424 DOI: 10.1016/s1074-5521(97)90233-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The polyketide natural products are assembled by a series of decarboxylation/condensation reactions of simple carboxylic acids catalyzed by polyketide synthase (PKS) complexes. The growing chain is assembled on acyl carrier protein (ACP), an essential component of the PKS. ACP requires posttranslational modification on a conserved serine residue by covalent attachment of a 4'-phosphopantetheine (P-pant) cofactor to yield active holo-ACP. When ACPs of Streptomyces type II aromatic PKS are overproduced in E. coli, however, typically little or no active holo-ACP is produced, and the ACP remains in the inactive apo-form. RESULTS We demonstrate that E. coli holo-ACP synthase (ACPS), a fatty acid biosynthesis enzyme, can catalyze P-pant transfer in vitro to the Streptomyces PKS ACPs required for the biosynthesis of the polyketide antibiotics granaticin, frenolicin, oxytetracycline and tetracenomycin. The catalytic efficiency of this P-pant transfer reaction correlates with the overall negative charge of the ACP substrate. Several coenzyme A analogs, modified in the P-pant portion of the molecule, are likewise able to serve as substrates in vitro for ACPS. CONCLUSIONS E coli ACPS can serve as a useful reagent for the preparation of holo-forms of Streptomyces ACPs as well as holo-ACPs with altered phosphopantetheine moieties. Such modified ACPs should prove useful for studying the role of particular ACPs and the phosphopantetheine cofactor in the subsequent reactions of polyketide and fatty acid biosynthesis.
Collapse
Affiliation(s)
- A M Gehring
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|