1
|
Newton MD, Losito M, Smith QM, Parnandi N, Taylor BJ, Akcakaya P, Maresca M, van Eijk P, Reed SH, Boulton SJ, King GA, Cuomo ME, Rueda DS. Negative DNA supercoiling induces genome-wide Cas9 off-target activity. Mol Cell 2023; 83:3533-3545.e5. [PMID: 37802026 DOI: 10.1016/j.molcel.2023.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 05/30/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023]
Abstract
CRISPR-Cas9 is a powerful gene-editing technology; however, off-target activity remains an important consideration for therapeutic applications. We have previously shown that force-stretching DNA induces off-target activity and hypothesized that distortions of the DNA topology in vivo, such as negative DNA supercoiling, could reduce Cas9 specificity. Using single-molecule optical-tweezers, we demonstrate that negative supercoiling λ-DNA induces sequence-specific Cas9 off-target binding at multiple sites, even at low forces. Using an adapted CIRCLE-seq approach, we detect over 10,000 negative-supercoiling-induced Cas9 off-target double-strand breaks genome-wide caused by increased mismatch tolerance. We further demonstrate in vivo that directed local DNA distortion increases off-target activity in cells and that induced off-target events can be detected during Cas9 genome editing. These data demonstrate that Cas9 off-target activity is regulated by DNA topology in vitro and in vivo, suggesting that cellular processes, such as transcription and replication, could induce off-target activity at previously overlooked sites.
Collapse
Affiliation(s)
- Matthew D Newton
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0HS, UK; Single Molecule Imaging, MRC-London Institute of Medical Sciences, Du Cane Road, London W12 0HS, UK; DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marialucrezia Losito
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0HS, UK; Single Molecule Imaging, MRC-London Institute of Medical Sciences, Du Cane Road, London W12 0HS, UK; Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Quentin M Smith
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0HS, UK; Single Molecule Imaging, MRC-London Institute of Medical Sciences, Du Cane Road, London W12 0HS, UK
| | - Nishita Parnandi
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Benjamin J Taylor
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Pinar Akcakaya
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Marcello Maresca
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Patrick van Eijk
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4AW, UK
| | - Simon H Reed
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4AW, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Graeme A King
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK.
| | | | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0HS, UK; Single Molecule Imaging, MRC-London Institute of Medical Sciences, Du Cane Road, London W12 0HS, UK.
| |
Collapse
|
2
|
Neguembor MV, Martin L, Castells-García Á, Gómez-García PA, Vicario C, Carnevali D, AlHaj Abed J, Granados A, Sebastian-Perez R, Sottile F, Solon J, Wu CT, Lakadamyali M, Cosma MP. Transcription-mediated supercoiling regulates genome folding and loop formation. Mol Cell 2021; 81:3065-3081.e12. [PMID: 34297911 PMCID: PMC9482096 DOI: 10.1016/j.molcel.2021.06.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 03/27/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022]
Abstract
The chromatin fiber folds into loops, but the mechanisms controlling loop extrusion are still poorly understood. Using super-resolution microscopy, we visualize that loops in intact nuclei are formed by a scaffold of cohesin complexes from which the DNA protrudes. RNA polymerase II decorates the top of the loops and is physically segregated from cohesin. Augmented looping upon increased loading of cohesin on chromosomes causes disruption of Lamin at the nuclear rim and chromatin blending, a homogeneous distribution of chromatin within the nucleus. Altering supercoiling via either transcription or topoisomerase inhibition counteracts chromatin blending, increases chromatin condensation, disrupts loop formation, and leads to altered cohesin distribution and mobility on chromatin. Overall, negative supercoiling generated by transcription is an important regulator of loop formation in vivo.
Collapse
Affiliation(s)
- Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Álvaro Castells-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Pablo Aurelio Gómez-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Chiara Vicario
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Davide Carnevali
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | | | - Alba Granados
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Francesco Sottile
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Jérôme Solon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Instituto Biofisika (CSIC, UPV/EHU), Basque Excellence Research Centre, Barrio Sarriena, 48940, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Chao-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
3
|
Reymer A, Zakrzewska K, Lavery R. Sequence-dependent response of DNA to torsional stress: a potential biological regulation mechanism. Nucleic Acids Res 2018; 46:1684-1694. [PMID: 29267977 PMCID: PMC5829783 DOI: 10.1093/nar/gkx1270] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 01/31/2023] Open
Abstract
Torsional restraints on DNA change in time and space during the life of the cell and are an integral part of processes such as gene expression, DNA repair and packaging. The mechanical behavior of DNA under torsional stress has been studied on a mesoscopic scale, but little is known concerning its response at the level of individual base pairs and the effects of base pair composition. To answer this question, we have developed a geometrical restraint that can accurately control the total twist of a DNA segment during all-atom molecular dynamics simulations. By applying this restraint to four different DNA oligomers, we are able to show that DNA responds to both under- and overtwisting in a very heterogeneous manner. Certain base pair steps, in specific sequence environments, are able to absorb most of the torsional stress, leaving other steps close to their relaxed conformation. This heterogeneity also affects the local torsional modulus of DNA. These findings suggest that modifying torsional stress on DNA could act as a modulator for protein binding via the heterogeneous changes in local DNA structure.
Collapse
Affiliation(s)
- Anna Reymer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
- Institut de Biologie et Chimie des Protéines, Université de Lyon I/CNRS UMR 5086, Lyon 69367, France
| | - Krystyna Zakrzewska
- Institut de Biologie et Chimie des Protéines, Université de Lyon I/CNRS UMR 5086, Lyon 69367, France
| | - Richard Lavery
- Institut de Biologie et Chimie des Protéines, Université de Lyon I/CNRS UMR 5086, Lyon 69367, France
| |
Collapse
|
4
|
Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat Struct Mol Biol 2013; 20:396-403. [PMID: 23416947 PMCID: PMC3594045 DOI: 10.1038/nsmb.2517] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 01/17/2013] [Indexed: 12/26/2022]
Abstract
Transcription has the capacity to modify mechanically DNA topology, DNA structure, and nucleosome arrangement. Resulting from ongoing transcription, these modifications in turn, may provide instant feedback to the transcription machinery. To substantiate the connection between transcription and DNA dynamics, we charted an ENCODE map of transcription-dependent dynamic supercoiling in human Burkitt lymphoma cells using psoralen photobinding to probe DNA topology in vivo. Dynamic supercoils spread ~1.5 kb upstream of the start sites of active genes. Low and high output promoters handle this torsional stress differently as shown using inhibitors of transcription and topoisomerases, and by chromatin immunoprecipation of RNA polymerase and topoisomerases I and II. Whereas lower outputs are managed adequately by topoisomerase I, high output promoters additionally require topoisomerase II. The genome-wide coupling between transcription and DNA topology emphasizes the importance of dynamic supercoiling for gene regulation.
Collapse
|
5
|
The importance of being supercoiled: how DNA mechanics regulate dynamic processes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:632-8. [PMID: 22233557 DOI: 10.1016/j.bbagrm.2011.12.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 12/22/2022]
Abstract
Through dynamic changes in structure resulting from DNA-protein interactions and constraints given by the structural features of the double helix, chromatin accommodates and regulates different DNA-dependent processes. All DNA transactions (such as transcription, DNA replication and chromosomal segregation) are necessarily linked to strong changes in the topological state of the double helix known as torsional stress or supercoiling. As virtually all DNA transactions are in turn affected by the torsional state of DNA, these changes have the potential to serve as regulatory signals detected by protein partners. This two-way relationship indicates that DNA dynamics may contribute to the regulation of many events occurring during cell life. In this review we will focus on the role of DNA supercoiling in the cellular processes, with particular emphasis on transcription. Besides giving an overview on the multiplicity of factors involved in the generation and dissipation of DNA torsional stress, we will discuss recent studies which give new insight into the way cells use DNA dynamics to perform functions otherwise not achievable. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
|
6
|
Fernández-Miragall O, Martínez-Salas E. In vivo footprint of a picornavirus internal ribosome entry site reveals differences in accessibility to specific RNA structural elements. J Gen Virol 2007; 88:3053-3062. [PMID: 17947530 DOI: 10.1099/vir.0.83218-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Internal ribosome entry site (IRES) elements were described in picornaviruses as an essential region of the viral RNA. Understanding of IRES function requires a detailed knowledge of each step involved in the internal initiation process, from RNA folding and IRES-protein interaction to ribosome recruitment. Thus, deciphering IRES accessibility to external agents due to RNA structural features, as well as RNA-protein protection within living cells, is of primary importance. In this study, two chemical reagents, dimethylsulfate (DMS) and aminomethylpsoralen, have been used to footprint the entire IRES of foot-and-mouth disease virus (FMDV) in living cells; these reagents enter the cell membrane and interact with nucleic acids in a structure-dependent manner. For FMDV, as in other picornaviruses, viral infection is dependent on the correct function of the IRES; therefore, the IRES region itself constitutes a useful target of antiviral drugs. Here, the in vivo footprint of a picornavirus IRES element in the context of a biologically active mRNA is shown for the first time. The accessibility of unpaired adenosine and cytosine nucleotides in the entire FMDV IRES was first obtained in vitro by DMS probing; subsequently, this information was used to interpret the footprint data obtained in vivo for the mRNA encompassing the IRES element in the intercistronic space. The results of DMS accessibility and UV-psoralen cross-linking studies in the competitive cellular environment provided evidence for differences in RNA structure from data obtained in vitro, and provided essential information to identify appropriate targets within the FMDV IRES aimed at combating this important pathogen.
Collapse
Affiliation(s)
- Olga Fernández-Miragall
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
7
|
Toussaint M, Levasseur G, Tremblay M, Paquette M, Conconi A. Psoralen photocrosslinking, a tool to study the chromatin structure of RNA polymerase I--transcribed ribosomal genes. Biochem Cell Biol 2005; 83:449-59. [PMID: 16094448 DOI: 10.1139/o05-141] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The chromatin structure of RNA polymerase I--transcribed ribosomal DNA (rDNA) is well characterized. In most organisms, i.e., lower eukaryotes, plants, and animals, only a fraction of ribosomal genes are transcriptionally active. At the chromatin level inactive rDNA is assembled into arrays of nucleosomes, whereas transcriptionally active rDNA does not contain canonical nucleosomes. To separate inactive (nucleosomal) and active (non-nucleosomal) rDNA, the technique of psoralen photocrosslinking has been used successfully both in vitro and in vivo. In Saccharomyces cerevisiae, the structure of rDNA chromatin has been particularly well studied during transcription and during DNA replication. Thus, the yeast rDNA locus has become a good model system to study the interplay of all nuclear DNA processes and chromatin. In this review we focused on the studies of chromatin in ribosomal genes and how these results have helped to address the fundamental question: What is the structure of chromatin in the coding regions of genes?
Collapse
Affiliation(s)
- Martin Toussaint
- Départment de Microbiologie et Infectiologie, Université de Sherbrooke, QC, Canada
| | | | | | | | | |
Collapse
|
8
|
Bondarenko VA, Jiang YI, Studitsky VM. Rationally designed insulator-like elements can block enhancer action in vitro. EMBO J 2003; 22:4728-37. [PMID: 12970185 PMCID: PMC212734 DOI: 10.1093/emboj/cdg468] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Insulators are DNA sequences that are likely to be involved in formation of chromatin domains, functional units of gene expression in eukaryotes. Insulators can form domain boundaries and block inappropriate action of regulatory elements (such as transcriptional enhancers) in eukaryotic nuclei. Using an in vitro system supporting enhancer action over a large distance, the enhancer-blocking insulator activity has been recapitulated in a highly purified system. The insulator-like element was constructed using a sequence-specific DNA-binding protein making stable DNA loops (lac repressor). The insulation was entirely dependent on formation of a DNA loop that topologically isolates the enhancer from the promoter. This rationally designed, inducible insulator-like element recapitulates many key properties of eukaryotic insulators observed in vivo. The data suggest novel mechanisms of enhancer and insulator action.
Collapse
Affiliation(s)
- Vladimir A Bondarenko
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Room 5123, Detroit, MI 48201, USA
| | | | | |
Collapse
|
9
|
Bondarenko VA, Liu YV, Jiang YI, Studitsky VM. Communication over a large distance: enhancers and insulators. Biochem Cell Biol 2003; 81:241-51. [PMID: 12897858 DOI: 10.1139/o03-051] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enhancers are regulatory DNA sequences that can work over a large distance. Efficient enhancer action over a distance clearly requires special mechanisms for facilitating communication between the enhancer and its target. While the chromatin looping model can explain the majority of the observations, some recent experimental findings suggest that a chromatin scanning mechanism is used to establish the loop. These new findings help to understand the mechanism of action of the elements that can prevent enhancer-promoter communication (insulators).
Collapse
Affiliation(s)
- Vladimir A Bondarenko
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
10
|
Kramer PR, Fragoso G, Pennie W, Htun H, Hager GL, Sinden RR. Transcriptional state of the mouse mammary tumor virus promoter can affect topological domain size in vivo. J Biol Chem 1999; 274:28590-7. [PMID: 10497225 DOI: 10.1074/jbc.274.40.28590] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unrestrained DNA supercoiling and the number of topological domains were measured within a 1.8 megabase pair chromosomal region consisting of about 200 tandem repeats of a mouse mammary tumor virus promoter-driven ha-v-ras gene. When uninduced, unrestrained negative supercoiling was organized into 32-kilobase pair (kb) topological domains. Upon induction, DNA supercoiling throughout the region was completely relaxed. Supercoiling was detected, however, when elongation was blocked before or following induction. The formation of transcription initiation complexes upon addition of dexamethasone decreased the domain size to 16 kb. During transcription the domain size was 9 kb, the length of one repeat. These results suggest that topological domain boundaries can be "functional" in nature, being established by the formation of activated and elongating transcription complexes.
Collapse
Affiliation(s)
- P R Kramer
- Institute of Biosciences, Center for Genome Research, Texas A&M University System Health Sciences Center, Houston, Texas 77030-3303, USA
| | | | | | | | | | | |
Collapse
|