Thakker DR, Standifer KM. Induction of G protein-coupled receptor kinases 2 and 3 contributes to the cross-talk between mu and ORL1 receptors following prolonged agonist exposure.
Neuropharmacology 2002;
43:979-90. [PMID:
12423667 DOI:
10.1016/s0028-3908(02)00145-4]
[Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The molecular mechanism(s) underlying cross-tolerance between mu and opioid receptor-like 1 (ORL1) receptor agonists were investigated using two human neuroblastoma cell lines endogenously expressing these receptors and G protein-coupled receptor kinases (GRKs). Prolonged (24 h) activation of the mu receptor desensitized both mu and ORL1 receptor-mediated inhibition of forskolin-stimulated cAMP accumulation and upregulated GRK2 levels in SH-SY5Y and BE(2)-C cells. Prolonged ORL1 activation increased GRK2 levels and desensitized both receptors in SH-SY5Y cells. Upregulation of GRK2 correlated with increases in levels of transcription factors Sp1 or AP-2. PD98059, an upstream inhibitor of extracellular signal-regulated kinases 1 and 2 (ERK1/2), reversed all these events. Pretreatment with orphanin FQ/nociceptin (OFQ/N) also upregulated GRK3 levels in both cell lines, and desensitized both receptors in BE(2)-C cells. Protein kinase C (PKC), but not ERK1/2, inhibition blocked OFQ/N-mediated GRK3 induction and mu and ORL1 receptor desensitization in BE(2)-C cells. Antisense DNA treatment confirmed the involvement of GRK2/3 in mu and ORL1 desensitization. Here, we demonstrate for the first time a role for ERK1/2-mediated GRK2 induction in the development of tolerance to mu agonists, as well as cross-tolerance to OFQ/N. We also demonstrate that chronic OFQ/N-mediated desensitization of ORL1 and mu receptors occurs via cell-specific pathways, involving ERK1/2-dependent GRK2, or PKC-dependent and ERK1/2-independent GRK3 induction.
Collapse