1
|
Marcus DJ, Bruchas MR. Optical Approaches for Investigating Neuromodulation and G Protein-Coupled Receptor Signaling. Pharmacol Rev 2023; 75:1119-1139. [PMID: 37429736 PMCID: PMC10595021 DOI: 10.1124/pharmrev.122.000584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Despite the fact that roughly 40% of all US Food and Drug Administration (FDA)-approved pharmacological therapeutics target G protein-coupled receptors (GPCRs), there remains a gap in our understanding of the physiologic and functional role of these receptors at the systems level. Although heterologous expression systems and in vitro assays have revealed a tremendous amount about GPCR signaling cascades, how these cascades interact across cell types, tissues, and organ systems remains obscure. Classic behavioral pharmacology experiments lack both the temporal and spatial resolution to resolve these long-standing issues. Over the past half century, there has been a concerted effort toward the development of optical tools for understanding GPCR signaling. From initial ligand uncaging approaches to more recent development of optogenetic techniques, these strategies have allowed researchers to probe longstanding questions in GPCR pharmacology both in vivo and in vitro. These tools have been employed across biologic systems and have allowed for interrogation of everything from specific intramolecular events to pharmacology at the systems level in a spatiotemporally specific manner. In this review, we present a historical perspective on the motivation behind and development of a variety of optical toolkits that have been generated to probe GPCR signaling. Here we highlight how these tools have been used in vivo to uncover the functional role of distinct populations of GPCRs and their signaling cascades at a systems level. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) remain one of the most targeted classes of proteins for pharmaceutical intervention, yet we still have a limited understanding of how their unique signaling cascades effect physiology and behavior at the systems level. In this review, we discuss a vast array of optical techniques that have been devised to probe GPCR signaling both in vitro and in vivo.
Collapse
Affiliation(s)
- David J Marcus
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| |
Collapse
|
2
|
Sharma R, Schwarz C, Hunter JJ, Palczewska G, Palczewski K, Williams DR. Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy. Invest Ophthalmol Vis Sci 2017; 58:604-613. [PMID: 28129424 PMCID: PMC5283085 DOI: 10.1167/iovs.16-20061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Two-photon excited fluorescence (TPEF) imaging has potential as a functional tool for tracking visual pigment regeneration in the living eye. Previous studies have shown that all-trans-retinol is likely the chief source of time-varying TPEF from photoreceptors. Endogenous TPEF from retinol could provide the specificity desired for tracking the visual cycle. However, in vivo characterization of native retinol kinetics is complicated by visual stimulation from the imaging beam. We have developed an imaging scheme for overcoming these challenges and monitored the formation and clearance of retinol. Methods Three macaques were imaged by using an in vivo two-photon ophthalmoscope. Endogenous TPEF was excited at 730 nm and recorded through the eye's pupil for more than 90 seconds. Two-photon excited fluorescence increased with onset of light and plateaued within 40 seconds, at which point, brief incremental stimuli were delivered at 561 nm. The responses of rods to stimulation were analyzed by using first-order kinetics. Results Two-photon excited fluorescence resulting from retinol production corresponded to the fraction of rhodopsin bleached. The photosensitivity of rhodopsin was estimated to be 6.88 ± 5.50 log scotopic troland. The rate of retinol clearance depended on intensity of incremental stimulation. Clearance was faster for stronger stimuli and time constants ranged from 50 to 300 seconds. Conclusions This study demonstrates a method for rapidly measuring the rate of clearance of retinol in vivo. Moreover, TPEF generated due to retinol can be used as a measure of rhodopsin depletion, similar to densitometry. This enhances the utility of two-photon ophthalmoscopy as a technique for evaluating the visual cycle in the living eye.
Collapse
Affiliation(s)
- Robin Sharma
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Christina Schwarz
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Jennifer J Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States 2Flaum Eye Institute, University of Rochester, Rochester, New York, United States 3Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | | | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - David R Williams
- Center for Visual Science, University of Rochester, Rochester, New York, United States 2Flaum Eye Institute, University of Rochester, Rochester, New York, United States 6The Institute of Optics, University of Rochester, Rochester, New York, United States
| |
Collapse
|
3
|
|
4
|
Qtaishat NM, Wiggert B, Pepperberg DR. Interphotoreceptor retinoid-binding protein (IRBP) promotes the release of all-trans retinol from the isolated retina following rhodopsin bleaching illumination. Exp Eye Res 2005; 81:455-63. [PMID: 15935345 DOI: 10.1016/j.exer.2005.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 02/10/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
All-trans retinol generated in rod photoreceptors upon the bleaching of rhodopsin is known to move from the rods to the retinal pigment epithelium (RPE), where it is enzymatically converted to 11-cis retinal in the retinoid visual cycle. Interphotoreceptor retinoid-binding protein (IRBP) contained in the extracellular compartment (interphotoreceptor matrix) that separates the retina and RPE has been hypothesized to facilitate this movement of all-trans retinol, but the precise role of IRBP in this process remains unclear. To examine the activity of IRBP in the release of all-trans retinol from the rods, initially dark-adapted isolated retinas obtained from toad (Bufo marinus) eyes were bleached and then incubated in darkness for defined periods (5-180 min) in physiological saline (Ringer solution) supplemented with IRBP (here termed 'IRBP I') at defined concentrations (2-90 microm). Retinoids present in the retina and extracellular medium were then determined by extraction and HPLC analysis. Preparations incubated with > or =10 microm IRBP I showed a pronounced release of all-trans retinol with increasing period of incubation. As determined with 25 microm IRBP I, the increase of all-trans retinol in the extracellular medium was accompanied by a significant decrease in the combined amount of all-trans retinal and all-trans retinol contained in the retina. This effect was not mimicked by unsupplemented Ringer solution or by Ringer solution containing 25 or 90 microm bovine serum albumin. However, incubation with 'IRBP II', a previously described variant of IRBP with altered lectin-binding properties, led to the appearance of substantial all-trans retinol in the extracellular medium. The results suggest that in vivo, IRBP plays a direct role in the release of all-trans retinol from the rods during operation of the visual cycle.
Collapse
Affiliation(s)
- Nasser M Qtaishat
- Department of Ophthalmology and Visual Sciences, Lions of Illinois Eye Research Institute, College of Medicine, University of Illinois at Chicago, 1855 West Taylor Street, Chicago, IL 60612, USA
| | | | | |
Collapse
|
5
|
Gonzalez-Fernandez F. Interphotoreceptor retinoid-binding protein--an old gene for new eyes. Vision Res 2004; 43:3021-36. [PMID: 14611938 DOI: 10.1016/j.visres.2003.09.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Evolving 40 times independently, eyes are striking examples of convergent evolution in that 11-cis retinaldehyde is always used for photon capture, yet the mechanism for its regeneration may be dramatically different in between systems. In particular, insects, cephalopods and vertebrates show varying physical separation of the cis-->trans photoisomerization and chromphore reisomerization. In the vertebrate retina, these two processes are actually distributed between different cells. This compartmentalization is made possible by the phylogenetic innovation of the two-layered optic cup of the vertebrate retina. This unprecedented design created the subretinal space as a novel anatomical compartment allowing photoreceptors access to the retinal pigment epithelium (RPE) and Müller cells, the two cell types which share the burden of 11-cis retinoid regeneration. To take advantage of this arrangement, early vertebrates appear to have recruited for retinoid binding, the betabetaalpha-spiral fold proven useful in enoyl-CoA isomerase/hydratases, and the carboxy-terminal proteases for stabilizing hydrophobic ligands. Quadruplication of this functional domain within a single polypeptide lead to the emergence of interphotoreceptor retinoid-binding protein (IRBP). IRBP is the main soluble component of the IPM, and is prevented from diffusing out of the subretinal space because its large size excludes it from the photoreceptor/Müller cell zonulae adheretes. Despite this physical entrapment, IRBP is rapidly turned over within the IPM through a process that coordinates secretion of the protein by the photoreceptors, and its removal from the matrix by RPE and photoreceptor endocytosis. The present review will summarize what is known about the structure and function of IRBP to anticipate future avenues of research.
Collapse
Affiliation(s)
- Federico Gonzalez-Fernandez
- Department of Ophthalmology, State University of New York at Buffalo and Medical Research Service, Veteran's Affairs Medical Center, 3495 Bailey Avenue, Buffalo, NY 14215, USA.
| |
Collapse
|
6
|
Cunningham LL, Gonzalez-Fernandez F. Internalization of interphotoreceptor retinoid-binding protein by theXenopus retinal pigment epithelium. J Comp Neurol 2003; 466:331-42. [PMID: 14556291 DOI: 10.1002/cne.10861] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Xenopus rods and cones secrete into the interphotoreceptor matrix (IPM) a 124-kDa glycoprotein termed interphotoreceptor retinoid-binding protein (IRBP; Hessler et al. [1996] J. Comp. Neurol. 367:329-341). IRBP is confined to the IPM, being too large to diffuse through the zonulae adherentes between adjacent photoreceptor and Müller cells. Despite this physical entrapment within the subretinal space, IRBP is rapidly cleared from the IPM by an unknown mechanism. Immunohistochemistry and immunoelectron microscopy were used to localize IRBP in intact and detached retina-retinal pigment epithelium (RPE) eyecups. The effects of light, dark, and time of day on the compartmentalization of IRBP were characterized by quantitative Western blot analysis and by immunoprecipitation of IRBP labeled in vivo by intraocular injection of [(35)S]methionine. Immunohistochemistry showed that the apparent intercellular IRBP in both the RPE and the photoreceptors is resistant to saline extraction, in contrast to that in the IPM. In the RPE, IRBP was associated with matrix material within phagosomes and endosomes. The IPM, RPE, and retina contained 75%, 18%, and 7% of the total IRBP in the eye, respectively. The IPM and RPE contain 130 +/- 14 pmoles and 34 +/- 4 pmoles of IRBP, respectively. The amounts of IRBP in the RPE at middark and midlight were the same. Furthermore, the in vivo uptake of [(35)S]methionine-labeled IRBP was light independent. Our studies suggest that IRBP is not strictly confined to the subretinal space but rather that significant amounts are present intracellularly, particularly within the RPE, which does not synthesize IRBP. Furthermore, IRBP secreted by the photoreceptors is taken up from the IPM mainly through a light-independent endocytic pathway separate from outer segment phagocytosis. The role of RPE endocytosis should be explored in relation to the function of IRBP.
Collapse
Affiliation(s)
- Lisa L Cunningham
- Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology-HNS, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
7
|
Abstract
The mouse has become a key animal model for ocular research. This situation reflects the fact that genes implicated in human retinal disorders or in mammalian retinal function may be readily manipulated in the mouse. Visual electrophysiology provides a means to examine retinal function in mutant mice, and stimulation and recording protocols have been developed that allow the activity of many classes of retinal neurons to be examined and which take into account unique features of the mouse retina. Here, we review the mouse visual electrophysiology literature, covering techniques used to record the mouse electroretinogram and visual evoked potential, and how these have been applied to characterize the functional implications of gene mutation or manipulation in the mouse retina.
Collapse
Affiliation(s)
- Neal S Peachey
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
8
|
Loew A, Gonzalez-Fernandez F. Crystal structure of the functional unit of interphotoreceptor retinoid binding protein. Structure 2002; 10:43-9. [PMID: 11796109 DOI: 10.1016/s0969-2126(01)00698-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Interphotoreceptor retinoid binding protein (IRBP), the major soluble component of the interphotoreceptor matrix, is critical to the function, integrity, and development of the vertebrate retina. Although its role is poorly understood, IRBP has been thought to protect 11-cis retinal and all-trans retinol while facilitating their exchange between the photoreceptors and retinal-pigmented epithelium. We determined the X-ray structure of one of the functional units, or modules, of Xenopus laevis IRBP to 1.8 A resolution by multiwavelength anomalous dispersion. The monomeric protein consists of two domains separated by a hydrophobic ligand binding site. A structural homology to the recently solved photosystem II D1 C-terminal-processing protease and the enoyl-CoA isomerase/hydratase family suggests the utility of a common fold used in diverse settings, ranging from proteolysis to fatty acid isomerization to retinoid transport.
Collapse
Affiliation(s)
- Andreas Loew
- Department of Biochemistry, University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | | |
Collapse
|