1
|
Cuello AC, Do Carmo S. The dependence of basal forebrain cholinergic neurons on NGF: The case in Alzheimer pathology. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:95-122. [PMID: 40340070 DOI: 10.1016/b978-0-443-19088-9.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
This chapter discusses the dependency of basal forebrain cholinergic neurons (BFCNs) on endogenous nerve growth factor (NGF) for the structural and physiologic maintenance of the neuronal cell somata, axonal projections, and terminal synapses. It covers the discovery of NGF and the occurrence of a CNS neurotrophin family and their cognate receptors and their signaling mechanisms. It concludes with a description of the NGF metabolic pathway and its dysregulation in Alzheimer disease (AD) and Down syndrome pathology, explaining the progressive atrophy of BFCNs, which starts at preclinical stages and is reflected in body fluid biomarkers.
Collapse
Affiliation(s)
- A Claudio Cuello
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Pharmacology, Oxford University, Oxford, United Kingdom.
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Bearer EL, Zhang X, Jacobs RE. Studying Axonal Transport in the Brain by Manganese-Enhanced Magnetic Resonance Imaging (MEMRI). METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2431:111-142. [PMID: 35412274 DOI: 10.1007/978-1-0716-1990-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
From the earliest notions of dynamic movements within the cell by Leeuwenhoek, intracellular transport in eukaryotes has been primarily explored by optical imaging. The giant axon of the squid became a prime experimental model for imaging transport due to its size, optical transparency, and physiological robustness. Even the biochemical basis of transport was identified using optical assays based on video microscopy of fractionated squid axoplasm. Discoveries about the dynamics and molecular components of the intracellular transport system continued in many model organisms that afforded experimental systems for optical imaging. Yet whether these experimental systems reflected a valid picture of axonal transport in the opaque mammalian brain was unknown.Magnetic resonance imaging (MRI) provides a non-destructive approach to peer into opaque tissues like the brain . The paramagnetic ion, manganese (MnII), gives a hyperintense signal in T1 weighted MRI that can serve as a marker for axonal transport. Mn(II) enters active neurons via voltage-gated calcium channels and is transported via microtubule motors down their axons by fast axonal transport. Clearance of Mn(II) is slow. Scanning live animals at successive time points reveals the dynamics of Mn(II) transport by detecting Mn(II)-induced intensity increases or accumulations along a known fiber tract, such as the optic nerve or hippocampal-forebrain projections. Mn(II)-based tract tracing also reveals projections even when not in fiber bundles, such as projections in the olfactory system or from medial prefrontal cortex into midbrain and brain stem. The rate of Mn(II) accumulation, detected as increased signal intensity by MR, serves as a proxy for transport rates. Here we describe the method for measuring transport rates and projections by mangeses-enhanced magnetic resonance imaging, MEMRI.
Collapse
Affiliation(s)
- Elaine L Bearer
- Department Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Biology and Biological Engineering and the Beckman Institute, California Institute of Technology, Pasadena, CA, USA.
| | - Xiaowei Zhang
- Department of Radiology, UC San Diego School of Medicine, San Diego, CA, USA
| | - Russell E Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Chen X, Salehi A, Pearn ML, Overk C, Nguyen PD, Kleschevnikov AM, Maccecchini M, Mobley WC. Targeting increased levels of APP in Down syndrome: Posiphen-mediated reductions in APP and its products reverse endosomal phenotypes in the Ts65Dn mouse model. Alzheimers Dement 2021; 17:271-292. [PMID: 32975365 PMCID: PMC7984396 DOI: 10.1002/alz.12185] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Recent clinical trials targeting amyloid beta (Aβ) and tau in Alzheimer's disease (AD) have yet to demonstrate efficacy. Reviewing the hypotheses for AD pathogenesis and defining possible links between them may enhance insights into both upstream initiating events and downstream mechanisms, thereby promoting discovery of novel treatments. Evidence that in Down syndrome (DS), a population markedly predisposed to develop early onset AD, increased APP gene dose is necessary for both AD neuropathology and dementia points to normalization of the levels of the amyloid precursor protein (APP) and its products as a route to further define AD pathogenesis and discovering novel treatments. BACKGROUND AD and DS share several characteristic manifestations. DS is caused by trisomy of whole or part of chromosome 21; this chromosome contains about 233 protein-coding genes, including APP. Recent evidence points to a defining role for increased expression of the gene for APP and for its 99 amino acid C-terminal fragment (C99, also known as β-CTF) in dysregulating the endosomal/lysosomal system. The latter is critical for normal cellular function and in neurons for transmitting neurotrophic signals. NEW/UPDATED HYPOTHESIS We hypothesize that the increase in APP gene dose in DS initiates a process in which increased levels of full-length APP (fl-APP) and its products, including β-CTF and possibly Aβ peptides (Aβ42 and Aβ40), drive AD pathogenesis through an endosome-dependent mechanism(s), which compromises transport of neurotrophic signals. To test this hypothesis, we carried out studies in the Ts65Dn mouse model of DS and examined the effects of Posiphen, an orally available small molecule shown in prior studies to reduce fl-APP. In vitro, Posiphen lowered fl-APP and its C-terminal fragments, reversed Rab5 hyperactivation and early endosome enlargement, and restored retrograde transport of neurotrophin signaling. In vivo, Posiphen treatment (50 mg/kg/d, 26 days, intraperitoneal [i.p.]) of Ts65Dn mice was well tolerated and demonstrated no adverse effects in behavior. Treatment resulted in normalization of the levels of fl-APP, C-terminal fragments and small reductions in Aβ species, restoration to normal levels of Rab5 activity, reduced phosphorylated tau (p-tau), and reversed deficits in TrkB (tropomyosin receptor kinase B) activation and in the Akt (protein kinase B [PKB]), ERK (extracellular signal-regulated kinase), and CREB (cAMP response element-binding protein) signaling pathways. Remarkably, Posiphen treatment also restored the level of choline acetyltransferase protein to 2N levels. These findings support the APP gene dose hypothesis, point to the need for additional studies to explore the mechanisms by which increased APP gene expression acts to increase the risk for AD in DS, and to possible utility of treatments to normalize the levels of APP and its products for preventing AD in those with DS. MAJOR CHALLENGES FOR THE HYPOTHESIS Important unanswered questions are: (1) When should one intervene in those with DS; (2) would an APP-based strategy have untoward consequences on possible adaptive changes induced by chronically increased APP gene dose; (3) do other genes present on chromosome 21, or on other chromosomes whose expression is dysregulated in DS, contribute to AD pathogenesis; and (4) can one model strategies that combine the use of an APP-based treatment with those directed at other AD phenotypes including p-tau and inflammation. LINKAGE TO OTHER MAJOR THEORIES The APP gene dose hypothesis interfaces with the amyloid cascade hypothesis of AD as well as with the genetic and cell biological observations that support it. Moreover, upregulation of fl-APP protein and products may drive downstream events that dysregulate tau homeostasis and inflammatory responses that contribute to propagation of AD pathogenesis.
Collapse
Affiliation(s)
- Xu‐Qiao Chen
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ahmad Salehi
- Department of Psychiatry & Behavioral SciencesStanford Medical SchoolPalo AltoCaliforniaUSA
| | - Matthew L. Pearn
- Department of AnesthesiologyUniversity of California San Diego, School of MedicineLa JollaCaliforniaUSA
- V.A. San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Cassia Overk
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Phuong D. Nguyen
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | | | - William C. Mobley
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
4
|
Kaplan DR, Mobley WC. (H)Elping nerve growth factor: Elp1 inhibits TrkA's phosphatase to maintain retrograde signaling. J Clin Invest 2021; 130:2195-2198. [PMID: 32281945 DOI: 10.1172/jci136162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nerve growth factor (NGF) regulates many aspects of neuronal biology by retrogradely propagating signals along axons to the targets of those axons. How this occurs when axons contain a plethora of proteins that can silence those signals has long perplexed the neurotrophin field. In this issue of the JCI, Li et al. suggest an answer to this vexing problem, while exploring why the Elp1 gene that is mutated in familial dysautonomia (FD) causes peripheral neuropathy. They describe a distinctive function of Elp1 as a protein that is required to sustain NGF signaling by blocking the activity of its phosphatase that shuts off those signals. This finding helps explain the innervation deficits prominent in FD and reveals a unique role for Elp1 in the regulation of NGF-dependent TrkA activity.
Collapse
Affiliation(s)
- David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
5
|
Astragalus membranaceus Injection Protects Retinal Ganglion Cells by Regulating the Nerve Growth Factor Signaling Pathway in Experimental Rat Traumatic Optic Neuropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:2429843. [PMID: 33381196 PMCID: PMC7762646 DOI: 10.1155/2020/2429843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Activation of the nerve growth factor (NGF) signaling pathway is a potential method of treatment for retinal ganglion cell (RGC) loss due to traumatic optic neuropathy (TON). The present study aimed to explore the biological effects of injecting Astragalus membranaceus (A. mem) on RGCs in an experimental TON model. Adult male Wistar rats were randomly divided into three groups: sham-operated (SL), model (ML), and A. mem injection (AL). The left eyes of the rats were considered the experimental eyes, and the right eyes served as the controls. AL rats received daily intraperitoneal injections of A. mem (3 mL/kg), whereas ML and SL rats were administered the same volume of normal saline. The TON rat model was induced by optic nerve (ON) transverse quantitative traction. After two-week administration, the number of RGCs was determined using retrograde labeling with Fluoro-Gold. The protein levels of NGF, tyrosine kinase receptor A (TrkA), c-Jun N-terminal protein kinase (JNK), JNK phosphorylation (p-JNK), and nuclear factor kappa-B (NF-κB) were assessed using western blotting. The levels of p75 neurotrophin receptor (p75NTR) and NF-κB DNA binding were examined using real-time PCR and an electrophoretic mobility shift assay. In addition, the concentrations of JNK and p-JNK were assessed using an enzyme-linked immunosorbent assay. Results. The number of RGCs in ML was found to be significantly decreased (P < 0.01) relative to both AL and SL, together with the downregulation of NGF (P < 0.01), TrkA (P < 0.05), and NF-κB (P < 0.01); upregulation of p75NTR mRNA (P < 0.01); and increased protein levels of JNK (P < 0.05) and p-JNK (P < 0.05). Treatment using A. mem injection significantly preserved the density of RGCs in rats with experimental TON and markedly upregulated the proteins of NGF (P < 0.01), TrkA (P < 0.05), and NF-κB (P < 0.01) and downregulated the mRNA level of p75NTR(P < 0.01), as well as the proteins of JNK (P < 0.05) and p-JNK (P < 0.01). Thus, A. mem injection could reduce RGC death in TON induced by ON transverse quantitative traction by stimulating the NGF signaling pathway.
Collapse
|
6
|
Nerve Growth Factor: The First Molecule of the Neurotrophin Family. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:3-10. [PMID: 34453288 DOI: 10.1007/978-3-030-74046-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neurotrophins (NTs) are molecules regulating differentiation, maintenance, and functional plasticity of vertebrate nervous systems. Nerve growth factor (NGF) was the first to be identified in the neurotrophin family. The long scientific history of NTs provided not only advancement in the neuroscience field but opened new scenarios involving different body districts in physiological and pathological conditions, which include the immune, endocrine, and skeletal system, vascular districts, inflammation, etc. To date, many biological aspects of NTs have been clarified, but the new discoveries are still opening new insights on molecular and cellular mechanisms and systemic effects, also affecting the possible therapeutic application of NTs. This short review summarizes the main aspects of NGF biology and biochemistry, including the role of the NGF precursor molecule, high- and low-affinity receptors and related intracellular pathways, and target cells.
Collapse
|
7
|
Petrella C, Ciotti MT, Nisticò R, Piccinin S, Calissano P, Capsoni S, Mercanti D, Cavallaro S, Possenti R, Severini C. Involvement of Bradykinin Receptor 2 in Nerve Growth Factor Neuroprotective Activity. Cells 2020; 9:cells9122651. [PMID: 33321704 PMCID: PMC7763563 DOI: 10.3390/cells9122651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Neurotrophin nerve growth factor (NGF) has been demonstrated to upregulate the gene expression of bradykinin receptor 2 (B2R) on sensory neurons, thus facilitating nociceptive signals. The aim of the present study is to investigate the involvement of B2R in the NGF mechanism of action in nonsensory neurons in vitro by using rat mixed cortical primary cultures (CNs) and mouse hippocampal slices, and in vivo in Alzheimer’s disease (AD) transgenic mice (5xFAD) chronically treated with NGF. A significant NGF-mediated upregulation of B2R was demonstrated by microarray, Western blot, and immunofluorescence analysis in CNs, indicating microglial cells as the target of this modulation. The B2R involvement in the NGF mechanism of action was also demonstrated by using a selective B2R antagonist which was able to reverse the neuroprotective effect of NGF in CNs, as revealed by viability assay, and the NGF-induced long-term potentiation (LTP) in hippocampal slices. To confirm in vitro observations, B2R upregulation was observed in 5xFAD mouse brain following chronic intranasal NGF treatment. This study demonstrates for the first time that B2R is a key element in the neuroprotective activity and synaptic plasticity mediated by NGF in brain cells.
Collapse
Affiliation(s)
- Carla Petrella
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.P.); (M.T.C.); (D.M.)
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.P.); (M.T.C.); (D.M.)
| | - Robert Nisticò
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (R.N.); (S.P.)
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Viale Regina Elena, 295, 00161 Rome, Italy;
| | - Sonia Piccinin
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (R.N.); (S.P.)
| | - Pietro Calissano
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Viale Regina Elena, 295, 00161 Rome, Italy;
| | - Simona Capsoni
- Section of Physiology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy
| | - Delio Mercanti
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.P.); (M.T.C.); (D.M.)
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Roberta Possenti
- Department Medicine of Systems, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.P.); (M.T.C.); (D.M.)
- Correspondence:
| |
Collapse
|
8
|
Kelley CM, Ginsberg SD, Alldred MJ, Strupp BJ, Mufson EJ. Maternal Choline Supplementation Alters Basal Forebrain Cholinergic Neuron Gene Expression in the Ts65Dn Mouse Model of Down Syndrome. Dev Neurobiol 2019; 79:664-683. [PMID: 31120189 PMCID: PMC6756931 DOI: 10.1002/dneu.22700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022]
Abstract
Down syndrome (DS), trisomy 21, is marked by intellectual disability and a premature aging profile including degeneration of the basal forebrain cholinergic neuron (BFCN) projection system, similar to Alzheimer's disease (AD). Although data indicate that perinatal maternal choline supplementation (MCS) alters the structure and function of these neurons in the Ts65Dn mouse model of DS and AD (Ts), whether MCS affects the molecular profile of vulnerable BFCNs remains unknown. We investigated the genetic signature of BFCNs obtained from Ts and disomic (2N) offspring of Ts65Dn dams maintained on a MCS diet (Ts+, 2N+) or a choline normal diet (ND) from mating until weaning, then maintained on ND until 4.4-7.5 months of age. Brains were then collected and prepared for choline acetyltransferase (ChAT) immunohistochemistry and laser capture microdissection followed by RNA extraction and custom-designed microarray analysis. Findings revealed upregulation of select transcripts in classes of genes related to the cytoskeleton (Tubb4b), AD (Cav1), cell death (Bcl2), presynaptic (Syngr1), immediate early (Fosb, Arc), G protein signaling (Gabarap, Rgs10), and cholinergic neurotransmission (Chrnb3) in Ts compared to 2N mice, which were normalized with MCS. Moreover, significant downregulation was seen in select transcripts associated with the cytoskeleton (Dync1h1), intracellular signaling (Itpka, Gng3, and Mlst8), and cell death (Ccng1) in Ts compared to 2N mice that was normalized with MCS. This study provides insight into genotype-dependent differences and the effects of MCS at the molecular level within a key vulnerable cell type in DS and AD.
Collapse
Affiliation(s)
- Christy M. Kelley
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA
- Department of Neuroscience & Physiology, NYU Langone School of Medicine, New York, NY, USA
- NYU Neuroscience Institute, NYU Langone School of Medicine, New York, NY, USA
| | - Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA
| | - Barbara J. Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Elliott J. Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
9
|
Brady ST, Morfini GA. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 2017; 105:273-282. [PMID: 28411118 DOI: 10.1016/j.nbd.2017.04.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
10
|
Colas D, Chuluun B, Warrier D, Blank M, Wetmore DZ, Buckmaster P, Garner CC, Heller HC. Short-term treatment with the GABAA receptor antagonist pentylenetetrazole produces a sustained pro-cognitive benefit in a mouse model of Down's syndrome. Br J Pharmacol 2015; 169:963-73. [PMID: 23489250 DOI: 10.1111/bph.12169] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/25/2013] [Accepted: 02/16/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Down's syndrome is a common genetic cause of intellectual disability, for which there are no drug therapies. Mechanistic studies in a model of Down's syndrome [Ts65Dn (TS) mice] demonstrated that impaired cognitive function was due to excessive neuronal inhibitory tone. These deficits were normalized by low doses of GABAA receptor antagonists in adult animals. In this study, we explore the therapeutic potential of pentylenetetrazole, a GABAA receptor antagonist with a history of safe use in humans. EXPERIMENTAL APPROACH Long-term memory was assessed by the novel object recognition test in different cohorts of TS mice after a delay following a short-term chronic treatment with pentylenetetrazole. Seizure susceptibility, an index of treatment safety, was studied by means of EEG, behaviour and hippocampus morphology. EEG spectral analysis was used as a bio-marker of the treatment. KEY RESULTS PTZ has a wide therapeutic window (0.03-3 mg·kg(-1)) that is >10-1000-fold below its seizure threshold and chronic pentylenetetrazole treatment did not lower the seizure threshold. Short-term, low, chronic dose regimens of pentylenetetrazole elicited long-lasting (>1 week) normalization of cognitive function in young and aged mice. Pentylenetetrazole effectiveness was dependent on the time of treatment; cognitive performance improved after treatment during the light (inactive) phase, but not during the dark (active) phase. Chronic pentylenetetrazole treatment normalized EEG power spectra in TS mice. CONCLUSIONS AND IMPLICATIONS Low doses of pentylenetetrazole were safe, produced long-lasting cognitive improvements and have the potential of fulfilling an unmet therapeutic need in Down's syndrome.
Collapse
Affiliation(s)
- D Colas
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Colas D, Manca A, Delcroix JD, Mourrain P. Orexin A and orexin receptor 1 axonal traffic in dorsal roots at the CNS/PNS interface. Front Neurosci 2014; 8:20. [PMID: 24574957 PMCID: PMC3920189 DOI: 10.3389/fnins.2014.00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/23/2014] [Indexed: 11/13/2022] Open
Abstract
Hypothalamic orexin/hypocretin neurons send long axonal projections through the dorsal spinal cord in lamina I-II of the dorsal horn (DH) at the interface with the peripheral nervous system (PNS). We show that in the DH OXA fibers colocalize with substance P (SP) positive afferents of dorsal root ganglia (DRG) neurons known to mediate sensory processing. Further, OR1 is expressed in p75(NTR) and SP positive DRG neurons, suggesting a potential signaling pathway between orexin and DRG neurons. Interestingly, DRG sensory neurons have a distinctive bifurcating axon where one branch innervates the periphery and the other one the spinal cord (pseudo-unipolar neurons), allowing for potential functional coupling of distinct targets. We observe that OR1 is transported selectively from DRG toward the spinal cord, while OXA is accumulated retrogradely toward the DRG. We hence report a rare situation of asymmetrical neuropeptide receptor distribution between axons projected by a single neuron. These molecular and cellular data are consistent with the role of OXA/OR1 in sensory processing, including DRG neuronal modulation, and support the potential existence of an OX/HCRT circuit between CNS and PNS.
Collapse
Affiliation(s)
- Damien Colas
- Department of Biology, Stanford University Stanford, CA, USA ; Laboratory of Neurodegeneration and Axon Dynamics, European Brain Research Institute Rome, Italy
| | - Annalisa Manca
- Laboratory of Neurodegeneration and Axon Dynamics, European Brain Research Institute Rome, Italy
| | - Jean-Dominique Delcroix
- Laboratory of Neurodegeneration and Axon Dynamics, European Brain Research Institute Rome, Italy
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Beckman Center, Stanford University Stanford, CA, USA ; INSERM 1024, Ecole Normale Supérieure Paris, France
| |
Collapse
|
12
|
Kelley CM, Powers BE, Velazquez R, Ash JA, Ginsberg SD, Strupp BJ, Mufson EJ. Sex differences in the cholinergic basal forebrain in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Brain Pathol 2014; 24:33-44. [PMID: 23802663 PMCID: PMC4220609 DOI: 10.1111/bpa.12073] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/21/2013] [Indexed: 12/23/2022] Open
Abstract
In the Down syndrome (DS) population, there is an early incidence of dementia and neuropathology similar to that seen in sporadic Alzheimer's disease (AD), including dysfunction of the basal forebrain cholinergic neuron (BFCN) system. Using Ts65Dn mice, a model of DS and AD, we examined differences in the BFCN system between male and female segmentally trisomic (Ts65Dn) and disomic (2N) mice at ages 5-8 months. Quantitative stereology was applied to BFCN subfields immunolabeled for choline acetyltransferase (ChAT) within the medial septum/vertical limb of the diagonal band (MS/VDB), horizontal limb of the diagonal band (HDB) and nucleus basalis of Meynert/substantia innominata (NBM/SI). We found no sex differences in neuron number or subregion area measurement in the MS/VDB or HDB. However, 2N and Ts65Dn females showed an average 34% decrease in BFCN number and an average 20% smaller NBM/SI region area compared with genotype-matched males. Further, relative to genotype-matched males, female mice had smaller BFCNs in all subregions. These findings demonstrate that differences between the sexes in BFCNs of young adult Ts65Dn and 2N mice are region and genotype specific. In addition, changes in post-processing tissue thickness suggest altered parenchymal characteristics between male and female Ts65Dn mice.
Collapse
Affiliation(s)
- Christy M. Kelley
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Brian E. Powers
- Division of Nutritional Sciences and Department of PsychologyCornell UniversityIthacaNY
| | - Ramon Velazquez
- Division of Nutritional Sciences and Department of PsychologyCornell UniversityIthacaNY
| | - Jessica A. Ash
- Division of Nutritional Sciences and Department of PsychologyCornell UniversityIthacaNY
| | - Stephen D. Ginsberg
- Center for Dementia ResearchNathan Kline InstituteOrangeburgNY
- Department of PsychiatryNew York University Langone Medical CenterNew YorkNY
- Department of Physiology & NeuroscienceNew York University Langone Medical CenterNew YorkNY
| | - Barbara J. Strupp
- Division of Nutritional Sciences and Department of PsychologyCornell UniversityIthacaNY
| | - Elliott J. Mufson
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| |
Collapse
|
13
|
Abstract
Down syndrome is the most common form of intellectual disability and results from one of the most complex genetic perturbations that is compatible with survival, trisomy 21. The study of brain dysfunction in this disorder has largely been based on a gene discovery approach, but we are now moving into an era of functional genome exploration, in which the effects of individual genes are being studied alongside the effects of deregulated non-coding genetic elements and epigenetic influences. Also, new data from functional neuroimaging studies are challenging our views of the cognitive phenotypes associated with Down syndrome and their pathophysiological correlates. These advances hold promise for the development of treatments for intellectual disability.
Collapse
Affiliation(s)
- Mara Dierssen
- Genes and Disease Programme, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Centro de Investigación Biomédica en Red de Enfermedades Raras, E-08003 Barcelona, Spain.
| |
Collapse
|
14
|
Ihara Y, Morishima-Kawashima M, Nixon R. The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2:a006361. [PMID: 22908190 PMCID: PMC3405832 DOI: 10.1101/cshperspect.a006361] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As neurons age, their survival depends on eliminating a growing burden of damaged, potentially toxic proteins and organelles-a capability that declines owing to aging and disease factors. Here, we review the two proteolytic systems principally responsible for protein quality control in neurons and their important contributions to Alzheimer disease pathogenesis. In the first section, the discovery of paired helical filament ubiquitination is described as a backdrop for discussing the importance of the ubiquitin-proteasome system in Alzheimer disease. In the second section, we review the prominent involvement of the lysosomal system beginning with pathological endosomal-lysosomal activation and signaling at the very earliest stages of Alzheimer disease followed by the progressive failure of autophagy. These abnormalities, which result in part from Alzheimer-related genes acting directly on these lysosomal pathways, contribute to the development of each of the Alzheimer neuropathological hallmarks and represent a promising therapeutic target.
Collapse
Affiliation(s)
- Yasuo Ihara
- Department of Neuropathology, Faculty of Life and Medical Science, Doshisha University, Kyoto, Japan.
| | | | | |
Collapse
|
15
|
Rodrigues EM, Weissmiller AM, Goldstein LSB. Enhanced β-secretase processing alters APP axonal transport and leads to axonal defects. Hum Mol Genet 2012; 21:4587-601. [PMID: 22843498 DOI: 10.1093/hmg/dds297] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease pathologically characterized by amyloid plaques and neurofibrillary tangles in the brain. Before these hallmark features appear, signs of axonal transport defects develop, though the initiating events are not clear. Enhanced amyloidogenic processing of amyloid precursor protein (APP) plays an integral role in AD pathogenesis, and previous work suggests that both the Aβ region and the C-terminal fragments (CTFs) of APP can cause transport defects. However, it remains unknown if APP processing affects the axonal transport of APP itself, and whether increased APP processing is sufficient to promote axonal dystrophy. We tested the hypothesis that β-secretase cleavage site mutations of APP alter APP axonal transport directly. We found that the enhanced β-secretase cleavage reduces the anterograde axonal transport of APP, while inhibited β-cleavage stimulates APP anterograde axonal transport. Transport behavior of APP after treatment with β- or γ-secretase inhibitors suggests that the amount of β-secretase cleaved CTFs (βCTFs) of APP underlies these transport differences. Consistent with these findings, βCTFs have reduced anterograde axonal transport compared with full-length, wild-type APP. Finally, a gene-targeted mouse with familial AD (FAD) Swedish mutations to APP, which enhance the β-cleavage of APP, develops axonal dystrophy in the absence of mutant protein overexpression, amyloid plaque deposition and synaptic degradation. These results suggest that the enhanced β-secretase processing of APP can directly impair the anterograde axonal transport of APP and are sufficient to lead to axonal defects in vivo.
Collapse
Affiliation(s)
- Elizabeth M Rodrigues
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
16
|
Capsoni S, Marinelli S, Ceci M, Vignone D, Amato G, Malerba F, Paoletti F, Meli G, Viegi A, Pavone F, Cattaneo A. Intranasal "painless" human Nerve Growth Factor [corrected] slows amyloid neurodegeneration and prevents memory deficits in App X PS1 mice. PLoS One 2012; 7:e37555. [PMID: 22666365 PMCID: PMC3364340 DOI: 10.1371/journal.pone.0037555] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/25/2012] [Indexed: 02/02/2023] Open
Abstract
Nerve Growth Factor (NGF) is being considered as a therapeutic candidate for Alzheimer's disease (AD) treatment but the clinical application is hindered by its potent pro-nociceptive activity. Thus, to reduce systemic exposure that would induce pain, in recent clinical studies NGF was administered through an invasive intracerebral gene-therapy approach. Our group demonstrated the feasibility of a non-invasive intranasal delivery of NGF in a mouse model of neurodegeneration. NGF therapeutic window could be further increased if its nociceptive effects could be avoided altogether. In this study we exploit forms of NGF, mutated at residue R100, inspired by the human genetic disease HSAN V (Hereditary Sensory Autonomic Neuropathy Type V), which would allow increasing the dose of NGF without triggering pain. We show that "painless" hNGF displays full neurotrophic and anti-amyloidogenic activities in neuronal cultures, and a reduced nociceptive activity in vivo. When administered intranasally to APPxPS1 mice ( n = 8), hNGFP61S/R100E prevents the progress of neurodegeneration and of behavioral deficits. These results demonstrate the in vivo neuroprotective and anti-amyloidogenic properties of hNGFR100 mutants and provide a rational basis for the development of "painless" hNGF variants as a new generation of therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Simona Capsoni
- European Brain Research Institute, Rome, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - Sara Marinelli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | | | | | - Francesca Malerba
- European Brain Research Institute, Rome, Italy
- Scuola Normale Superiore, Pisa, Italy
| | | | | | | | - Flaminia Pavone
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute, Rome, Italy
- Scuola Normale Superiore, Pisa, Italy
- * E-mail:
| |
Collapse
|
17
|
Lockrow JP, Fortress AM, Granholm ACE. Age-related neurodegeneration and memory loss in down syndrome. Curr Gerontol Geriatr Res 2012; 2012:463909. [PMID: 22545043 PMCID: PMC3318235 DOI: 10.1155/2012/463909] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/21/2011] [Indexed: 01/10/2023] Open
Abstract
Down syndrome (DS) is a condition where a complete or segmental chromosome 21 trisomy causes variable intellectual disability, and progressive memory loss and neurodegeneration with age. Many research groups have examined development of the brain in DS individuals, but studies on age-related changes should also be considered, with the increased lifespan observed in DS. DS leads to pathological hallmarks of Alzheimer's disease (AD) by 40 or 50 years of age. Progressive age-related memory deficits occurring in both AD and in DS have been connected to degeneration of several neuronal populations, but mechanisms are not fully elucidated. Inflammation and oxidative stress are early events in DS pathology, and focusing on these pathways may lead to development of successful intervention strategies for AD associated with DS. Here we discuss recent findings and potential treatment avenues regarding development of AD neuropathology and memory loss in DS.
Collapse
Affiliation(s)
- Jason P. Lockrow
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ashley M. Fortress
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ann-Charlotte E. Granholm
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Center on Aging, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
18
|
Mohamed A, Posse de Chaves E. Aβ internalization by neurons and glia. Int J Alzheimers Dis 2011; 2011:127984. [PMID: 21350608 PMCID: PMC3042623 DOI: 10.4061/2011/127984] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 12/23/2010] [Indexed: 11/20/2022] Open
Abstract
In the brain, the amyloid β peptide (Aβ) exists extracellularly and inside neurons. The intracellular accumulation of Aβ in Alzheimer's disease brain has been questioned for a long time. However, there is now sufficient strong evidence indicating that accumulation of Aβ inside neurons plays an important role in the pathogenesis of Alzheimer's disease. Intraneuronal Aβ originates from intracellular cleavage of APP and from Aβ internalization from the extracellular milieu. We discuss here the different molecular mechanisms that are responsible for Aβ internalization in neurons and the links between Aβ internalization and neuronal dysfunction and death. A brief description of Aβ uptake by glia is also presented.
Collapse
Affiliation(s)
- Amany Mohamed
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | |
Collapse
|
19
|
Ginsberg SD, Alldred MJ, Counts SE, Cataldo AM, Neve RL, Jiang Y, Wuu J, Chao MV, Mufson EJ, Nixon RA, Che S. Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer's disease progression. Biol Psychiatry 2010; 68:885-93. [PMID: 20655510 PMCID: PMC2965820 DOI: 10.1016/j.biopsych.2010.05.030] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 05/04/2010] [Accepted: 05/22/2010] [Indexed: 01/13/2023]
Abstract
BACKGROUND Endocytic dysfunction and neurotrophin signaling deficits may underlie the selective vulnerability of hippocampal neurons during the progression of Alzheimer's disease (AD), although there is little direct in vivo and biochemical evidence to support this hypothesis. METHODS Microarray analysis of hippocampal CA1 pyramidal neurons acquired via laser capture microdissection was performed using postmortem brain tissue. Validation was achieved using real-time quantitative polymerase chain reaction and immunoblot analysis. Mechanistic studies were performed using human fibroblasts subjected to overexpression with viral vectors or knockdown via small interference RNA. RESULTS Expression levels of genes regulating early endosomes (rab5) and late endosomes (rab7) are selectively upregulated in homogeneous populations of CA1 neurons from individuals with mild cognitive impairment and AD. The levels of these genes are selectively increased as antemortem measures of cognition decline during AD progression. Hippocampal quantitative polymerase chain reaction and immunoblot analyses confirmed increased levels of these transcripts and their respective protein products. Elevation of select rab GTPases regulating endocytosis paralleled the downregulation of genes encoding the neurotrophin receptors TrkB and TrkC. Overexpression of rab5 in cells suppressed TrkB expression, whereas knockdown of TrkB expression did not alter rab5 levels, suggesting that TrkB downregulation is a consequence of endosomal dysfunction associated with elevated rab5 levels in early AD. CONCLUSIONS These data support the hypothesis that neuronal endosomal dysfunction is associated with preclinical AD. Increased endocytic pathway activity, driven by elevated rab GTPase expression, may result in long-term deficits in hippocampal neurotrophic signaling and represent a key pathogenic mechanism underlying AD progression.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, New York University Langone Medical Center, Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ginsberg SD, Mufson EJ, Counts SE, Wuu J, Alldred MJ, Nixon RA, Che S. Regional selectivity of rab5 and rab7 protein upregulation in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis 2010; 22:631-9. [PMID: 20847427 PMCID: PMC3031860 DOI: 10.3233/jad-2010-101080] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endocytic alterations are one of the earliest changes to occur in Alzheimer's disease (AD), and are hypothesized to be involved in the selective vulnerability of specific neuronal populations during the progression of AD. Previous microarray and real-time quantitative PCR experiments revealed an upregulation of the early endosomal effector rab5 and the late endosome constituent rab7 in the hippocampus of people with mild cognitive impairment (MCI) and AD. To assess whether these select rab GTPase gene expression changes are reflected in protein levels within selectively vulnerable brain regions (basal forebrain, frontal cortex, and hippocampus) and relatively spared areas (cerebellum and striatum), we performed immunoblot analysis using antibodies directed against rab5 and rab7 on postmortem human brain tissue harvested from cases with a premortem clinical diagnosis of no cognitive impairment (NCI), MCI, and AD. Results indicate selective upregulation of both rab5 and rab7 levels within basal forebrain, frontal cortex, and hippocampus in MCI and AD, which also correlated with Braak staging. In contrast, no differences in protein levels were found in the less vulnerable cerebellum and striatum. These regional immunoblot assays are consistent with single cell gene expression data, and provide protein-based evidence for endosomal markers contributing to the vulnerability of cell types within selective brain regions during the progression of AD.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, New York University Langone Medical Center, Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, Brown RH, Brown H, Tiwari A, Hayward L, Edgar J, Nave KA, Garberrn J, Atagi Y, Song Y, Pigino G, Brady ST. Axonal transport defects in neurodegenerative diseases. J Neurosci 2009; 29:12776-86. [PMID: 19828789 PMCID: PMC2801051 DOI: 10.1523/jneurosci.3463-09.2009] [Citation(s) in RCA: 345] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/04/2009] [Indexed: 12/26/2022] Open
Abstract
Adult-onset neurodegenerative diseases (AONDs) comprise a heterogeneous group of neurological disorders characterized by a progressive, age-dependent decline in neuronal function and loss of selected neuronal populations. Alterations in synaptic function and axonal connectivity represent early and critical pathogenic events in AONDs, but molecular mechanisms underlying these defects remain elusive. The large size and complex subcellular architecture of neurons render them uniquely vulnerable to alterations in axonal transport (AT). Accordingly, deficits in AT have been documented in most AONDs, suggesting a common defect acquired through different pathogenic pathways. These observations suggest that many AONDs can be categorized as dysferopathies, diseases in which alterations in AT represent a critical component in pathogenesis. Topics here address various molecular mechanisms underlying alterations in AT in several AONDs. Illumination of such mechanisms provides a framework for the development of novel therapeutic strategies aimed to prevent axonal and synaptic dysfunction in several major AONDs.
Collapse
Affiliation(s)
- Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Excitatory synapses in the mammalian brain contain two types of ligand-gated ion channels: AMPA receptors (AMPARs) and NMDA receptors (NMDARs). AMPARs are responsible for generating excitatory synaptic responses, whereas NMDAR activation triggers long-lasting changes in these responses by modulating the trafficking of AMPARs toward and away from synapses. AMPARs are tetramers composed of four subunits (GluR1-GluR4), which current models suggest govern distinct AMPAR trafficking behavior during synaptic plasticity. Here, we address the roles of GluR2 and GluR3 in controlling the recycling- and activity-dependent endocytosis of AMPARs by using cultured hippocampal neurons prepared from knockout (KO) mice lacking these subunits. We find that synapses and dendritic spines form normally in cells lacking GluR2/3 and that upon NMDAR activation, GluR2/3-lacking AMPARs are endocytosed in a manner indistinguishable from GluR2-containing AMPARs in wild-type (WT) neurons. AMPARs lacking GluR2/3 also recycle to the plasma membrane identically to WT AMPARs. However, because of their permeability to calcium, GluR2-lacking but not WT AMPARs exhibited robust internalization throughout the dendritic tree in response to AMPA application. Dendritic endocytosis of AMPARs also was observed in GABAergic neurons, which express a high proportion of GluR2-lacking AMPARs. These results demonstrate that GluR2 and GluR3 are not required for activity-dependent endocytosis of AMPARs and suggest that the most important property of GluR2 in the context of AMPAR trafficking may be its influence on calcium permeability.
Collapse
|
23
|
Thippeswamy T, Howard MR, Cosgrave AS, Arora DK, McKay JS, Quinn JP. Nitric oxide-NGF mediated PPTA/SP, ADNP, and VIP expression in the peripheral nervous system. J Mol Neurosci 2007; 33:268-77. [PMID: 17952636 DOI: 10.1007/s12031-007-0066-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 11/30/2006] [Indexed: 12/14/2022]
Abstract
Nerve growth factor (NGF)-deprivation or axotomy of dorsal root ganglion (DRG) neurons causes stress, which they cope by triggering various mechanisms. Among several molecular changes, in the present study, we demonstrate preprotachykinin-A-substance P (PPTA-SP) and activity-dependent neuroprotective protein-vasoactive intestinal peptide (ADNP-VIP) expression pattern using DRG neurons-Schwann cells coculture and axotomy model. In the presence of NGF, DRG cultures showed high levels of PPTA and ADNP mRNA expression, which were significantly suppressed in the absence of NGF and/or nitric oxide synthase (NOS) inhibition by NG-nitro-L-arginine methyl ester (L-NAME), suggesting that both NGF and nitric oxide (NO) can regulate PPTA and ADNP expression. However, treating coculture with NO donor, diethylenetriamine nitric oxide (DETA-NO) did not increase PPTA and ADNP expression in the presence or absence of NGF, although there was a marginal increase in ADNP expression in the absence of NGF. NGF-deprivation increases endogenous NO; thus, DETA-NO had no further effect on PPTA and ADNP expression. Alternatively, NGF produced from NO-stimulated Schwann cells influence gene expression. In addition, interestingly, DETA-NO treatment of Schwann cells alone suppresses both PPTA and ADNP, suggesting differential response of DRG neurons-Schwann cells coculture to DETA-NO. SP and ADNP immunostaining of axotomized DRGs revealed significant reduction in SP and ADNP compared to intact DRG, which was partially recovered in neuronal NOS blocker, 7-nitroindazole (7-NI)-treated DRGs, particularly intense ADNP staining in satellite glia. As ADNP is VIP-responsive gene, we further explored VIP expression in DRGs. Axotomy increased VIP in DRG neurons, but 7-NI treatment caused intense VIP staining in satellite glia. These observations suggest a complex interaction of NO-NGF with PPTA/SP and ADNP-VIP in neuron-glial communication when neurons are stressed.
Collapse
Affiliation(s)
- Thimmasettappa Thippeswamy
- Department of Veterinary Preclinical Sciences, University of Liverpool, Brownlowhill Street, Liverpool, L69 7ZJ, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Bearer EL, Zhang X, Jacobs RE. Live imaging of neuronal connections by magnetic resonance: Robust transport in the hippocampal-septal memory circuit in a mouse model of Down syndrome. Neuroimage 2007; 37:230-42. [PMID: 17566763 PMCID: PMC2074885 DOI: 10.1016/j.neuroimage.2007.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 04/11/2007] [Accepted: 05/02/2007] [Indexed: 01/01/2023] Open
Abstract
Connections from hippocampus to septal nuclei have been implicated in memory loss and the cognitive impairment in Down syndrome (DS). We trace these connections in living mice by Mn(2+) enhanced 3D MRI and compare normal with a trisomic mouse model of DS, Ts65Dn. After injection of 4 nl of 200 mM Mn(2+) into the right hippocampus, Mn(2+) enhanced circuitry was imaged at 0.5, 6, and 24 h in each of 13 different mice by high resolution MRI to detect dynamic changes in signal over time. The pattern of Mn(2+) enhanced signal in vivo correlated with the histologic pattern in fixed brains of co-injected 3kD rhodamine-dextran-amine, a classic tracer. Statistical parametric mapping comparing intensity changes between different time points revealed that the dynamics of Mn(2+) transport in this pathway were surprisingly more robust in DS mice than in littermate controls, with statistically significant intensity changes in DS appearing at earlier time points along expected pathways. This supports reciprocal alterations of transport in the hippocampal-forebrain circuit as being implicated in DS and argues against a general failure of transport. This is the first examination of in vivo transport dynamics in this pathway and the first report of elevated transport in DS.
Collapse
Affiliation(s)
- Elaine L. Bearer
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Xiaowei Zhang
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Russell E. Jacobs
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
25
|
Liu J, Lamb D, Chou MM, Liu YJ, Li G. Nerve growth factor-mediated neurite outgrowth via regulation of Rab5. Mol Biol Cell 2007; 18:1375-84. [PMID: 17267689 PMCID: PMC1838971 DOI: 10.1091/mbc.e06-08-0725] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 12/18/2006] [Accepted: 01/24/2007] [Indexed: 01/19/2023] Open
Abstract
Nerve growth factor (NGF) induces neurite outgrowth and differentiation in a process that involves NGF binding to its receptor TrkA and endocytosis of the NGF-TrkA complex into signaling endosomes. Here, we find that biogenesis of signaling endosomes requires inactivation of Rab5 to block early endosome fusion. Expression of dominant-negative Rab5 mutants enhanced NGF-mediated neurite outgrowth, whereas a constitutively active Rab5 mutant or Rabex-5 inhibited this process. Consistently, inactivation of Rab5 sustained TrkA activation on the endosomes. Furthermore, NGF treatment rapidly decreased cellular level of active Rab5-GTP, as shown by pull-down assays. This Rab5 down-regulation was mediated by RabGAP5, which was shown to associate with TrkA by coimmunoprecipitation assays. Importantly, RNA interference of RabGAP5 as well as a RabGAP5 truncation mutant containing the TrkA-binding domain blocked NGF-mediated neurite outgrowth, indicating a requirement for RabGAP5 in this process. Thus, NGF signaling down-regulates Rab5 activity via RabGAP5 to facilitate neurite outgrowth and differentiation.
Collapse
Affiliation(s)
- Jay Liu
- *Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Darija Lamb
- *Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Margaret M. Chou
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Yong-Jian Liu
- Department of Neurology and Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Guangpu Li
- *Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
26
|
Niewiadomska G, Baksalerska-Pazera M, Lenarcik I, Riedel G. Compartmental protein expression of Tau, GSK-3beta and TrkA in cholinergic neurons of aged rats. J Neural Transm (Vienna) 2006; 113:1733-46. [PMID: 16736240 DOI: 10.1007/s00702-006-0488-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 03/28/2006] [Indexed: 01/02/2023]
Abstract
During aging basal forebrain cholinergic neurons (BFCNs) degenerate, and we hypothesize this to be the result of a degeneration of the cytoskeleton. As a corollary, retrograde transport of the complex of nerve growth factor (NGF) and its activated receptor phospho-TrkA (P-TrkA) is impaired. Using immunocytochemistry, we here compare young and aged rat brains in their subcellular localization of NGF and P-TrkA in relation to the compartmentalization of phosphorylation-dependent tau protein isoforms. Despite lower P-TrkA immunoreactivity in cortex and hippocampus of aged rats, NGF immunoreactivity was not altered in these areas, but was significantly lower in aged basal forebrain. In young animals, expression of tau isoforms and glycogen synthase kinase-3beta (GSK-3beta) was restricted to neuritic structures in cortex, hippocampus, and basal forebrain. In contrast, tau and GSK-3beta labeling was confined to cell bodies in aged rats. Since a somatic localization of phospho-tau is indicative of cytoskeletal breakdown, we suggest this to be the mechanism the breakdown of trophic support in aging BFCNs.
Collapse
Affiliation(s)
- G Niewiadomska
- Department of Neurophysiology, Nencki Institute, Warsaw, Poland.
| | | | | | | |
Collapse
|