1
|
Silva-Araújo ERD, Toscano AE, Pontes PB, Campos FDACES, Souza LMF, Dos Santos Júnior JP, Ramírez VF, Torner L, Manhães-de-Castro R. Neonatal high-dose riboflavin treatment channels energy expenditure towards sensorimotor and somatic development and reduces rodent growth and weight gain by modulating NRF-1 in the hypothalamus. Physiol Behav 2024; 287:114693. [PMID: 39255868 DOI: 10.1016/j.physbeh.2024.114693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/07/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Metabolic adaptations early in life can drive energy expenditure towards brain and physical development, with less emphasis on body mass gain and somatic growth. Dietary or pharmacological manipulations can influence these processes, but to date, the effects provided by riboflavin have not been studied. The study aimed to evaluate the effects of neonatal treatment with different doses of riboflavin on sensorimotor and somatic development in rodents. Based on this, the following experimental groups were formed: Control (C, 0 mg/kg), Riboflavin 1 (R1, 1 mg/kg), Riboflavin 2 (R2, 10 mg/kg) and Riboflavin 3 (R3, 100 mg/kg). Treatment with 100 mg/kg riboflavin anticipated the reflex ontogeny of righting, cliff aversion, negative geotaxis, and free-fall righting. Intervention with 10 and 100 mg/kg of riboflavin anticipated the reflex maturation of vibrissae placement. Eye-opening, upper incisor eruption, and lower incisor eruption reached maturational age more quickly for animals treated with 100 mg/kg, while caudal growth and body weight gain were reduced from the second week of treatment, for groups R2 and R3. Pearson's correlation analysis indicated a positive association between the administration of high doses of riboflavin and murine growth in the first week of treatment. There was, however, a negative association between treatment with a high dose of riboflavin and growth in the second week of administration, coinciding with a reduction in body weight gain in the R3 group. Treatment with 100 mg/kg of riboflavin also reduced energy expenditure parameters in the open field and catwalk. Although high-dose treatment stimulates the physiological plasticity of the CNS and reduces weight gain, hepatic parameters were preserved, highlighting the participation of the liver in the supply of fatty acids for neural maturation. Furthermore, hypothalamic NRF-1 expression was increased in the R3 group inversely to the reduction in weight gain. Our results suggest that high-dose riboflavin stimulates sensorimotor and somatic development and reduces the energy invested in growth, body weight gain, and locomotor activity, possibly involving NRF-1 gene modulation in the hypothalamus.
Collapse
Affiliation(s)
- Eulália Rebeca da Silva-Araújo
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Ana Elisa Toscano
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil.
| | - Paula Brielle Pontes
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | | | - Laíza Maria Ferreira Souza
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Joaci Pereira Dos Santos Júnior
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program of Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Valeria Fraga Ramírez
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Raul Manhães-de-Castro
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program of Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| |
Collapse
|
5
|
Hoogkamer W, Van Calenbergh F, Swinnen SP, Duysens J. Cutaneous reflex modulation and self-induced reflex attenuation in cerebellar patients. J Neurophysiol 2014; 113:915-24. [PMID: 25392164 DOI: 10.1152/jn.00381.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modulation of cutaneous reflexes is important in the neural control of walking, yet knowledge about underlying neural pathways is still incomplete. Recent studies have suggested that the cerebellum is involved. Here we evaluated the possible roles of the cerebellum in cutaneous reflex modulation and in attenuation of self-induced reflexes. First we checked whether leg muscle activity during walking was similar in patients with focal cerebellar lesions and in healthy control subjects. We then recorded cutaneous reflex activity in leg muscles during walking. Additionally, we compared reflexes after standard (computer triggered) stimuli with reflexes after self-induced stimuli for both groups. Biceps femoris and gastrocnemius medialis muscle activity was increased in the patient group compared with the control subjects, suggesting a coactivation strategy to reduce instability of gait. Cutaneous reflex modulation was similar between healthy control subjects and cerebellar patients, but the latter appeared less able to attenuate reflexes to self-induced stimuli. This suggests that the cerebellum is not primarily involved in cutaneous reflex modulation but that it could act in attenuation of self-induced reflex responses. The latter role in locomotion would be consistent with the common view that the cerebellum predicts sensory consequences of movement.
Collapse
Affiliation(s)
- Wouter Hoogkamer
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium;
| | - Frank Van Calenbergh
- Department of Neurosurgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium; and
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Jacques Duysens
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium; Department of Research, Development, and Education, St. Maartenskliniek, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Marques HG, Bharadwaj A, Iida F. From spontaneous motor activity to coordinated behaviour: a developmental model. PLoS Comput Biol 2014; 10:e1003653. [PMID: 25057775 PMCID: PMC4109855 DOI: 10.1371/journal.pcbi.1003653] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 04/18/2014] [Indexed: 01/09/2023] Open
Abstract
In mammals, the developmental path that links the primary behaviours observed during foetal stages to the full fledged behaviours observed in adults is still beyond our understanding. Often theories of motor control try to deal with the process of incremental learning in an abstract and modular way without establishing any correspondence with the mammalian developmental stages. In this paper, we propose a computational model that links three distinct behaviours which appear at three different stages of development. In order of appearance, these behaviours are: spontaneous motor activity (SMA), reflexes, and coordinated behaviours, such as locomotion. The goal of our model is to address in silico four hypotheses that are currently hard to verify in vivo: First, the hypothesis that spinal reflex circuits can be self-organized from the sensor and motor activity induced by SMA. Second, the hypothesis that supraspinal systems can modulate reflex circuits to achieve coordinated behaviour. Third, the hypothesis that, since SMA is observed in an organism throughout its entire lifetime, it provides a mechanism suitable to maintain the reflex circuits aligned with the musculoskeletal system, and thus adapt to changes in body morphology. And fourth, the hypothesis that by changing the modulation of the reflex circuits over time, one can switch between different coordinated behaviours. Our model is tested in a simulated musculoskeletal leg actuated by six muscles arranged in a number of different ways. Hopping is used as a case study of coordinated behaviour. Our results show that reflex circuits can be self-organized from SMA, and that, once these circuits are in place, they can be modulated to achieve coordinated behaviour. In addition, our results show that our model can naturally adapt to different morphological changes and perform behavioural transitions.
Collapse
Affiliation(s)
| | - Arjun Bharadwaj
- Dept. of Mechanical and Process Engineering, ETH, Zurich, Switzerland
| | - Fumiya Iida
- Dept. of Mechanical and Process Engineering, ETH, Zurich, Switzerland
| |
Collapse
|
7
|
Pijpers A, Winkelman BHJ, Bronsing R, Ruigrok TJH. Selective impairment of the cerebellar C1 module involved in rat hind limb control reduces step-dependent modulation of cutaneous reflexes. J Neurosci 2008; 28:2179-89. [PMID: 18305251 PMCID: PMC6671855 DOI: 10.1523/jneurosci.4668-07.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 11/21/2022] Open
Abstract
The cerebellum is divided into multiple parasagittally organized modules, which are thought to represent functional entities. How individual modules participate in cerebellar control of complex movements such as locomotion remains largely unknown. To a large extent, this is caused by the inability to study the contribution of individual modules during locomotion. Because of the architecture of modules, based on narrow, elongated cortical strips that may be discontinuous in the rostrocaudal direction, lesion of a complete module, without affecting neighboring modules, has not been possible. Here, we report on a new method for inducing a selective dysfunction of spatially separated parts of a single module using a small cortical injection of a retrogradely transported neurotoxin, cholera toxin b-subunit-saporin. We show that such a local injection into the C1 module results in climbing fiber and partial mossy fiber deafferentation of functionally related areas of this module, thereby resulting in a severe impairment of the whole module without affecting neighboring modules. A subsequent functional analysis indicates that such an impairment of the hindlimb part of the C1 module did not have a significant impact on skilled walking or overall stepping pattern. However, the modulation of cutaneously induced reflexes during stepping was severely diminished. We propose that the C1 module is specifically involved in the adaptive control of reflexes.
Collapse
Affiliation(s)
- Angelique Pijpers
- Department of Neuroscience, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | | | - Robert Bronsing
- Department of Neuroscience, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
8
|
Yamamura K. Mastication-induced modulation of orofacial sensory inputs as seen in the jaw reflex and single neuronal activities in the face primary somatosensory cortex of the rabbit. Arch Oral Biol 2006; 52:329-33. [PMID: 17141176 DOI: 10.1016/j.archoralbio.2006.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Revised: 11/01/2006] [Accepted: 11/02/2006] [Indexed: 01/01/2023]
Abstract
The aim of the present study was to compare the effect of mastication on non-nociceptive orofacial sensory transmission of the somatosensory pathways and that on the jaw reflex arc. To achieve this, single-unit activities of the face primary somatosensory cortex (face-SI) neurons responding to low-intensity electrical stimulation of the inferior alveolar nerve (IAN) and the jaw-opening reflex (JOR) were recorded during mastication in awake rabbits. The entire masticatory sequence was divided into the preparatory period (PP), the rhythmic-chewing period (RC) and the preswallow period (PS). A total of 112 face-SI neurons were tested for the effects of mastication. The responsiveness of most neurons and the JOR were modulated during different periods of mastication. The IAN-evoked activity was attenuated in a majority of the neurons during at least one of the masticatory periods. The JOR was suppressed during the RC and PS, while the modulatory effect was variable during the PP. Regression analysis showed that the modulatory effect of mastication on the IAN-evoked neuronal activity and that on the JOR was not well correlated. It was notable that a considerable number of face-SI neurons showed mastication-related activity although their responsiveness to IAN stimulation was strongly suppressed (i.e. almost "gated out") during mastication. The findings indicate that (1) sensory transmissions of the somatosensory and reflex pathways may be modulated in a different manner during mastication, and that (2) activity of face-SI neurons during mastication may not necessarily be a simple reflection of movement-induced stimulation of orofacial mechanoreceptors.
Collapse
Affiliation(s)
- Kensuke Yamamura
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakko-cho Dori, Niigata 951-8514, Japan.
| |
Collapse
|