1
|
Guo K, Gao L, Li P, Feng S, Zhao L, Wang X. Allopregnanolone relieves paclitaxel induced mechanical hypersensitivity via inhibiting spinal cord PGE 2-EP2 mediated microglia-neuron signaling. IBRO Neurosci Rep 2025; 18:211-221. [PMID: 39911135 PMCID: PMC11795105 DOI: 10.1016/j.ibneur.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/12/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a serious adverse effect of commonly used chemotherapeutics. Neurosteroid allopregnanolone is suggested to modulate the expression of various receptors or enzymes that involved in pain perception, presenting an analgesic potential. Here, we investigated if allopregnanolone attenuates extracellular signal-regulated kinase (ERK) and its downstream prostaglandin E2 (PGE2) expression in the dorsal spinal cord concomitant with neuropathic pain relief in paclitaxel (PTX)-induced neuropathic pain model rats. The results showed PTX upregulated phosphorylated ERK (p-ERK), PGE2 level, and PGE2 receptor E-prostanoid 2 (EP2) expression in the spinal dorsal horn. Besides, p-ERK inhibitor PD98059 or microglia inhibitor minocycline reduced microglial activation, p-ERK expression, PGE2 release, EP2 expression, and partially alleviated PTX-induced mechanical hypersensitivity. Further, allopregnanolone level in the dorsal spinal cord was observed to decrease in CINP rats, and intragastric administration of exogenous allopregnanolone dose-dependently alleviated PTX-induced mechanical hypersensitivity. Mechanistically, allopregnanolone dose-dependently alleviated PTX-induced microglial activation, p-ERK, PGE2, and EP2 upregulation, as well as cytokines expression in the dorsal spinal cord in CINP rats. Furthermore, subcutaneous injection of allopregnanolone synthesis inhibitor medroxyprogesterone could reduce endogenous allopregnanolone and block all effects of exogenous allopregnanolone in CINP rats. Taken together, these results suggest allopregnanolone presents an analgesic effect for PTX-induced mechanical hypersensitivity, partially via inhibiting the dorsal spinal cord PGE2-EP2 mediated microglia-neuron signaling.
Collapse
Affiliation(s)
| | | | - Ping Li
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| | - Shanwu Feng
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| | - Liping Zhao
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| | - Xian Wang
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Kim HK, Wang Q, Hwang SH, Dougherty PM, Wang J, Abdi S. Bardoxolone Methyl Ameliorates Chemotherapy-Induced Neuropathic Pain by Activation of Phosphorylated Nuclear Factor Erythroid 2-Related Factor 2 in the Dorsal Root Ganglia. Anesth Analg 2024; 138:664-675. [PMID: 38112490 PMCID: PMC10922949 DOI: 10.1213/ane.0000000000006736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND Many chemotherapeutic drugs, including paclitaxel, produce neuropathic pain in patients with cancer, which is a dose-dependent adverse effect. Such chemotherapy-induced neuropathic pain (CINP) is difficult to treat with existing drugs. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major regulator of antioxidative responses and activates phosphorylated Nrf2 (pNrf2). We determined the analgesic effects of bardoxolone methyl (BM), an Nrf2 activator, and the role of pNrf2 on CINP. METHODS CINP was induced in rats by intraperitoneally injecting paclitaxel on 4 alternate days in rats. BM was injected systemically as single or repeated injections after pain fully developed. RNA transcriptome, mechanical hyperalgesia, levels of inflammatory mediators and pNrf2, and location of pNrf2 in the dorsal root ganglia (DRG) were measured by RNA sequencing, von Frey filaments, Western blotting, and immunohistochemistry in rats and human DRG samples. In addition, the mitochondrial functions in 50B11 DRG neuronal cells were measured by fluorescence assay. RESULTS Our RNA transcriptome of CINP rats showed a downregulated Nrf2 pathway in the pain condition. Importantly, single and repeated systemic injections of BM ameliorated CINP. Paclitaxel increased inflammatory mediators, but BM decreased them and increased pNrf2 in the DRG. In addition, paclitaxel decreased mitochondrial membrane potential and increased mitochondrial volume in 50B11 cells, but BM restored them. Furthermore, pNrf2 was expressed in neurons and satellite cells in rat and human DRG. CONCLUSIONS Our results demonstrate the analgesic effects of BM by Nrf2 activation and the fundamental role of pNrf2 on CINP, suggesting a target for CINP and a therapeutic strategy for patients.
Collapse
Affiliation(s)
- Hee Kee Kim
- Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seon-Hee Hwang
- Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick M Dougherty
- Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Salahadin Abdi
- Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Palmitoylethanolamide Mitigates Paclitaxel Toxicity in Primary Dorsal Root Ganglion Neurons. Biomolecules 2022; 12:biom12121873. [PMID: 36551301 PMCID: PMC9775584 DOI: 10.3390/biom12121873] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of several chemotherapeutic agents, such as Paclitaxel. The main symptoms of CIPN are pain and numbness in the hands and feet. Paclitaxel is believed to accumulate in the dorsal root ganglia and free nerve endings. Novel therapeutic agents might help to mitigate or prevent Paclitaxel toxicity on dorsal root ganglion (DRG) neurons. Thus, we used primary DRG neurons as a model to investigate the potential neuroprotective effects of the endocannabinoid-like substance, palmitoylethanolamide (PEA). DRG neurons were isolated from cervical to sacral segments of spinal nerves of Wister rats (6-8 weeks old). After isolation and purification of neuronal cell populations, different concentrations of Paclitaxel (0.01-10 µM) or PEA (0.1-10 µM) or their combination were tested on cell viability by MTT assay at 24 h, 48, and 72 h post-treatment. Furthermore, morphometric analyses of neurite length and soma size for DRG neurons were performed. Adverse Paclitaxel effects on cell viability were apparent at 72 h post-treatment whereas Paclitaxel significantly reduced the neurite length in a concentration-dependent manner nearly at all investigated time points. However, Paclitaxel significantly increased the size of neuronal cell bodies at all time windows. These phenotypic effects were significantly reduced in neurons additionally treated with PEA, indicating the neuroprotective effect of PEA. PEA alone led to a significant increase in neuron viability regardless of PEA concentrations, apparent improvements in neurite outgrowth as well as a significant decrease in soma size of neurons at different investigated time points. Taken together, PEA showed promising protective effects against Paclitaxel-related toxicity on DRG neurons.
Collapse
|
4
|
Losartan, an Angiotensin II Type 1 Receptor Antagonist, Alleviates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain by Inhibiting Inflammatory Cytokines in the Dorsal Root Ganglia. Mol Neurobiol 2019; 56:7408-7419. [PMID: 31037647 DOI: 10.1007/s12035-019-1616-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) adversely impacts quality of life and a challenge to treat with existing drugs used for neuropathic pain. Losartan, an angiotensin II type 1 receptor (AT1R) antagonist widely used to treat hypertension, has been reported to have analgesic effects in several pain models. In this study, we assessed losartan's analgesic effect on paclitaxel-induced neuropathic pain (PINP) in rats and its mechanism of action in dorsal root ganglion (DRG). Rats received intraperitoneal injections of 2 mg/kg paclitaxel on days 0, 2, 4, and 6 and received single or multiple intraperitoneal injections of losartan potassium dissolved in phosphate-buffered saline at various times. The mechanical thresholds, protein levels of inflammatory cytokines, and cellular location of AT1R and interleukin 1β (IL-1β) in the DRG were assessed with behavioral testing, Western blotting, and immunohistochemistry, respectively. Data were analyzed by two-way repeated-measures analysis of variance for the behavioral test or the Mann-Whitney U test for the Western blot analysis and immunohistochemistry. Single and multiple injections of losartan ameliorated PINP, and losartan delayed the development of PINP. Paclitaxel significantly increased, and losartan subsequently decreased, the expression levels of inflammatory cytokines, including IL-1β and tumor necrosis factor α (TNF-α), in the lumbar DRG. AT1R and IL-1β were expressed in both neurons and satellite cells and losartan decreased the intensity of IL-1β in the DRG. Losartan ameliorates PINP by decreasing inflammatory cytokines including IL-1β and TNF-α in the DRG. Our findings provide a new or add-on therapy for CIPN patients.
Collapse
|
5
|
Fan C, Li X, Zhao Y, Xiao Z, Xue W, Sun J, Li X, Zhuang Y, Chen Y, Dai J. Cetuximab and Taxol co-modified collagen scaffolds show combination effects for the repair of acute spinal cord injury. Biomater Sci 2018; 6:1723-1734. [PMID: 29845137 DOI: 10.1039/c8bm00363g] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Injury-activated endogenous neural stem cells (NSCs) in the spinal cord have promising therapeutic applications for rebuilding the neuronal relays after spinal cord injury (SCI) because of their lack of immune-rejection following exogenous cell transplantation. However, these NSCs rarely differentiate into neurons and the damaged axonal regenerative ability is drastically reduced due to the adverse SCI microenvironment. Cetuximab, an EGFR signaling antagonist, has demonstrated the ability of promoting NSC differentiation into neurons. Taxol, in addition to stabilizing microtubules, has shown potential for enhancing axonal regeneration and reducing scar formation after SCI. In this study, we further verified the combined therapeutic effects of Cetuximab and Taxol on inhibition of scar deposition and promotion of neuronal differentiation, axonal outgrowth and functional recovery in a rat severe SCI model. A linear orderly collagen scaffold modified with Cetuximab and Taxol was grafted into the SCI site after the complete removal of 4 mm of spinal tissue. The results showed that the combined functional scaffold implantation significantly increased neural regeneration to reconnect the neural network. Moreover, scaffold transplantation decreases the deposition of varied scar-related inhibitors within the lesion center, further reflecting the need for a combination dedicated to increasing motor function following SCI. Collagen scaffold based-combined therapy provides a potential strategy for improving functional restoration of the injured spinal cord.
Collapse
Affiliation(s)
- Caixia Fan
- CAS Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zamani H, Rakhshaee R, Garakoui SR. Two contrary roles of Fe 3O 4 nanoparticles on kinetic and thermodynamic of Paclitaxel degradation by Citrobacter amalonaticus Rashtia immobilized on sodium alginate gel beads. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:566-575. [PMID: 29102639 DOI: 10.1016/j.jhazmat.2017.10.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Roles of Fe3O4 nanoparticles (NPs) on biodegradation of Paclitaxel by Citrobacter amalonaticus immobilized on alginate gel beads were investigated. Limitation in substrate diffusion is the major drawback of the cell immobilization method. To overcome this problem, bacterial cells were immobilized on the gel beads containing different concentrations (5-20mg/mL) of Fe3O4 NPs and their Paclitaxel degrading potential at different temperatures was investigated using kinetic and thermodynamic modeling. Co-immobilization of bacterial cells with 5, 10 and 20mg/mL Fe3O4 NPs enhanced biodegradation efficiencies to 66%, 80% and 78%, respectively, compared to the NPs free immobilized cells (41.9%). The optimum concentration of Fe3O4 NPs (10mg/mL) had both inhibitory and accelerating effects on paclitaxel degradation depending on the incubation time and temperature. Increasing dose of Fe3O4 NPs could increase paclitaxel degradation, despite increasing of thermodynamic inhibitory factors, only when longer time and higher temperature were used. ΔG values increased about 11.2 KJ/mol at all temperatures of 285, 295 and 305K, and ΔH increased 54.4%, in comparison with the treatment without NPs. This indicates that, inclusion of Fe3O4 NPs into the immobilization gels can increase the local concentration of Paclitaxel (with OH2+ groups) and bacterial accessibility to the substrate and thus enhance biodegradation efficiency.
Collapse
Affiliation(s)
- Hojjatolah Zamani
- Department of Biology, Faculty of Science, University of Guilan, Iran.
| | - Roohan Rakhshaee
- Department of Chemistry, Faculty of Science, University of Guilan, Iran
| | | |
Collapse
|
7
|
Chiu HW, Lin HY, Tseng IJ, Lin YF. OTUD7B upregulation predicts a poor response to paclitaxel in patients with triple-negative breast cancer. Oncotarget 2017; 9:553-565. [PMID: 29416635 PMCID: PMC5787489 DOI: 10.18632/oncotarget.23074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/14/2017] [Indexed: 01/26/2023] Open
Abstract
Paclitaxel is a first-line chemotherapeutic for patients with breast cancer, particularly triple-negative breast cancer (TNBC). Molecular markers for predicting pathologic responses to paclitaxel treatment is thus urgently needed since paclitaxel resistance is still a clinical issue in treating TNBCs. We investigated the transcriptional profiling of consensus genes in HCC38 (paclitaxel-sensitive) and MDA-MB436 (paclitaxel-resistant) TNBC cells post-treatment with paclitaxel. We found that OTUD7B was downregulated in HCC38 but upregulated in MDA-MB436 cells after paclitaxel treatment at cytotoxic concentrations. Moreover, our data showed that OTUD7B expression causally correlated with IC50 of paclitaxel in a panel of TNBC cell lines. Moreover, we found that OTUD7B upregulation was significantly detected in primary breast cancer tissues compared to normal breast tissues but inversely correlated with tumor growth in TNBC cells. Besides, the increased levels of OTUD7B transcript appeared to causally associate with invasive potentials in TNBC cells. In assessments of recurrence/metastasis-free survival probability, high-levels of OTUD7B transcripts strongly predicted a poor prognosis and unfavorable response to paclitaxel-based chemotherapy in patients with TNBCs. In silico analysis suggested that OTUD7B regulation, probably owing to miR-1180 downregulation, may negatively regulate the NF-κB-Lin28 axis which in turn triggers Let-7 microRNA-mediated caspase-3 downregulation, thereby conferring paclitaxel resistance in TNBCs. These findings suggest that OTUD7B may be a useful biomarker for predicting the anti-cancer effectiveness of paclitaxel and could serve as a new drug target for enhancing the canceridal efficiency of paclitaxel against TNBCs.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
| | - Hui-Yu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Breast Surgery and General Surgery, Division of Surgery, Cardinal Tien hospital, Xindian District, New Taipei City, Taiwan
| | - Ing-Jy Tseng
- Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Donvito G, Wilkerson JL, Damaj MI, Lichtman AH. Palmitoylethanolamide Reverses Paclitaxel-Induced Allodynia in Mice. J Pharmacol Exp Ther 2016; 359:310-318. [PMID: 27608657 PMCID: PMC5074488 DOI: 10.1124/jpet.116.236182] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/07/2016] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) represents a serious complication associated with antineoplastic drugs. Although there are no medications available that effectively prevent CIPN, many classes of drugs have been used to treat this condition, including anticonvulsants, serotonin and noradrenaline reuptake inhibitors, and opioids. However, these therapeutic options yielded inconclusive results in CIPN clinical trials and produced assorted side effects with their prolonged use. Thus, there is an urgent need to develop efficacious and safe treatments for CIPN. In this report, we tested whether the endogenous lipid palmitoylethanolamide (PEA) alone or in combination with the anticonvulsant gabapentin would reduce allodynia in a mouse paclitaxel model of CIPN. Gabapentin and PEA reversed paclitaxel-induced allodynia with respective ED50 doses (95% confidence interval) of 67.4 (61.52-73.94) and 9.2 (8.39-10.16) mg/kg. Isobolographic analysis of these drugs in combination revealed synergistic antiallodynic effects. The PPAR-α antagonist receptor antagonist GW6471 [N-((2S)-2-(((1Z)-1-methyl-3-oxo-3-(4-(trifluoromethyl)phenyl)prop-1-enyl)amino)-3-(4-(2-(5-methyl-2-phenyl-1,3-oxazol-4-yl)ethoxy)phenyl)propyl)propanamide] completely blocked the antinociceptive effects of PEA. In addition, PEA administered via intraplantar injection into a paw, intrathecal injection, and intracerebroventricular injection reversed paclitaxel-induced allodynia, suggesting that it may act at multiple sites in the neuroaxis and periphery. Finally, repeated administration of PEA (30 mg/kg, 7 days) preserved the antiallodynic effects with no evidence of tolerance. These findings taken together suggest that PEA possesses potential to treat peripheral neuropathy in cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Giulia Donvito
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (G.D.; J.L.W.; M.I.D.; A.H.L.); and Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy (G.D.)
| | - Jenny L Wilkerson
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (G.D.; J.L.W.; M.I.D.; A.H.L.); and Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy (G.D.)
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (G.D.; J.L.W.; M.I.D.; A.H.L.); and Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy (G.D.)
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (G.D.; J.L.W.; M.I.D.; A.H.L.); and Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy (G.D.)
| |
Collapse
|
9
|
Zamani H, Grakoee SR, Rakhshaee R. Microbial degradation of Paclitaxel using Citrobacter amalonaticus Rashtia isolated from pharmaceutical wastewater: kinetic and thermodynamic study. World J Microbiol Biotechnol 2016; 32:129. [DOI: 10.1007/s11274-016-2087-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|
10
|
Kim HK, Kwon JY, Yoo C, Abdi S. The Analgesic Effect of Rolipram, a Phosphodiesterase 4 Inhibitor, on Chemotherapy-Induced Neuropathic Pain in Rats. Anesth Analg 2015. [PMID: 26214551 DOI: 10.1213/ane.0000000000000853] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chemotherapy-induced neuropathic pain is a significant side effect of chemotherapeutic agents. Currently, there are no effective analgesics for chemotherapy-induced neuropathic pain. Rolipram is a selective phosphodiesterase 4 inhibitor, which increases intracellular cyclic AMP in nerve and immune cells. The aim of our study was to determine the analgesic effects of rolipram on paclitaxel (PAC)-induced neuropathic pain in rats. METHODS Chemotherapy-induced neuropathic pain was produced by intraperitoneal injection of PAC on 4 alternate days in male Sprague-Dawley rats. Mechanical allodynia was measured by using von Frey filaments. RESULTS After the rats developed PAC-induced pain behavior (such as mechanical allodynia), a single intraperitoneal injection and continuous infusion of rolipram ameliorated PAC-induced pain behavior. In addition, systemic infusion of the drug during the early phase of developing pain behavior did not prevent the development of mechanical allodynia induced by PAC. CONCLUSIONS These results suggest that rolipram alleviated mechanical allodynia induced by PAC in rats. Thus, phosphodiesterase 4 inhibitors may prove useful in the treatment of chemotherapy-induced neuropathic pain. However, further studies are needed to clarify their effects in clinical settings.
Collapse
Affiliation(s)
- Hee Kee Kim
- From the Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Anesthesiology, Perioperative Medicine, and Pain Management, University of Miami, LM Miller School of Medicine, Miami, Florida; and Department of Biostatistics, Florida International University, Miami, Florida
| | | | | | | |
Collapse
|
11
|
He S, Cui Z, Wang X, Zhang H, Dai W, Zhang Q. Cremophor-free intravenous self-microemulsions for teniposide: Safety, antitumor activity in vitro and in vivo. Int J Pharm 2015; 495:144-153. [PMID: 26253377 DOI: 10.1016/j.ijpharm.2015.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/17/2015] [Accepted: 08/02/2015] [Indexed: 11/16/2022]
Abstract
The study was designed to identify the safety and antitumor activity of teniposide self-microemulsified drug delivery system (TEN-SMEDDS) previously developed, and to provide evidence for the feasibility and effectiveness of TEN-SMEDDS for application in clinic. The TEN-SMEDDS could form fine emulsion with mean diameter of 279 ± 19 nm, Zeta potential of -6.9 ± 1.4 mV, drug loading of 0.04 ± 0.001% and entrapment efficiency of 98.7 ± 1.6% after dilution with 5% glucose, respectively. The safety, including hemolysis, hypersensitivity, vein irritation and toxicity in vivo, and antitumor activity were assessed, VUNON as a reference. Sulforhodamine B assays demonstrated that the IC50 of TEN-SMEDDS against C6 and U87MG cells were higher than that of VUMON. But the effect of TEN-SMEDDS on the cell cycle distribution and cell apoptotic rate was similar to that of VUMON as observed by flow cytometry. Likewise, the antitumor activity of TEN-SMEDDS was considerable to that of VUMON. Finally, the TEN-SMEDDS exhibited less body weight loss, lower hemolysis and lower myelosuppression as compared with VUMON. In conclusion, promising TEN-SMEDDS retained the antitumor activity of teniposide and was less likely to cause some side effects compared to VUMON. It may be favorable for the application in clinic.
Collapse
Affiliation(s)
- Suna He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China; Medical College, Henan University of Science & Technology, Luoyang 471003, People's Republic of China
| | - Zheng Cui
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Xueqing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Hua Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Wenbing Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Popovich PG, Tovar CA, Lemeshow S, Yin Q, Jakeman LB. Independent evaluation of the anatomical and behavioral effects of Taxol in rat models of spinal cord injury. Exp Neurol 2014; 261:97-108. [PMID: 24999028 PMCID: PMC4194241 DOI: 10.1016/j.expneurol.2014.06.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/22/2014] [Accepted: 06/24/2014] [Indexed: 12/31/2022]
Abstract
The goal of the current manuscript was to replicate published data that show intrathecal infusions of Taxol® (paclitaxel), an anti-neoplastic microtubule stabilizing agent, reduce fibrogliotic scarring caused by a dorsal spinal hemisection (DHx) injury and increase functional recovery and growth of serotonergic axons after moderate spinal contusion injury. These experiments were completed as part of an NIH-NINDS contract entitled "Facilities of Research Excellence in Spinal Cord Injury (FORE-SCI) - Replication". Here, data are presented that confirm the anti-scarring effects of Taxol after DHx injury; however, Taxol did not confer neuroprotection or promote serotonergic axon growth nor did it improve functional recovery in a model of moderate spinal contusion injury. Thus, only partial replication was achieved. Possible explanations for disparate results in our studies and published data are discussed.
Collapse
Affiliation(s)
- Phillip G Popovich
- Center for Brain and Spinal Cord Repair, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - C Amy Tovar
- Center for Brain and Spinal Cord Repair, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Stanley Lemeshow
- Division of Biostatistics, The Ohio State University, College of Public Health, Columbus, OH, USA
| | - Qin Yin
- Center for Brain and Spinal Cord Repair, USA; Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Lyn B Jakeman
- Center for Brain and Spinal Cord Repair, USA; Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
Truong WT, Su Y, Gloria D, Braet F, Thordarson P. Dissolution and degradation of Fmoc-diphenylalanine self-assembled gels results in necrosis at high concentrations in vitro. Biomater Sci 2014. [PMID: 26218120 DOI: 10.1039/c4bm00244j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report an approach to assess in vitro cellular responses to the dissolution or degradation products from Fmoc-diphenylalanine (Fmoc-FF) self-assembled hydrogels. Three cell lines were used in these studies and two-way ANOVA was used to assess (i) the age of gel dissolution and degradation products and (ii) exposure time on cell fate and state, using viability assays in conjunction with time-lapse fluorescence and high-resolution scanning electron microscopy investigation. The studies show that leaching time but not the exposure time affects the overall cell viability. The cytotoxic effect was only observed once the gel is completely dissolved. Further analysis revealed that the principal mechanism of cell death is necrosis. In addition, the effect of chemotherapeutics (5-fluorouracil and paclitaxel) released from the Fmoc-FF gel (with addition before and after gelation) on colorectal cancer cells were investigated using this methodology, demonstrating enhanced activity of these drugs compared to bulk control. This enhanced activity, however, appears to be a combination of the apoptosis caused by the cancer drugs and necrosis caused by gel dissolution and degradation products. Given that in vivo studies by others on Fmoc-peptides that this material is not harmful to animals, our work highlights that conventional in vitro cellular assays may yield conflicting messages when used for the evaluation of cytotoxicity and drug release from self-assembled gels such as Fmoc-FF and that better in vitro models, (e.g. 3D cell culture systems) need to be developed to evaluate these materials for biomedical applications.
Collapse
Affiliation(s)
- Warren Ty Truong
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
14
|
Targeting β-tubulin:CCT-β complexes incurs Hsp90- and VCP-related protein degradation and induces ER stress-associated apoptosis by triggering capacitative Ca2+ entry, mitochondrial perturbation and caspase overactivation. Cell Death Dis 2012. [PMID: 23190606 PMCID: PMC3542608 DOI: 10.1038/cddis.2012.173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have previously demonstrated that interrupting the protein–protein interaction (PPI) of β-tubulin:chaperonin-containing TCP-1β (CCT-β) induces the selective killing of multidrug-resistant cancer cells due to CCT-β overexpression. However, the molecular mechanism has not yet been identified. In this study, we found that CCT-β interacts with a myriad of intracellular proteins involved in the cellular functions of the endoplasmic reticulum (ER), mitochondria, cytoskeleton, proteasome and apoptosome. Our data show that the targeted cells activate both the heat-shock protein 90 (Hsp90)-associated protein ubiquitination/degradation pathway to eliminate misfolded proteins in the cytoplasm and the valosin-containing protein (VCP)-centered ER-associated protein degradation pathway to reduce the excessive levels of unfolded polypeptides from the ER, thereby mitigating ER stress, at the onset of β-tubulin:CCT-β complex disruption. Once ER stress is expanded, ER stress-associated apoptotic signaling is enforced, as exhibited by cellular vacuolization and intracellular Ca2+ release. Furthermore, the elevated intracellular Ca2+ levels resulting from capacitative Ca2+ entry augments apoptotic signaling by provoking mitochondrial perturbation and caspase overactivation in the targeted cells. These findings not only provide a detailed picture of the apoptotic signaling cascades evoked by targeting the β-tubulin:CCT-β complex but also demonstrate a strategy to combat malignancies with chemoresistance to Hsp90- and VCP-related anticancer agents.
Collapse
|
15
|
Zhilai Z, Hui Z, Anmin J, Shaoxiong M, Bo Y, Yinhai C. A combination of taxol infusion and human umbilical cord mesenchymal stem cells transplantation for the treatment of rat spinal cord injury. Brain Res 2012; 1481:79-89. [PMID: 22960115 DOI: 10.1016/j.brainres.2012.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/14/2012] [Accepted: 08/27/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Studies have shown that the administration of Taxol, an anti-cancer drug, inhibited scar formation, promoted axonal elongation and improved locomotor recovery in rats after spinal cord injury (SCI). We hypothesized that combining Taxol with another promising therapy, transplantation of human umbilical mesenchymal stem cells (hUCMSCs), might further improve the degree of locomotor recovery. The present study examined whether Taxol combined with transplantation of hUCMSCs would produce synergistic effects on recovery and which mechanisms were involved in the effect. METHODS A total of 32 rats subjected to SCI procedures were assigned to one of the following four treatment groups: phosphate-buffered saline (PBS, control), hUCMSCs, Taxol, or Taxol+hUCMSCs. Immediately after injury, hUCMSCs were transplanted into the injury site and Taxol was administered intrathecally for 4 weeks. Locomotor recovery was evaluated using the Basso, Beattie and Bresnahan locomotor (BBB) rating scale. Survival of the transplanted human cells and the host glial reaction in the injured spinal cord were studied by immunohistochemistry. RESULTS Treatment with Taxol, hUCMSCs or Taxol+hUCMSCs reduced the extent of astrocytic activation, increased axonal preservation and decreased the number of caspase-3(+) and ED-1(+) cells, but these effects were more pronounced in the Taxol+hUCMSCs group. Behavioral analyses showed that rats in the Taxol+hUCMSCs group showed better motor performance than rats treated with hUCMSCs or Taxol only. CONCLUSIONS The combination of Taxol and hUCMSCs produced beneficial effects in rats with regard to functional recovery following SCI through the enhancement of anti-inflammatory, anti-astrogliosis, anti-apoptotic and axonal preservation effects.
Collapse
Affiliation(s)
- Zhou Zhilai
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
AbstractPaclitaxel is isolated from the Pacific yew. It can be obtained from the European yew, but only after chemical modification of the isolated compound by a semi-synthesis procedure. The procedure for total synthesis of paclitaxel is very complicated, involving multiple steps, and the yields of paclitaxel are meagre. This substance is also a metabolite of certain kinds of fungus. The microbiological pathway for producing paclitaxel compared with isolation from plant material involves shorter procuction times but a small yield. Cyclodextrins are usually used for improving the solubility of paclitaxel in aqueous media, with polymeric and other substances added. Paclitaxel has anticancer activity and use for preparing the formulations intravenously administrated to patients with tumors. The paclitaxel concentration in these formulations is determined using validated HPLC methods.
Collapse
|
17
|
Wang H, Haridas V, Gutterman JU, Xu ZX. Natural triterpenoid avicins selectively induce tumor cell death. Commun Integr Biol 2011; 3:205-8. [PMID: 20714394 DOI: 10.4161/cib.3.3.11492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 12/19/2022] Open
Abstract
Avicins, a family of plant-derived triterpenoids, have been shown to possess pro-apoptotic, anti-mutagenic and anti-inflammatory properties in mammalian cells. Through thiol binding, avicins can also mediate antioxidant defense. Accumulating evidence uncovered during the past several years suggests that avicins induce tumor cell death via multiple mechanisms. This review will focus on recent studies that provide insights into the cellular and molecular processes and pathways by which avicins induce tumor cell death, including the canonical intrinsic mitochondrial and the Fas-mediated apoptosis cascades as well as autophagy-associated non-apoptotic programmed cell death.
Collapse
|
18
|
Abstract
Mature retinal ganglion cells (RGCs) cannot normally regenerate axons into the injured optic nerve but can do so after lens injury. Astrocyte-derived ciliary neurotrophic factor and leukemia inhibitory factor have been identified as essential key factors mediating this effect. However, the outcome of this regeneration is still limited by inhibitors associated with the CNS myelin and the glial scar. The current study demonstrates that Taxol markedly enhanced neurite extension of mature RGCs and PC12 cells by stabilization of microtubules and desensitized axons toward myelin and chondroitin sulfate proteoglycan (CSPG) inhibition in vitro without reducing RhoA activation. In vivo, the local application of Taxol at the injury site of the optic nerve of rats enabled axons to regenerate beyond the lesion site but did not affect the intrinsic regenerative state of RGCs. Furthermore, Taxol treatment markedly increased lens injury-mediated axon regeneration in vivo, delayed glial scar formation, suppressed CSPG expression, and transiently reduced the infiltration of macrophages at the injury site. Thus, microtubule-stabilizing compounds such as Taxol might be promising candidates as adjuvant drugs in the treatment of CNS injuries particularly when combined with interventions stimulating the intrinsic regenerative state of neurons.
Collapse
|
19
|
Lin YF, Tsai WP, Liu HG, Liang PH. Intracellular beta-tubulin/chaperonin containing TCP1-beta complex serves as a novel chemotherapeutic target against drug-resistant tumors. Cancer Res 2009; 69:6879-88. [PMID: 19690144 DOI: 10.1158/0008-5472.can-08-4700] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, treatment of HEK-293 cells with the synthetic small molecule N-iodoacetyl-tryptophan (I-Trp) at submicromolar concentrations efficiently induced cell apoptosis as judged from the accumulation of sub-G(0) cells and intracellular DNA fragmentation. Activation of all intracellular caspases, except caspase-1, was detected in I-Trp-treated cells. Proteomic analysis revealed that beta-tubulin acted as a specific intracellular target of I-Trp. Protein fingerprinting analysis indicated that the Cys(354) residue in the peptide fragment TAVCDIPPR of beta-tubulin, which is located at the binding interface with chaperonin containing TCP1-beta (CCT-beta), was alkylated by I-Trp. Moreover, site-directed mutagenesis of Cys(354) (Cys-Ala) abolished the incorporation of I-Trp into beta-tubulin, suggesting Cys(354) is indeed the targeting site of I-Trp. Immunoprecipitation showed that the beta-tubulin/CCT-beta complex was constitutively formed but disrupted after treatment with I-Trp. Overexpression of the truncated beta-tubulin (T351-S364) or treatment with I-Trp or the synthetic peptide Myr-TAVCDIPPRG caused more severe cell apoptosis in multidrug-resistant MES-SA/Dx5 cancer cells due to higher levels of CCT-beta relative to wild-type MES-SA cancer cells. Silencing the expression of CCT-beta rendered MES-SA/Dx5 cells less sensitive to I-Trp-induced apoptotic cell death. These findings suggest that the beta-tubulin/CCT-beta complex may serve as an effective chemotherapeutic target for treating clinical tubulin-binding agent-resistant or CCT-beta-overexpressing tumors.
Collapse
Affiliation(s)
- Yuan-Feng Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan ROC
| | | | | | | |
Collapse
|
20
|
Haridas V, Higuchi M, Jayatilake GS, Bailey D, Mujoo K, Blake ME, Arntzen CJ, Gutterman JU. Avicins: triterpenoid saponins from Acacia victoriae (Bentham) induce apoptosis by mitochondrial perturbation. Proc Natl Acad Sci U S A 2001; 98:5821-6. [PMID: 11344312 PMCID: PMC33297 DOI: 10.1073/pnas.101619098] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2000] [Indexed: 11/18/2022] Open
Abstract
Anticancer agents target various subcellular components and trigger apoptosis in chemosensitive cells. We have recently reported the tumor cell growth inhibitory properties of a mixture of triterpenoid saponins obtained from an Australian desert tree (Leguminosae) Acacia victoriae (Bentham). Here we report the purification of this mixture into two biologically pure components called avicins that contain an acacic acid core with two acyclic monoterpene units connected by a quinovose sugar. We demonstrate that the mixture of triterpenoid saponins and avicins induce apoptosis in the Jurkat human T cell line by affecting the mitochondrial function. Avicin G induced cytochrome c release within 30-120 min in whole cells and within a minute in the cell-free system. Caspase inhibitors DEVD or zVAD-fmk had no effect on cytochrome c release, suggesting the direct action of avicin G on the mitochondria. Activation of caspase-3 and total cleavage of poly(ADP-ribose) polymerase (PARP) occurred between 2 and 6 h posttreatment with avicins by zVAD-fmk. Interestingly, in the treated cells no significant changes in the membrane potential preceded or accompanied cytochrome c release. A small decrease in the generation of reactive oxygen species (ROS) was measured. The study of these evolutionarily ancient compounds may represent an interesting paradigm for the application of chemical ecology and chemical biology to human health.
Collapse
Affiliation(s)
- V Haridas
- Department of Molecular Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chordia MD, Yuan H, Jagtap PG, Kadow JF, Long BH, Fairchild CR, Johnston KA, Kingston DG. Synthesis and bioactivity of 2,4-diacyl analogues of paclitaxel. Bioorg Med Chem 2001; 9:171-8. [PMID: 11197337 DOI: 10.1016/s0968-0896(00)00233-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The 2,4-diacyl paclitaxel analogues 8a-8r were prepared from paclitaxel by acylation of 4-deacetyl-2-debenzoylpaclitaxel 1,2-carbonate (3) followed either by hydrolysis of the carbonate and acylation or by direct treatment of the carbonate with an aryllithium. Some of the resulting derivatives showed significantly improved tubulin assembly activity and cytotoxicity as compared with paclitaxel; in some cases this improvement was especially significant for paclitaxel-resistant cell lines.
Collapse
Affiliation(s)
- M D Chordia
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0212, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yuan H, Fairchild CR, Liang X, Kingston DG. Synthesis and Biological Activity of C-6 and C-7 Modified Paclitaxels. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(00)00611-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Xue M, Long BH, Fairchild C, Johnston K, Rose WC, Kadow JF, Vyas DM, Chen SH. Structure-activity relationships study at the 3'-N position of paclitaxel. Part 2: synthesis and biological evaluation of 3'-N-thiourea- and 3'-N-thiocarbamate-bearing paclitaxel analogues. Bioorg Med Chem Lett 2000; 10:1327-31. [PMID: 10890157 DOI: 10.1016/s0960-894x(00)00242-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The syntheses and preliminary biological evaluation of 3'-N-thiocarbamate- and 3'-N-thiourea-bearing paclitaxel analogues, 4a-f and 5a-e, are described. 3'-N-thiocarbamates 4a-e were found to be more potent than paclitaxel in both the tubulin polymerization assay and the in vitro cytotoxicity assay. Several derivatives of this class such as 4c, 4d, and 4e also exhibited some in vivo activity.
Collapse
Affiliation(s)
- M Xue
- Bristol-Myers Squibb Research Institute, Wallingford, CT 06492-7660, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Although it is generally accepted that tubulin plays an important role in G-protein-mediated signal transduction in a variety of systems, the mechanism of this phenomenon is not completely understood. G-protein-tubulin interaction at the cell membrane and the cytosol, and the influence of such an interaction on cellular signaling are discussed in this review article. Because the diameter of a microtubule is 25 nm and the plasma membrane is 9-11 nm thick, it is not possible for membrane-associated tubulin to assemble into a complete microtubule in the membrane environment. However, tubulin heterodimers may be able to function in the membrane environment as individual heterodimers or as polymers arranged into short protofilaments. At the cell membrane, membrane-associated tubulin may influence hormone-receptor interaction, receptor-G-protein coupling, and G-protein-effector coupling. Structural proteins, such as tubulin, can participate in cellular signaling by communicating through physical forces. By virtue of its interaction with the submembranous network of cytoskeletal proteins, tubulin, when perturbed in one locus, can transmit large changes in conformations to other points. Thus, GTP binding to membrane-associated tubulin might lead to a conformational change in either receptors or G proteins. This may, in turn, influence the binding of an agonist to its receptor. On the other hand, in the cell cytosol, subsequent to agonist-induced translocation of G-proteins from the membrane compartment to the cytosol, G-proteins may affect microtubule formation. In GH3 and AtT-20 cells (stably expressing TRH receptor), transiently transfected with Gq alpha cDNA, soluble tubulin levels decreased in Gq alpha-transfected GH3 and AtT-20 cells, by 33% and 52%, respectively. These results suggest that G-proteins may have a direct effect on the microtubule function in vivo. Because tubulin and G-protein families are ubiquitous and highly conserved, an interaction between these two protein families may occur in vivo, and this, in turn, can have an impact on signal transduction. However, the physiological significance of this interaction remains to be demonstrated.
Collapse
Affiliation(s)
- R Ravindra
- Endocrine-Metabolic Division, Veterans Affairs Medical Center, North Chicago, IL 60064, USA.
| |
Collapse
|
25
|
Freeman S, Ross KC. 3 Prodrug Design for Phosphates and Phosphonates. PROGRESS IN MEDICINAL CHEMISTRY 1997. [DOI: 10.1016/s0079-6468(08)70106-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|