1
|
Tripathi P, Bruner SD. Structural Basis for the Interactions of the Colibactin Resistance Gene Product ClbS with DNA. Biochemistry 2021; 60:1619-1625. [PMID: 33945270 DOI: 10.1021/acs.biochem.1c00201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The natural product colibactin, along with its associated biosynthetic gene cluster, is an example system for the role microbially derived small molecules play in the human microbiome. This is particularly relevant in the human gut, where host microbiota is involved in various disorders, including colorectal cancer pathogenesis. Bacteria harboring the colibactin gene cluster induce alkylation of nucleobases in host DNA, forming interstrand cross-links both in vivo and in vitro. These lesions can lead to deleterious double-strand breaks and have been identified as the primary mechanism of colibactin-induced cytotoxicity. The gene product ClbS is one of several mechanisms utilized by the producing bacteria to maintain genome integrity. ClbS catalyzes hydrolytic inactivation of colibactin and has been shown to bind DNA, incurring self-resistance. Presented is the molecular basis for ClbS bound to a DNA oligonucleotide. The structure shows the interaction of the protein with the ends of a DNA duplex with terminal nucleotides flipped to the enzyme active site. The structure suggests an additional function for ClbS, the binding to damaged DNA followed by repair. Additionally, our study provides general insight into the function of the widely distributed and largely uncharacterized DUF1706 protein family.
Collapse
Affiliation(s)
- Prabhanshu Tripathi
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Abstract
Genomic DNA is chemically reactive and therefore susceptible to damage by many exogenous and endogenous sources. Lesions produced from these damaging events can have various mutagenic and genotoxic consequences. This Perspective follows the journey of one particular lesion, 1,N6-ethenoadenine (εA), from its formation to replication and repair, and its role in cancerous tissues and inflammatory diseases. εA is generated by the reaction of adenine (A) with vinyl chloride or lipid peroxidation products. We present the miscoding properties of εA with an emphasis on how bacterial and mammalian cells can process lesions differently, leading to varied mutational spectra. But with information from these assays, we can better understand how the miscoding properties of εA lead to biological consequences and how genomic stability can be maintained via DNA repair mechanisms. We discuss how base excision repair (BER) and direct reversal repair (DRR) can minimize the biological consequences of εA lesions. Kinetic parameters of glycosylases and AlkB family enzymes are described, along with a discussion of the relative contributions of the BER and DRR pathways in the repair of εA. Because eukaryotic DNA is packaged in chromatin, we also discuss the impact of this packaging on BER and DRR, specifically in regards to repair of εA. Studying DNA lesions like εA in this context, from origin to biological implications, can provide crucial information to better understand prevention of mutagenesis and cancer.
Collapse
Affiliation(s)
- Katelyn L Rioux
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
3
|
Taylor EL, O'Brien PJ. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by AlkA. Biochemistry 2015; 54:898-908. [PMID: 25537480 PMCID: PMC4310629 DOI: 10.1021/bi501356x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Escherichia coli 3-methyladenine DNA glycosylase
II (AlkA), an adaptive response glycosylase with a broad substrate
range, initiates base excision repair by flipping a lesion out of
the DNA duplex and hydrolyzing the N-glycosidic bond. We used transient
and steady state kinetics to determine the minimal mechanism for recognition
and excision of 1,N6-ethenoadenine (εA)
by AlkA. The natural fluorescence of this endogenously produced lesion
allowed us to directly monitor the nucleotide flipping step. We found
that AlkA rapidly and reversibly binds and flips out εA prior
to N-glycosidic bond hydrolysis, which is the rate-limiting step of
the reaction. The binding affinity of AlkA for the εA-DNA lesion
is only 40-fold tighter than for a nonspecific site and 20-fold weaker
than for the abasic DNA site. The mechanism of AlkA-catalyzed excision
of εA was compared to that of the human alkyladenine DNA glycosylase
(AAG), an independently evolved glycosylase that recognizes many of
the same substrates. AlkA and AAG both catalyze N-glycosidic bond
hydrolysis to release εA, and their overall rates of reaction
are within 2-fold of each other. Nevertheless, we find dramatic differences
in the kinetics and thermodynamics for binding to εA-DNA. AlkA
catalyzes nucleotide flipping an order of magnitude faster than AAG;
however, the equilibrium for flipping is almost 3 orders of magnitude
more favorable for AAG than for AlkA. These results illustrate how
enzymes that perform the same chemistry can use different substrate
recognition strategies to effectively repair DNA damage.
Collapse
Affiliation(s)
- Erin L Taylor
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
4
|
Novel mutations of OGG1 base excision repair pathway gene in laryngeal cancer patients. Fam Cancer 2012; 11:587-93. [DOI: 10.1007/s10689-012-9554-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Tiwari S, Agnihotri N, Mishra PC. Quantum theoretical study of cleavage of the glycosidic bond of 2'-deoxyadenosine: base excision-repair mechanism of DNA by MutY. J Phys Chem B 2011; 115:3200-7. [PMID: 21384840 DOI: 10.1021/jp1109256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzyme adenine DNA glycosylase, also called MutY, is known to catalyze base excision repair by removal of adenine from the abnormal 2'-deoxyadenosine:8-oxo-2'-deoxyguanosine pair in DNA. The active site of the enzyme was considered to consist of a glutamic acid residue along with two water molecules. The relevant reaction mechanism involving different barrier energies was studied theoretically. Molecular geometries of the various molecules and complexes involved in the reaction, e.g., the reactant, intermediate, and product complexes as well as transition states, were optimized employing density functional theory at the B3LYP/6-31G(d,p) level in the gas phase. It was followed by single-point energy calculations at the B3LYP/AUG-cc-pVDZ, BHandHLYP/AUG-cc-pVDZ, and MP2/AUG-cc-pVDZ levels in the gas phase. Single-point energy calculations were also carried out at the B3LYP/AUG-cc-pVDZ and BHandHLYP/AUG-cc-pVDZ levels in aqueous media as well as in the solvents chlorobenzene and dichloroethane. For the solvation calculations, the integral equation formalism of the polarizable continuum model (IEF-PCM) was employed. It is found that glutamic acid along with two water molecules would effectively cleave the glycosidic bond of adenosine by a new two-step reaction mechanism proposed here which is different from the three-step mechanism proposed by other authors earlier regarding the working mechanism of MutY.
Collapse
Affiliation(s)
- Saumya Tiwari
- Department of Physics, Banaras Hindu University, Varanasi, India
| | | | | |
Collapse
|
6
|
Anderson PC, Daggett V. The R46Q, R131Q and R154H polymorphs of human DNA glycosylase/beta-lyase hOgg1 severely distort the active site and DNA recognition site but do not cause unfolding. J Am Chem Soc 2009; 131:9506-15. [PMID: 19537786 PMCID: PMC2742485 DOI: 10.1021/ja809726e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species can cause widespread cellular damage, including base alterations and strand breaks in DNA. An array of DNA-repair enzymes constitutes an essential part of the line of defense that cells use against oxidative damage to the genome. A DNA glycosylase/beta-lyase enzyme, Ogg1, scavenges the genome for 8-oxoguanine, a major mutagenic DNA adduct induced by reactive oxygen species, and catalyzes its excision and subsequent cleavage of the DNA phosphate backbone. Several polymorphisms of Ogg1, including the single amino-acid substitutions R46Q, R131Q and R154H, are associated with a variety of human cancers. These three mutations have previously been characterized experimentally but no structural data have been published. We have performed multiple molecular dynamics simulations of R46Q, R131Q and R154H human Ogg1 to predict the structural and dynamical effects of the substitutions throughout the protein and specifically within the active site and substrate recognition site. None of the substitutions induced unfolding or global structural changes, instead their effects were confined principally to the active and recognition sites. Although the enzyme active site is located 18-21 A from the three investigated mutation sites, these mutations' structural effects propagate through space and cause a major change in the orientation and chemical environment of the active site side chains. This change appears likely to compromise the ability of the Lys 249 side chain to undergo a necessary deprotonation step prior to its nucleophilic attack of the DNA. The mutations also cause an expansion of the active site cavity, which may explain the experimentally observed decreases in substrate specificity.
Collapse
Affiliation(s)
- Peter C. Anderson
- Biomedical and Health Informatics Program, University of Washington, Box 355013, Seattle, WA 98195-5013
| | - Valerie Daggett
- Biomedical and Health Informatics Program, University of Washington, Box 355013, Seattle, WA 98195-5013
- Department of Bioengineering, University of Washington, Box 355013, Seattle, WA 98195-5013
| |
Collapse
|
7
|
Baute J, Depicker A. Base excision repair and its role in maintaining genome stability. Crit Rev Biochem Mol Biol 2008; 43:239-76. [PMID: 18756381 DOI: 10.1080/10409230802309905] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For all living organisms, genome stability is important, but is also under constant threat because various environmental and endogenous damaging agents can modify the structural properties of DNA bases. As a defense, organisms have developed different DNA repair pathways. Base excision repair (BER) is the predominant pathway for coping with a broad range of small lesions resulting from oxidation, alkylation, and deamination, which modify individual bases without large effect on the double helix structure. As, in mammalian cells, this damage is estimated to account daily for 10(4) events per cell, the need for BER pathways is unquestionable. The damage-specific removal is carried out by a considerable group of enzymes, designated as DNA glycosylases. Each DNA glycosylase has its unique specificity and many of them are ubiquitous in microorganisms, mammals, and plants. Here, we review the importance of the BER pathway and we focus on the different roles of DNA glycosylases in various organisms.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Gent, Belgium
| | | |
Collapse
|
8
|
Rubinson EH, Metz AH, O'Quin J, Eichman BF. A new protein architecture for processing alkylation damaged DNA: the crystal structure of DNA glycosylase AlkD. J Mol Biol 2008; 381:13-23. [PMID: 18585735 PMCID: PMC3763988 DOI: 10.1016/j.jmb.2008.05.078] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 01/02/2023]
Abstract
DNA glycosylases safeguard the genome by locating and excising chemically modified bases from DNA. AlkD is a recently discovered bacterial DNA glycosylase that removes positively charged methylpurines from DNA, and was predicted to adopt a protein fold distinct from from those of other DNA repair proteins. The crystal structure of Bacillus cereus AlkD presented here shows that the protein is composed exclusively of helical HEAT-like repeats, which form a solenoid perfectly shaped to accommodate a DNA duplex on the concave surface. Structural analysis of the variant HEAT repeats in AlkD provides a rationale for how this protein scaffolding motif has been modified to bind DNA. We report 7mG excision and DNA binding activities of AlkD mutants, along with a comparison of alkylpurine DNA glycosylase structures. Together, these data provide important insight into the requirements for alkylation repair within DNA and suggest that AlkD utilizes a novel strategy to manipulate DNA in its search for alkylpurine bases.
Collapse
Affiliation(s)
- Emily H. Rubinson
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Audrey H. Metz
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jami O'Quin
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F. Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Abstract
A fundamental question in DNA repair is how a lesion is detected when embedded in millions to billions of normal base pairs. Extensive structural and functional studies reveal atomic details of DNA repair protein and nucleic acid interactions. This review summarizes seemingly diverse structural motifs used in lesion recognition and suggests a general mechanism to recognize DNA lesion by the poor base stacking. After initial recognition of this shared structural feature of lesions, different DNA repair pathways use unique verification mechanisms to ensure correct lesion identification and removal.
Collapse
|
10
|
Gelato KA, Martin SS, Wong S, Baldwin EP. Multiple levels of affinity-dependent DNA discrimination in Cre-LoxP recombination. Biochemistry 2006; 45:12216-26. [PMID: 17014075 PMCID: PMC2891539 DOI: 10.1021/bi0605235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cre recombinase residue Arg259 mediates a canonical bidentate hydrogen-bonded contact with Gua27 of its LoxP DNA substrate. Substituting Cyt8-Gua27 with the three other basepairs, to give LoxAT, LoxTA, and LoxGC, reduced Cre-mediated recombination in vitro, with the preference order of Gua27 > Ade27 approximately Thy27 >> Cyt27. While LoxAT and LoxTA exhibited 2.5-fold reduced affinity and 2.5-5-fold slower reaction rates, LoxGC was a barely functional substrate. Its maximum level of turnover was 6-fold reduced over other substrates, and it exhibited 8.5-fold reduced Cre binding and 6.3-fold slower turnover rate. With LoxP, the rate-limiting step for recombination occurs after protein-DNA complex assembly but before completion of the first strand exchange to form the Holliday junction (HJ) intermediate. With the mutant substrates, it occurs after HJ formation. Using an increased DNA-binding E262Q/E266Q "CreQQ" variant, all four substrates react more readily, but with much less difference between them, and maintained the earlier rate-limiting step. The data indicate that Cre discriminates substrates through differences in (i) concentration dependence of active complex assembly, (ii) turnover rate, and (iii) maximum yield of product at saturation, all of which are functions of the Cre-DNA binding interaction. CreQQ suppression of Lox mutant defects implies that coupling between binding and turnover involves a change in Cre subunit DNA affinities during the "conformational switch" that occurs prior to the second strand exchange. These results provide an example of how a DNA-binding enzyme can exert specificity via affinity modulation of conformational transitions that occur along its reaction pathway.
Collapse
Affiliation(s)
| | | | | | - Enoch P. Baldwin
- Corresponding author: Phone: (530) 752-1108. FAX (530) 752-3085.
| |
Collapse
|
11
|
Yang W. Poor base stacking at DNA lesions may initiate recognition by many repair proteins. DNA Repair (Amst) 2006; 5:654-66. [PMID: 16574501 DOI: 10.1016/j.dnarep.2006.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/02/2006] [Accepted: 02/03/2006] [Indexed: 11/30/2022]
Abstract
A fundamental question in DNA repair is how a mismatched or modified base is detected when embedded in millions to billions of normal base pairs. A survey of the literature and structural database reveals a common feature in all repair protein-DNA complexes: the DNA double helix is discontinuous at a lesion site due to base unstacking, kinking and/or nucleotide extrusion. Lesions induce destabilization and distortion of short linear DNAs, and underwinding in negatively supercoiled DNA presumably could compound the reduced stability caused by a lesion. A hypothesis is thus put forward that DNA lesion recognition occurs in two steps. Repair proteins initially recognize the weakened base stacking, and thus a flexible hinge at a DNA lesion. Sampling of flexible hinges rather than all DNA base pairs can reduce the task of finding a lesion by two to three orders of magnitude, from searching millions base pairs to thousands. After the initial encounter, a repair protein scrutinizes the shape, hydrogen bonding and electrostatic potentials of bases at the flexible hinge and dissociates if it is not a correct substrate. MutS, which has a broad range of substrates, actively dissociates from non-specific binding via an ATP-dependent proofreading mechanism. A single lesion may thus be sampled by BER, NER and MMR proteins until repaired. This proposition immediately suggests a mechanism for crosstalk between different repair and signaling pathways. It also raises the possibility that sampling of a lesion by one protein could facilitate loading of another by direct protein-protein or DNA mediated interactions.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Madhusudan S, Middleton MR. The emerging role of DNA repair proteins as predictive, prognostic and therapeutic targets in cancer. Cancer Treat Rev 2005; 31:603-17. [PMID: 16298073 DOI: 10.1016/j.ctrv.2005.09.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Advanced cancer is the second leading cause of death in the western world. Chemotherapy and radiation are the two main treatment modalities currently available to improve patient outcomes, but treatment related toxicity and the emergence of resistance limit their effectiveness. Hence there is an urgent need to develop novel treatment strategies. Rapid advances in cancer biology have identified key pathways involved in the repair of DNA damage induced by chemotherapeutic agents and irradiation. Efficient DNA repair in the cancer cell is an important mechanism for therapeutic resistance. Up to 130 genes have been identified that are associated with human DNA repair. Several of these proteins are emerging as important predictive and prognostic factors in solid tumours. Inhibition of DNA repair has the potential to enhance the efficacy of currently available DNA damaging agents. In recent years, several promising drug targets have been identified and novel drugs synthesised that target specific DNA repair proteins. These agents have shown impressive anti-cancer effects in preclinical studies in combination with chemotherapy or irradiation. Their role in human cancer is now being investigated in early phase clinical trials in combination with chemotherapy. MGMT inhibitors, PARP inhibitors and methoxyamine are currently in early stages of clinical development. Innovative clinical trial designs are essential to evaluate the potential of DNA repair inhibitor in cancer therapy.
Collapse
Affiliation(s)
- Srinivasan Madhusudan
- Cancer Research UK, Medical Oncology Unit, University of Oxford, The Churchill, Oxford Radcliffe Hospitals, Oxford OX3 7LJ, United Kingdom
| | | |
Collapse
|
13
|
Chung SJ, Verdine GL. Structures of end products resulting from lesion processing by a DNA glycosylase/lyase. ACTA ACUST UNITED AC 2005; 11:1643-9. [PMID: 15610848 DOI: 10.1016/j.chembiol.2004.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 08/30/2004] [Accepted: 09/27/2004] [Indexed: 11/22/2022]
Abstract
DNA glycosylase/lyases initiate the repair of damaged nucleobases in the genome by catalyzing excision of aberrant nucleobases and nicking of the lesion-containing DNA strand. Nearly all of these proteins have the unusual property of remaining tightly bound in vitro to the end products of the reaction cascade. We have taken advantage of this property to crystallize and structurally characterize the end product resulting from complete DNA processing by a catalytically active mutant form of human 8-oxoguanine DNA glycosylase (D268E hOgg1). The resulting structure is consistent with the currently accepted catalytic mechanism for the protein. Unexpectedly, however, soaking of a nucleobase analog into the crystals results in religation of the DNA backbone in situ.
Collapse
Affiliation(s)
- Sang J Chung
- Department of Chemistry and Chemical Biology, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
14
|
Abstract
DNA glycosylases are the enzymes responsible for recognizing base lesions in the genome and initiating base excision DNA repair. Recent structural and biochemical results have provided novel insights into DNA damage recognition and repair. The basis of the recognition of the oxidative lesion 8-oxoguanine by two structurally unrelated DNA glycosylases is now understood and has been revealed to involve surprisingly similar strategies. Work on MutM (Fpg) has produced structures representing three discrete reaction steps. The NMR structure of 3-methyladenine glycosylase I revealed its place among the structural families of DNA glycosylases and the X-ray structure of SMUG1 likewise confirmed that this protein is a member of the uracil DNA glycosylase superfamily. A novel disulfide cross-linking strategy was used to obtain the long-anticipated structure of MutY bound to DNA containing an A*oxoG mispair.
Collapse
Affiliation(s)
- J Christopher Fromme
- Department of Molecular and Cellular Biology, and Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
15
|
Abstract
Methylating agents modify DNA at many different sites, thereby producing lethal and mutagenic lesions. To remove all the main harmful base lesions, at least three types of DNA-repair activities can be used, each of which involves a different reaction mechanism. These activities include DNA-glycosylases, DNA-methyltransferases and the recently characterized DNA-dioxygenases. The Escherichia coli AlkB dioxygenase and the two human homologues, ABH2 and ABH3, represent a novel mechanism of DNA repair. They use iron-oxo intermediates to oxidize stable methylated bases in DNA and directly revert them to the unmodified form.
Collapse
Affiliation(s)
- Barbara Sedgwick
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
16
|
Abstract
High-resolution structural studies of protein-DNA complexes have proven to be an invaluable means of understanding the diverse functions of proteins that manage the genome. Most of the structures determined to date represent proteins bound noncovalently to various DNA sequences or structures. Although noncovalent complexation is often adequate to study the structures of proteins that have robust, specific interactions with DNA, it is poorly suited to the study of transient intermediates in enzyme-catalyzed DNA processing reactions or of complexes that exist in multiple equilibrating forms. In recent years, strategies developed for the covalent trapping of protein-DNA complexes have begun to show promise as a window into an otherwise inaccessible world of structure.
Collapse
Affiliation(s)
- Gregory L Verdine
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
17
|
Cao C, Kwon K, Jiang YL, Drohat AC, Stivers JT. Solution structure and base perturbation studies reveal a novel mode of alkylated base recognition by 3-methyladenine DNA glycosylase I. J Biol Chem 2003; 278:48012-20. [PMID: 13129925 DOI: 10.1074/jbc.m307500200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The specific recognition mechanisms of DNA repair glycosylases that remove cationic alkylpurine bases in DNA are not well understood partly due to the absence of structures of these enzymes with their cognate bases. Here we report the solution structure of 3-methyladenine DNA glycosylase I (TAG) in complex with its 3-methyladenine (3-MeA) cognate base, and we have used chemical perturbation of the base in combination with mutagenesis of the enzyme to evaluate the role of hydrogen bonding and pi-cation interactions in alkylated base recognition by this DNA repair enzyme. We find that TAG uses hydrogen bonding with heteroatoms on the base, van der Waals interactions with the 3-Me group, and conventional pi-pi stacking with a conserved Trp side chain to selectively bind neutral 3-MeA over the cationic form of the base. Discrimination against binding of the normal base adenine is derived from direct sensing of the 3-methyl group, leading to an induced-fit conformational change that engulfs the base in a box defined by five aromatic side chains. These findings indicate that base specific recognition by TAG does not involve strong pi-cation interactions, and suggest a novel mechanism for alkylated base recognition and removal.
Collapse
Affiliation(s)
- Chunyang Cao
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | | | | | |
Collapse
|
18
|
Martin SS, Chu VC, Baldwin E. Modulation of the active complex assembly and turnover rate by protein-DNA interactions in Cre-LoxP recombination. Biochemistry 2003; 42:6814-26. [PMID: 12779336 PMCID: PMC2885442 DOI: 10.1021/bi0272306] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cre promotes recombination at the 34 bp LoxP sequence. Substitution of a critical C-G base pair in LoxP with an A-T base pair, to give LoxAT, reduced Cre binding in vitro and abolished recombination in vivo [Hartung, M., and Kisters-Woike, B. (1998) J. Biol. Chem. 273, 22884-22891].We demonstrated that LoxAT can be recombined in vitro. However, Cre discriminates against this substrate both before and after DNA binding. The preference for LoxP over LoxAT is the result of reduced binding and a slower turnover rate, amplified by changes in cooperativity of complex assembly. With LoxAT, similar levels of substrate turnover required 2-2.5-fold higher protein-DNA concentrations compared to LoxP, but the sigmoidal behavior of the concentration dependence was more pronounced. Further, the Cre-LoxAT complexes reacted 4-5-fold more slowly. In the 2.3 A resolution Cre-LoxAT complex structure, the major groove Arg259-guanine interaction was disrupted, explaining the reduced binding. Overall structural shifts and mobility changes indicate more favorable interactions between subunits, providing a hypothesis for the reduced turnover rate. Concomitant with the displacement of Arg259 from the DNA, adjacent charged residues Glu262 and Glu266 shifted to form salt bridges with the Arg259 guanidinium moiety. Substitution of Glu262 and Glu266 with glutamine increased Cre complex assembly efficiency and reaction rates with both LoxAT and LoxP, but diminished Cre's ability to distinguish them. The increased rate of this variant suggests that DNA substrate binding and turnover are coupled. The improved efficiency, made at some expense of sequence discrimination, may be useful for enhancing recombination in vivo.
Collapse
Affiliation(s)
- Shelley S. Martin
- Section of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, California 95616
| | - Victor C. Chu
- Section of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, California 95616
| | - Enoch Baldwin
- Section of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, California 95616
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, California 95616
- To whom correspondence should be addressed. . Phone: (530) 752-1108. Fax: (530) 752-3085
| |
Collapse
|