1
|
Kumar D, Ghosh SK. Chromosome hitchhiking: a potential strategy adopted by the selfish yeast plasmids to ensure symmetric inheritance during cell division. Biochem Soc Trans 2024; 52:2359-2372. [PMID: 39670686 DOI: 10.1042/bst20231555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
The 2-micron plasmid residing within the host budding yeast Saccharomyces cerevisiae nucleus serves as a model system for understanding the mechanism of segregation and stable maintenance of circular endogenously present extrachromosomal DNA in eukaryotic cells. The plasmid is maintained at a high average copy number (40-60 copies per yeast cell) through generations despite there is no apparent benefit to the host. Notably, the segregation mechanism of 2-micron plasmid shares significant similarities with those of bacterial low-copy-number plasmids and episomal forms of viral genomes in mammalian cells. These similarities include formation of a complex where the plasmid- or viral encoded proteins bind to a plasmid- or viral genome-borne locus, respectively and interaction of the complex with the host proteins. These together form a partitioning system that ensures stable symmetric inheritance of both these genomes from mother to daughter cells. Recent studies with substantial evidence showed that the 2-micron plasmid, like episomes of viruses such as Epstein-Barr virus, relies on tethering itself to the host chromosomes in a non-random fashion for equal segregation. This review delves into the probable chromosome hitchhiking mechanisms of 2-micron plasmid during its segregation, highlighting the roles of specific plasmid-encoded proteins and their interactions with host proteins and the chromosomes. Understanding these mechanisms provides broader insights into the genetic stability and inheritance of extrachromosomal genetic elements across diverse biological systems.
Collapse
Affiliation(s)
- Deepanshu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Did Cyclic Metaphosphates Have a Role in the Origin of Life? ORIGINS LIFE EVOL B 2021; 51:1-60. [PMID: 33721178 DOI: 10.1007/s11084-021-09604-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
How life began still eludes science life, the initial progenote in the context presented herein, being a chemical aggregate of primordial inorganic and organic molecules capable of self-replication and evolution into ever increasingly complex forms and functions.Presented is a hypothesis that a mineral scaffold generated by geological processes and containing polymerized phosphate units was present in primordial seas that provided the initiating factor responsible for the sequestration and organization of primordial life's constituents. Unlike previous hypotheses proposing phosphates as the essential initiating factor, the key phosphate described here is not a polynucleotide or just any condensed phosphate but a large (in the range of at least 1 kilo-phosphate subunits), water soluble, cyclic metaphosphate, which is a closed loop chain of polymerized inorganic phosphate residues containing only phosphate middle groups. The chain forms an intrinsic 4-phosphate helix analogous to its structure in Na Kurrol's salt, and as with DNA, very large metaphosphates may fold into hairpin structures. Using a Holliday-junction-like scrambling mechanism, also analogous to DNA, rings may be manipulated (increased, decreased, exchanged) easily with little to no need for additional energy, the reaction being essentially an isomerization.A literature review is presented describing findings that support the above hypothesis. Reviewed is condensed phosphate inorganic chemistry including its geological origins, biological occurrence, enzymes and their genetics through eukaryotes, polyphosphate functions, circular polynucleotides and the role of the Holliday junction, previous biogenesis hypotheses, and an Eoarchean Era timeline.
Collapse
|
3
|
Dheekollu J, Wiedmer A, Ayyanathan K, Deakyne JS, Messick TE, Lieberman PM. Cell-cycle-dependent EBNA1-DNA crosslinking promotes replication termination at oriP and viral episome maintenance. Cell 2021; 184:643-654.e13. [PMID: 33482082 DOI: 10.1016/j.cell.2020.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/17/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persists as a multicopy episome in proliferating host cells. Episome maintenance is strictly dependent on EBNA1, a sequence-specific DNA-binding protein with no known enzymatic activities. Here, we show that EBNA1 forms a cell cycle-dependent DNA crosslink with the EBV origin of plasmid replication oriP. EBNA1 tyrosine 518 (Y518) is essential for crosslinking to oriP and functionally required for episome maintenance and generation of EBV-transformed lymphoblastoid cell lines (LCLs). Mechanistically, Y518 is required for replication fork termination at oriP in vivo and for formation of SDS-resistant complexes in vitro. EBNA1-DNA crosslinking corresponds to single-strand endonuclease activity specific to DNA structures enriched at replication-termination sites, such as 4-way junctions. These findings reveal that EBNA1 forms tyrosine-dependent DNA-protein crosslinks and single-strand cleavage at oriP required for replication termination and viral episome maintenance.
Collapse
|
4
|
Jalal D, Chalissery J, Hassan AH. Irc20 Regulates the Yeast Endogenous 2-μm Plasmid Levels by Controlling Flp1. Front Mol Biosci 2020; 7:221. [PMID: 33330615 PMCID: PMC7710549 DOI: 10.3389/fmolb.2020.00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/07/2020] [Indexed: 12/03/2022] Open
Abstract
The endogenous yeast 2-μm plasmid while innocuous to the host, needs to be properly regulated to avoid a toxic increase in copy number. The plasmid copy number control system is under the control of the plasmid encoded recombinase, Flp1. In case of a drop in 2-μm plasmid levels due to rare plasmid mis-segregation events, the Flp1 recombinase together with the cell’s homologous recombination machinery, produce multiple copies of the 2-μm plasmid that are spooled during DNA replication. The 2-μm plasmid copy number is tightly regulated by controlled expression of Flp1 as well as its ubiquitin and SUMO modification. Here, we identify a novel regulator of the 2-μm plasmid, the ATPase, ubiquitin ligase, Irc20. Irc20 was initially identified as a homologous recombination regulator, and here we uncover a new role for Irc20 in maintaining the 2-μm plasmid copy number and segregation through regulating Flp1 protein levels in the cell.
Collapse
Affiliation(s)
- Deena Jalal
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jisha Chalissery
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ahmed H Hassan
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
5
|
The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells. Microbiol Spectr 2016; 2. [PMID: 25541598 DOI: 10.1128/microbiolspec.plas-0003-2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications.
Collapse
|
6
|
Strope PK, Kozmin SG, Skelly DA, Magwene PM, Dietrich FS, McCusker JH. 2μ plasmid in Saccharomyces species and in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 15:fov090. [PMID: 26463005 DOI: 10.1093/femsyr/fov090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 12/27/2022] Open
Abstract
We determined that extrachromosomal 2μ plasmid was present in 67 of the Saccharomyces cerevisiae 100-genome strains; in addition to variation in the size and copy number of 2μ, we identified three distinct classes of 2μ. We identified 2μ presence/absence and class associations with populations, clinical origin and nuclear genotypes. We also screened genome sequences of S. paradoxus, S. kudriavzevii, S. uvarum, S. eubayanus, S. mikatae, S. arboricolus and S. bayanus strains for both integrated and extrachromosomal 2μ. Similar to S. cerevisiae, we found no integrated 2μ sequences in any S. paradoxus strains. However, we identified part of 2μ integrated into the genomes of some S. uvarum, S. kudriavzevii, S. mikatae and S. bayanus strains, which were distinct from each other and from all extrachromosomal 2μ. We identified extrachromosomal 2μ in one S. paradoxus, one S. eubayanus, two S. bayanus and 13 S. uvarum strains. The extrachromosomal 2μ in S. paradoxus, S. eubayanus and S. cerevisiae were distinct from each other. In contrast, the extrachromosomal 2μ in S. bayanus and S. uvarum strains were identical with each other and with one of the three classes of S. cerevisiae 2μ, consistent with interspecific transfer.
Collapse
Affiliation(s)
- Pooja K Strope
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stanislav G Kozmin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniel A Skelly
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Fred S Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John H McCusker
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Ma CH, Liu YT, Savva CG, Rowley PA, Cannon B, Fan HF, Russell R, Holzenburg A, Jayaram M. Organization of DNA partners and strand exchange mechanisms during Flp site-specific recombination analyzed by difference topology, single molecule FRET and single molecule TPM. J Mol Biol 2013; 426:793-815. [PMID: 24286749 DOI: 10.1016/j.jmb.2013.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Flp site-specific recombination between two target sites (FRTs) harboring non-homology within the strand exchange region does not yield stable recombinant products. In negatively supercoiled plasmids containing head-to-tail sites, the reaction produces a series of knots with odd-numbered crossings. When the sites are in head-to-head orientation, the knot products contain even-numbered crossings. Both types of knots retain parental DNA configuration. By carrying out Flp recombination after first assembling the topologically well defined Tn3 resolvase synapse, it is possible to determine whether these knots arise by a processive or a dissociative mechanism. The nearly exclusive products from head-to-head and head-to-tail oriented "non-homologous" FRT partners are a 4-noded knot and a 5-noded knot, respectively. The corresponding products from a pair of native (homologous) FRT sites are a 3-noded knot and a 4-noded catenane, respectively. These results are consistent with non-homology-induced two rounds of dissociative recombination by Flp, the first to generate reciprocal recombinants containing non-complementary base pairs and the second to produce parental molecules with restored base pairing. Single molecule fluorescence resonance energy transfer (smFRET) analysis of geometrically restricted FRTs, together with single molecule tethered particle motion (smTPM) assays of unconstrained FRTs, suggests that the sites are preferentially synapsed in an anti-parallel fashion. This selectivity in synapse geometry occurs prior to the chemical steps of recombination, signifying early commitment to a productive reaction path. The cumulative topological, smFRET and smTPM results have implications for the relative orientation of DNA partners and the directionality of strand exchange during recombination mediated by tyrosine site-specific recombinases.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Section of Molecular Genetics and Microbiology, Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yen-Ting Liu
- Section of Molecular Genetics and Microbiology, Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Christos G Savva
- Microscopy and Imaging Center, Department of Biology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2257, USA
| | - Paul A Rowley
- Section of Molecular Genetics and Microbiology, Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Brian Cannon
- Department of Chemistry and Biochemistry, Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Rick Russell
- Department of Chemistry and Biochemistry, Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Andreas Holzenburg
- Microscopy and Imaging Center, Department of Biology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2257, USA
| | - Makkuni Jayaram
- Section of Molecular Genetics and Microbiology, Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
8
|
Chan KM, Liu YT, Ma CH, Jayaram M, Sau S. The 2 micron plasmid of Saccharomyces cerevisiae: A miniaturized selfish genome with optimized functional competence. Plasmid 2013; 70:2-17. [DOI: 10.1016/j.plasmid.2013.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/21/2013] [Accepted: 03/02/2013] [Indexed: 01/24/2023]
|
9
|
Schmidt K, Xu Z, Mathews DH, Butler JS. Air proteins control differential TRAMP substrate specificity for nuclear RNA surveillance. RNA (NEW YORK, N.Y.) 2012; 18:1934-45. [PMID: 22923767 PMCID: PMC3446715 DOI: 10.1261/rna.033431.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/24/2012] [Indexed: 05/23/2023]
Abstract
RNA surveillance systems function at critical steps during the formation and function of RNA molecules in all organisms. The RNA exosome plays a central role in RNA surveillance by processing and degrading RNA molecules in the nucleus and cytoplasm of eukaryotic cells. The exosome functions as a complex of proteins composed of a nine-member core and two ribonucleases. The identity of the molecular determinants of exosome RNA substrate specificity remains an important unsolved aspect of RNA surveillance. In the nucleus of Saccharomyces cerevisiae, TRAMP complexes recognize and polyadenylate RNAs, which enhances RNA degradation by the exosome and may contribute to its specificity. TRAMPs contain either of two putative RNA-binding factors called Air proteins. Previous studies suggested that these proteins function interchangeably in targeting the poly(A)-polymerase activity of TRAMPs to RNAs. Experiments reported here show that the Air proteins govern separable functions. Phenotypic analysis and RNA deep-sequencing results from air mutants reveal specific requirements for each Air protein in the regulation of the levels of noncoding and coding RNAs. Loss of these regulatory functions results in specific metabolic and plasmid inheritance defects. These findings reveal differential functions for Air proteins in RNA metabolism and indicate that they control the substrate specificity of the RNA exosome.
Collapse
Affiliation(s)
- Karyn Schmidt
- Department of Biochemistry and Biophysics
- Center for RNA Biology, and
| | - Zhenjiang Xu
- Department of Biochemistry and Biophysics
- Center for RNA Biology, and
| | - David H. Mathews
- Department of Biochemistry and Biophysics
- Center for RNA Biology, and
| | - J. Scott Butler
- Department of Biochemistry and Biophysics
- Center for RNA Biology, and
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
10
|
Huang CC, Hajra S, Ghosh SK, Jayaram M. Cse4 (CenH3) association with the Saccharomyces cerevisiae plasmid partitioning locus in its native and chromosomally integrated states: implications in centromere evolution. Mol Cell Biol 2011; 31:1030-40. [PMID: 21173161 PMCID: PMC3067819 DOI: 10.1128/mcb.01191-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/29/2010] [Accepted: 12/10/2010] [Indexed: 11/20/2022] Open
Abstract
The histone H3 variant Cse4 specifies centromere identity in Saccharomyces cerevisiae by its incorporation into a special nucleosome positioned at CEN DNA and promotes the assembly of the kinetochore complex, which is required for faithful chromosome segregation. Our previous work showed that Cse4 is also associated with the partitioning locus STB of the 2μm circle--a multicopy plasmid that resides in the yeast nucleus and propagates itself stably. Cse4 is essential for the functional assembly of the plasmid partitioning complex, including the recruitment of the yeast cohesin complex at STB. We have located Cse4 association strictly at the origin-proximal subregion of STB. Three of the five directly repeated tandem copies of a 62-bp consensus sequence element constituting this region are necessary and sufficient for the recruitment of Cse4. The association of Cse4 with STB is dependent on Scm3, the loading factor responsible for the incorporation of Cse4 into the CEN nucleosome. A chromosomally integrated copy of STB confers on the integration site the capacity for Cse4 association as well as cohesin assembly. The localization of Cse4 in chromatin digested by micrococcal nuclease is consistent with the potential assembly of one Cse4-containing nucleosome, but not more than two, at STB. The remarkable ability of STB to acquire a very specialized, and strictly regulated, chromosome segregation factor suggests its plausible evolutionary kinship with CEN.
Collapse
Affiliation(s)
- Chu-Chun Huang
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Sujata Hajra
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Santanu Kumar Ghosh
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Makkuni Jayaram
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Abstract
The processes of DNA topoisomerization and site-specific recombination are fundamentally similar: DNA cleavage by forming a phospho-protein covalent linkage, DNA topological rearrangement, and DNA ligation coupled with protein regeneration. Type IB DNA topoisomerases are structurally and mechanistically homologous to tyrosine recombinases. Both enzymes nick DNA double helices independent of metal ions, form 3'-phosphotyrosine intermediates, and rearrange the free 5' ends relative to the uncut strands by swiveling. In contrast, serine recombinases generate 5'-phospho-serine intermediates. A 180° relative rotation of the two halves of a 100 kDa terameric serine recombinase and DNA complex has been proposed as the mechanism of strand exchange. Here I propose an alternative mechanism. Interestingly, the catalytic domain of serine recombinases has structural similarity to the TOPRIM domain, conserved among all Type IA and Type II topoisomerases and responsible for metal binding and DNA cleavage. TOPRIM topoisomerases also cleave DNA to generate 5'-phosphate and 3'-OH groups. Based on the existing biochemical data and crystal structures of topoisomerase II and serine recombinases bound to pre- and post-cleavage DNA, I suggest a strand passage mechanism for DNA recombination by serine recombinases. This mechanism is reminiscent of DNA topoisomerization and does not require subunit rotation.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Ghosh SK, Huang CC, Hajra S, Jayaram M. Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex. Nucleic Acids Res 2010; 38:570-84. [PMID: 19920123 PMCID: PMC2811031 DOI: 10.1093/nar/gkp993] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 11/30/2022] Open
Abstract
Sister chromatid cohesion, crucial for faithful segregation of replicated chromosomes in eukaryotes, is mediated by the multi-subunit protein complex cohesin. The Saccharomyces cerevisiae plasmid 2 micron circle mimics chromosomes in assembling cohesin at its partitioning locus. The plasmid is a multi-copy selfish DNA element that resides in the nucleus and propagates itself stably, presumably with assistance from cohesin. In metaphase cell lysates, or fractions enriched for their cohesed state by sedimentation, plasmid molecules are trapped topologically by the protein ring formed by cohesin. They can be released from cohesin's embrace either by linearizing the DNA or by cleaving a cohesin subunit. Assays using two distinctly tagged cohesin molecules argue against the hand-cuff (an associated pair of monomeric cohesin rings) or the bracelet (a dimeric cohesin ring) model as responsible for establishing plasmid cohesion. Our cumulative results most easily fit a model in which a single monomeric cohesin ring, rather than a series of such rings, conjoins a pair of sister plasmids. These features of plasmid cohesion account for its sister-to-sister mode of segregation by cohesin disassembly during anaphase. The mechanistic similarities of cohesion between mini-chromosome sisters and 2 micron plasmid sisters suggest a potential kinship between the plasmid partitioning locus and centromeres.
Collapse
Affiliation(s)
- Santanu K. Ghosh
- School of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India and Section of Molecular Genetics & Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | - Chu-Chun Huang
- School of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India and Section of Molecular Genetics & Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | - Sujata Hajra
- School of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India and Section of Molecular Genetics & Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | - Makkuni Jayaram
- School of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India and Section of Molecular Genetics & Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Ma CH, Kachroo AH, Macieszak A, Chen TY, Guga P, Jayaram M. Reactions of Cre with methylphosphonate DNA: similarities and contrasts with Flp and vaccinia topoisomerase. PLoS One 2009; 4:e7248. [PMID: 19789629 PMCID: PMC2747268 DOI: 10.1371/journal.pone.0007248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 09/02/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Reactions of vaccinia topoisomerase and the tyrosine site-specific recombinase Flp with methylphosphonate (MeP) substituted DNA substrates, have provided important insights into the electrostatic features of the strand cleavage and strand joining steps catalyzed by them. A conserved arginine residue in the catalytic pentad, Arg-223 in topoisomerase and Arg-308 in Flp, is not essential for stabilizing the MeP transition state. Topoisomerase or its R223A variant promotes cleavage of the MeP bond by the active site nucleophile Tyr-274, followed by the rapid hydrolysis of the MeP-tyrosyl intermediate. Flp(R308A), but not wild type Flp, mediates direct hydrolysis of the activated MeP bond. These findings are consistent with a potential role for phosphate electrostatics and active site electrostatics in protecting DNA relaxation and site-specific recombination, respectively, against abortive hydrolysis. METHODOLOGY/PRINCIPAL FINDINGS We have examined the effects of DNA containing MeP substitution in the Flp related Cre recombination system. Neutralizing the negative charge at the scissile position does not render the tyrosyl intermediate formed by Cre susceptible to rapid hydrolysis. Furthermore, combining the active site R292A mutation in Cre (equivalent to the R223A and R308A mutations in topoisomerase and Flp, respectively) with MeP substitution does not lead to direct hydrolysis of the scissile MeP bond in DNA. Whereas Cre follows the topoisomerase paradigm during the strand cleavage step, it follows the Flp paradigm during the strand joining step. CONCLUSIONS/SIGNIFICANCE Collectively, the Cre, Flp and topoisomerase results highlight the contribution of conserved electrostatic complementarity between substrate and active site towards transition state stabilization during site-specific recombination and DNA relaxation. They have potential implications for how transesterification reactions in nucleic acids are protected against undesirable abortive side reactions. Such protective mechanisms are significant, given the very real threat of hydrolytic genome damage or disruption of RNA processing due to the cellular abundance and nucleophilicity of water.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
| | - Aashiq H. Kachroo
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
| | - Anna Macieszak
- Department of Bio-organic Chemistry, Center for Molecular and Macromolecular studies, Polish Academy of Sciences, Lodz, Poland
| | - Tzu-Yang Chen
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
| | - Piotr Guga
- Department of Bio-organic Chemistry, Center for Molecular and Macromolecular studies, Polish Academy of Sciences, Lodz, Poland
| | - Makkuni Jayaram
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination. EMBO J 2009; 28:1745-56. [PMID: 19440204 DOI: 10.1038/emboj.2009.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 04/21/2009] [Indexed: 11/08/2022] Open
Abstract
Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3'-phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns.
Collapse
|
15
|
Xiong L, Chen XL, Silver HR, Ahmed NT, Johnson ES. Deficient SUMO attachment to Flp recombinase leads to homologous recombination-dependent hyperamplification of the yeast 2 microm circle plasmid. Mol Biol Cell 2008; 20:1241-51. [PMID: 19109426 DOI: 10.1091/mbc.e08-06-0659] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many Saccharomyces cerevisiae mutants defective in the SUMO pathway accumulate elevated levels of the native 2 microm circle plasmid (2 microm). Here we show that accumulation of 2 microm in the SUMO pathway mutants siz1Delta siz2Delta, slx5Delta, and slx8Delta is associated with formation of an aberrant high-molecular-weight (HMW) form of 2 microm. Characterization of this species from siz1Delta siz2Delta showed that it contains tandem copies of the 2 mum sequence as well as single-stranded DNA. Accumulation of this species requires both the 2 microm-encoded Flp recombinase and the cellular homologous recombination repair (HRR) pathway. Importantly, reduced SUMO attachment to Flp is sufficient to induce formation of this species. Our data suggest a model in which Flp that cannot be sumoylated causes DNA damage, whose repair via HRR produces an intermediate that generates tandem copies of the 2 microm sequence. This intermediate may be a rolling circle formed via break-induced replication (BIR), because mutants defective in BIR contain reduced levels of the HMW form. This work also illustrates the importance of using cir(o) strains when studying mutants that affect the yeast SUMO pathway, to avoid confusing direct functions of the SUMO pathway with secondary effects of 2 microm amplification.
Collapse
Affiliation(s)
- Ling Xiong
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
16
|
Gelato KA, Martin SS, Liu PH, Saunders AA, Baldwin EP. Spatially directed assembly of a heterotetrameric Cre-Lox synapse restricts recombination specificity. J Mol Biol 2008; 378:653-65. [PMID: 18374357 DOI: 10.1016/j.jmb.2008.02.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/13/2008] [Accepted: 02/25/2008] [Indexed: 12/21/2022]
Abstract
The pseudo-fourfold homotetrameric synapse formed by Cre protein and target DNA restricts site-specific recombination to sequences containing dyad-symmetric Cre-binding repeats. Mixtures of engineered altered-specificity Cre monomers can form heterotetramers that recombine nonidentical asymmetric sequences, allowing greater flexibility for target site selection in the genome of interest. However, the variety of tetramers allowed by random subunit association increases the chances of unintended reactivity at nontarget sites. This problem can be circumvented by specifying a unique spatial arrangement of heterotetramer subunits. By reconfiguring intersubunit protein-protein contacts, we directed the assembly of two different Cre monomers, each having a distinct DNA sequence specificity, in an alternating (ABAB) configuration. This designed heterotetramer preferentially recombined a particular pair of asymmetric Lox sites over other pairs, whereas a mixture of freely associating subunits showed little bias. Alone, the engineered monomers had reduced reactivity towards both dyad-symmetric and asymmetric sites. Specificity arose because the organization of Cre-binding repeats of the preferred substrate matched the programmed arrangement of the subunits in the heterotetrameric synapse. When this "spatial matching" principle is applied, Cre-mediated recombination can be directed to asymmetric DNA sequences with greater fidelity.
Collapse
Affiliation(s)
- Kathy A Gelato
- Biochemistry and Molecular Biology Graduate Group, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
17
|
Maruyama S, Nozaki H. Sequence and Intranuclear Location of the Extrachromosomal rDNA Plasmid of the Amoebo-Flagellate Naegleria gruberi. J Eukaryot Microbiol 2007; 54:333-7. [PMID: 17669158 DOI: 10.1111/j.1550-7408.2007.00273.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several lower eukaryotic genomes have distinctive organization of rDNA on extrachromosomal molecules: the rDNAs of the amoebo-flagellate Naegleria gruberi (Heterolobosea) are encoded on an extrachromosomal circular plasmid. Although the presence of a circular rDNA plasmid in N. gruberi has now been accepted, its sequence and intracellular location are still unclear. We have now sequenced the entire 14,128 bp of the extrachromosomal circular rDNA plasmid. It contains a single rRNA gene unit composed of 18S, 5.8S, and 28S rRNA genes, but no tRNA or 5S RNA genes. We predict that there are two open reading frames. The region that flanks the rRNA gene unit is A/T-rich, except for a highly G/C-rich region that is approximately 900 bp upstream of the rRNA genes. Fluorescence in situ hybridization of N. gruberi cells revealed that the rDNA plasmids cluster within the nucleolus, suggesting that they are highly organized for the efficient transcription of rRNAs. The N. gruberi rDNA plasmid has a unique high-order cluster structure that provides both a molecular basis for understanding chromosomal organization in basal eukaryotes, and a vehicle for constructing stable transgenic vectors.
Collapse
MESH Headings
- Animals
- DNA, Ribosomal/analysis
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA/genetics
- Naegleria/chemistry
- Naegleria/genetics
- Plasmids/genetics
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/analysis
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 5.8S/analysis
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5S/analysis
- RNA, Ribosomal, 5S/genetics
- Sequence Analysis
Collapse
Affiliation(s)
- Shinichiro Maruyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
18
|
Burgess RC, Rahman S, Lisby M, Rothstein R, Zhao X. The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination. Mol Cell Biol 2007; 27:6153-62. [PMID: 17591698 PMCID: PMC1952148 DOI: 10.1128/mcb.00787-07] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombination is important for repairing DNA lesions, yet it can also lead to genomic rearrangements. This process must be regulated, and recently, sumoylation-mediated mechanisms were found to inhibit Rad51-dependent recombination. Here, we report that the absence of the Slx5-Slx8 complex, a newly identified player in the SUMO (small ubiquitin-like modifier) pathway, led to increased Rad51-dependent and Rad51-independent recombination. The increases were most striking during S phase, suggesting an accumulation of DNA lesions during replication. Consistent with this view, Slx8 protein localized to replication centers. In addition, like SUMO E2 mutants, slx8Delta mutants exhibited clonal lethality, which was due to the overamplification of 2 microm, an extrachromosomal plasmid. Interestingly, in both SUMO E2 and slx8Delta mutants, clonal lethality was rescued by deleting genes required for Rad51-independent recombination but not those involved in Rad51-dependent events. These results suggest that sumoylation negatively regulates Rad51-independent recombination, and indeed, the Slx5-Slx8 complex affected the sumoylation of several enzymes involved in early steps of Rad51-independent recombination. We propose that, during replication, the Slx5-Slx8 complex helps prevent DNA lesions that are acted upon by recombination. In addition, the complex inhibits Rad51-independent recombination via modulating the sumoylation of DNA repair proteins.
Collapse
Affiliation(s)
- Rebecca C Burgess
- Department of Biological Sciences, Columbia University, and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
19
|
Ma CH, Kwiatek A, Bolusani S, Voziyanov Y, Jayaram M. Unveiling hidden catalytic contributions of the conserved His/Trp-III in tyrosine recombinases: assembly of a novel active site in Flp recombinase harboring alanine at this position. J Mol Biol 2007; 368:183-96. [PMID: 17367810 PMCID: PMC2002523 DOI: 10.1016/j.jmb.2007.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/25/2007] [Accepted: 02/06/2007] [Indexed: 11/22/2022]
Abstract
The catalytic pentad of tyrosine recombinases, that assists the tyrosine nucleophile, includes a conserved histidine/tryptophan (His/Trp-III). Flp and Cre harbor tryptophan at this position; most of their kin recombinases display histidine. Contrary to the conservation rule, Flp(W330F) is a much stronger recombinase than Flp(W330H). The hydrophobicity of Trp330 or Phe330 is utilized in correctly positioning Tyr343 during the strand cleavage step of recombination. Why then is phenylalanine almost never encountered in the recombinase family at this conserved position? Using exogenous nucleophiles and synthetic methylphosphonate or 5'-thiolate substrates, we decipher that Trp330 also assists in the activation of the scissile phosphate and the departure of the 5'-hydroxyl leaving group. These two functions are consistent with the hydrogen bonding property of Trp330 as well as its location in structures of the Flp recombination complexes. However, van der Waals contact between Trp330 and Arg308 may also be important for the phosphate activation step. A structure based suppression strategy permits the inactive variant Flp(W330A) to be rescued by a second site mutation A339M. Modeling alanine and methionine at positions 330 and 339, respectively, in the Flp crystal structure suggests a plausible mechanism for active site restoration. Successful suppression suggests the possibility of evolving, by design, new active site configurations for tyrosine recombination.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Molecular Genetics and Microbiology, University of Texas, Austin, 1 University Station A5000, Austin, TX 78712-0162, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Most strains of the yeast Saccharomyces cerevisiae contain many copies of a 2-μm plasmid, a selfish autonomously replicating DNA that relies on two different mechanisms to ensure its survival. One of these mechanisms involves the high fidelity segregation of the plasmids to daughter cells during cell division, a property that is starkly reminiscent of centromeres. A new study reported in this issue (see Hajra et al. on p. 779) demonstrates that this high fidelity is achieved by the 2-μm plasmid, effectively recruiting the centromeric histone Cse4 from its host yeast cell to forge its own centromere and finally revealing how the 2-μm plasmid has survived in budding yeasts over millions of years.
Collapse
Affiliation(s)
- Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
21
|
Falcon AA, Rios N, Aris JP. 2-micron circle plasmids do not reduce yeast life span. FEMS Microbiol Lett 2006; 250:245-51. [PMID: 16085372 PMCID: PMC3586270 DOI: 10.1016/j.femsle.2005.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 06/22/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022] Open
Abstract
Extrachromosomal rDNA circles (ERCs) and recombinant origin-containing plasmids (ARS-plasmids) are thought to reduce replicative life span in the budding yeast Saccharomyces cerevisiae due to their accumulation in yeast cells by an asymmetric inheritance process known as mother cell bias. Most commonly used laboratory yeast strains contain the naturally occurring, high copy number 2-micron circle plasmid. 2-micron plasmids are known to exhibit stable mitotic inheritance, unlike ARS-plasmids and ERCs, but the fidelity of inheritance during replicative aging and cell senescence has not been studied. This raises the question: do 2-micron circles reduce replicative life span? To address this question we have used a convenient method to cure laboratory yeast strains of the 2-micron plasmid. We find no difference in the replicative life spans of otherwise isogenic cir+ and cir0 strains, with and without the 2-micron plasmid. Consistent with this, we find that 2-micron circles do not accumulate in old yeast cells. These findings indicate that naturally occurring levels of 2-micron plasmids do not adversely affect life span, and that accumulation due to asymmetric inheritance is required for reduction of replicative life span by DNA episomes.
Collapse
Affiliation(s)
- Alaric A Falcon
- Department of Anatomy and Cell Biology, Health Science Center, 1600 SW Archer Road, University of Florida, Gainesville, FL 32610-0235, USA.
| | | | | |
Collapse
|
22
|
Abstract
The fundamental problems in duplicating and transmitting genetic information posed by the geometric and topological features of DNA, combined with its large size, are qualitatively similar for prokaryotic and eukaryotic chromosomes. The evolutionary solutions to these problems reveal common themes. However, depending on differences in their organization, ploidy, and copy number, chromosomes and plasmids display distinct segregation strategies as well. In bacteria, chromosome duplication, likely mediated by a stationary replication factory, is accompanied by rapid, directed migration of the daughter duplexes with assistance from DNA-compacting and perhaps translocating proteins. The segregation of unit-copy or low-copy bacterial plasmids is also regulated spatially and temporally by their respective partitioning systems. Eukaryotic chromosomes utilize variations of a basic pairing and unpairing mechanism for faithful segregation during mitosis and meiosis. Rather surprisingly, the yeast plasmid 2-micron circle also resorts to a similar scheme for equal partitioning during mitosis.
Collapse
Affiliation(s)
- Santanu Kumar Ghosh
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712-0612, USA.
| | | | | | | |
Collapse
|