1
|
Collins-Hed AI, Ardell DH. Match fitness landscapes for macromolecular interaction networks: Selection for translational accuracy and rate can displace tRNA-binding interfaces of non-cognate aminoacyl-tRNA synthetases. Theor Popul Biol 2019; 129:68-80. [PMID: 31042487 DOI: 10.1016/j.tpb.2019.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/26/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
Advances in structural biology of aminoacyl-tRNA synthetases (aaRSs) have revealed incredible diversity in how aaRSs bind their tRNA substrates. The causes of this diversity remain mysterious. We developed a new class of highly rugged fitness landscape models called match landscapes, through which genes encode the assortative interactions of their gene products through the complementarity and identifiability of their structural features. We used results from coding theory to prove bounds and equalities on fitness in match landscapes assuming additive interaction energies, macroscopic aminoacylation kinetics including proofreading, site-specific modifiers of interaction, and selection for translational accuracy in multiple, perfectly encoded site-types. Using genotypes based on extended Hamming codes we show that over a wide array of interface sizes and numbers of encoded cognate pairs, selection for translational accuracy alone is insufficient to displace the tRNA-binding interfaces of aaRSs. Yet, under combined selection for translational accuracy and rate, site-specific modifiers are selected to adaptively displace the tRNA-binding interfaces of non-cognate aaRS-tRNA pairs. We describe a remarkable correspondence between the lengths of perfect RNA (quaternary) codes and the modal sizes of small non-coding RNA families.
Collapse
Affiliation(s)
- Andrea I Collins-Hed
- Quantitative and Systems Biology Program, University of California, Merced, CA, 95306, United States
| | - David H Ardell
- Quantitative and Systems Biology Program, University of California, Merced, CA, 95306, United States; Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, CA, 95306, United States.
| |
Collapse
|
2
|
Affiliation(s)
- Richard Giegé
- Département Machineries Traductionnelles, UPR 9002 Architecture et Reactivite de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, 67084 Strasbourg Cedex, France.
| |
Collapse
|
3
|
Fukunaga JI, Ohno S, Nishikawa K, Yokogawa T. A base pair at the bottom of the anticodon stem is reciprocally preferred for discrimination of cognate tRNAs by Escherichia coli lysyl- and glutaminyl-tRNA synthetases. Nucleic Acids Res 2006; 34:3181-8. [PMID: 16772402 PMCID: PMC1483225 DOI: 10.1093/nar/gkl414] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 12/02/2022] Open
Abstract
Although the yeast amber suppressor tRNA(Tyr) is a good candidate for a carrier of unnatural amino acids into proteins, slight misacylation with lysine was found to occur in an Escherichia coli protein synthesis system. Although it was possible to restrain the mislysylation by genetically engineering the anticodon stem region of the amber suppressor tRNA(Tyr), the mutant tRNA showing the lowest acceptance of lysine was found to accept a trace level of glutamine instead. Moreover, the glutamine-acceptance of various tRNA(Tyr) transcripts substituted at the anticodon stem region varied in reverse proportion to the lysine-acceptance, similar to a 'seesaw'. The introduction of a C31-G39 base pair at the site was most effective for decreasing the lysine-acceptance and increasing the glutamine-acceptance. When the same substitution was introduced into E.coli tRNA(Lys) transcripts, the lysine-accepting activity was decreased by 100-fold and faint acceptance of glutamine was observed. These results may support the idea that there are some structural element(s) in the anticodon stem of tRNA, which are not shared by aminoacyl-tRNA synthetases that have similar recognition sites in the anticodon, such as E.coli lysyl- and glutaminyl-tRNA synthetases.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Anticodon/chemistry
- Base Pairing
- Base Sequence
- Escherichia coli/enzymology
- Glutamine/metabolism
- Lysine/metabolism
- Lysine-tRNA Ligase/metabolism
- Molecular Sequence Data
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/genetics
- RNA, Transfer, Tyr/metabolism
- Substrate Specificity
- Suppression, Genetic
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
- Jun-ichi Fukunaga
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 YanagidoGifu 501-1193, Japan
| | - Satoshi Ohno
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 YanagidoGifu 501-1193, Japan
| | - Kazuya Nishikawa
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 YanagidoGifu 501-1193, Japan
| | - Takashi Yokogawa
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 YanagidoGifu 501-1193, Japan
| |
Collapse
|
4
|
Lenhard B, Orellana O, Ibba M, Weygand-Durasević I. tRNA recognition and evolution of determinants in seryl-tRNA synthesis. Nucleic Acids Res 1999; 27:721-9. [PMID: 9889265 PMCID: PMC148239 DOI: 10.1093/nar/27.3.721] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have analyzed the evolution of recognition of tRNAsSerby seryl-tRNA synthetases, and compared it to other type 2 tRNAs, which contain a long extra arm. In Eubacteria and chloroplasts this type of tRNA is restricted to three families: tRNALeu, tRNASer and tRNATyr. tRNALeuand tRNASer also carry a long extra arm in Archaea, Eukarya and all organelles with the exception of animal mitochondria. In contrast, the long extra arm of tRNATyr is far less conserved: it was drastically shortened after the separation of Archaea and Eukarya from Eubacteria, and it is also truncated in animal mitochondria. The high degree of phylo-genetic divergence in the length of tRNA variable arms, which are recognized by both class I and class II aminoacyl-tRNA synthetases, makes type 2 tRNA recognition an ideal system with which to study how tRNA discrimination may have evolved in tandem with the evolution of other components of the translation machinery.
Collapse
Affiliation(s)
- B Lenhard
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
5
|
Lenhard B, Praetorius-Ibba M, Filipic S, Söll D, Weygand-Durasevic I. C-terminal truncation of yeast SerRS is toxic for Saccharomyces cerevisiae due to altered mechanism of substrate recognition. FEBS Lett 1998; 439:235-40. [PMID: 9845329 DOI: 10.1016/s0014-5793(98)01376-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Like all other eukaryal cytosolic seryl-tRNA synthetase (SerRS) enzymes, Saccharomyces cerevisiae SerRS contains a C-terminal extension not found in the enzymes of eubacterial and archaeal origin. Overexpression of C-terminally truncated SerRS lacking the 20-amino acid appended domain (SerRSC20) is toxic to S. cerevisiae possibly because of altered substrate recognition. Compared to wild-type SerRS the truncated enzyme displays impaired tRNA-dependent serine recognition and is less stable. This suggests that the C-terminal peptide is important for the formation or maintenance of the enzyme structure optimal for substrate binding and catalysis.
Collapse
Affiliation(s)
- B Lenhard
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| | | | | | | | | |
Collapse
|
6
|
Giegé R, Sissler M, Florentz C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 1998; 26:5017-35. [PMID: 9801296 PMCID: PMC147952 DOI: 10.1093/nar/26.22.5017] [Citation(s) in RCA: 627] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Correct expression of the genetic code at translation is directly correlated with tRNA identity. This survey describes the molecular signals in tRNAs that trigger specific aminoacylations. For most tRNAs, determinants are located at the two distal extremities: the anticodon loop and the amino acid accepting stem. In a few tRNAs, however, major identity signals are found in the core of the molecule. Identity elements have different strengths, often depend more on k cat effects than on K m effects and exhibit additive, cooperative or anti-cooperative interplay. Most determinants are in direct contact with cognate synthetases, and chemical groups on bases or ribose moieties that make functional interactions have been identified in several systems. Major determinants are conserved in evolution; however, the mechanisms by which they are expressed are species dependent. Recent studies show that alternate identity sets can be recognized by a single synthetase, and emphasize the importance of tRNA architecture and anti-determinants preventing false recognition. Identity rules apply to tRNA-like molecules and to minimalist tRNAs. Knowledge of these rules allows the manipulation of identity elements and engineering of tRNAs with switched, altered or multiple specificities.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Evolution, Molecular
- Genetic Code
- Humans
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
Collapse
Affiliation(s)
- R Giegé
- Unité Propre de Recherche 9002, 'Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance', Scientifique, 15 rue René Descartes, F-67084, Strasbourg Cedex, France.
| | | | | |
Collapse
|
7
|
Gruić-Sovulj I, Lüdemann HC, Hillenkamp F, Peter-Katalinić J. Detection of noncovalent tRNA.aminoacyl-tRNA synthetase complexes by matrix-assisted laser desorption/ionization mass spectrometry. J Biol Chem 1997; 272:32084-91. [PMID: 9405405 DOI: 10.1074/jbc.272.51.32084] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) was used for the study of complexes formed by yeast seryl-tRNA synthetase (SerRS) and tyrosyl-tRNA synthetase (TyrRS) with tRNASer and tRNATyr. Cognate and noncognate complexes were easily distinguished due to a large mass difference between the two tRNAs. Both homodimeric synthetases gave MS spectra indicating intact desorption of dimers. The spectra of synthetase-cognate tRNA mixtures showed peaks of free components and peaks assigned to complexes. Noncognate complexes were also detected. In competition experiments, where both tRNA species were mixed with each enzyme only cognate alpha2.tRNA complexes were observed. Only cognate alpha2.tRNA2 complexes were detected with each enzyme. These results demonstrate that MALDI-MS can be used successfully for accurate mass and, thus, stoichiometry determination of specific high molecular weight noncovalent protein-nucleic acid complexes.
Collapse
Affiliation(s)
- I Gruić-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Strossmayerov trg 14, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
8
|
Ibba M, Hong KW, Sherman JM, Sever S, Söll D. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme. Proc Natl Acad Sci U S A 1996; 93:6953-8. [PMID: 8692925 PMCID: PMC38915 DOI: 10.1073/pnas.93.14.6953] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sequence-specific interactions between aminoacyl-tRNA synthetases and their cognate tRNAs both ensure accurate RNA recognition and prevent the binding of noncognate substrates. Here we show for Escherichia coli glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18) that the accuracy of tRNA recognition also determines the efficiency of cognate amino acid recognition. Steady-state kinetics revealed that interactions between tRNA identity nucleotides and their recognition sites in the enzyme modulate the amino acid affinity of GlnRS. Perturbation of any of the protein-RNA interactions through mutation of either component led to considerable changes in glutamine affinity with the most marked effects seen at the discriminator base, the 10:25 base pair, and the anticodon. Reexamination of the identity set of tRNA(Gln) in the light of these results indicates that its constituents can be differentiated based upon biochemical function and their contribution to the apparent Gibbs' free energy of tRNA binding. Interactions with the acceptor stem act as strong determinants of tRNA specificity, with the discriminator base positioning the 3' end. The 10:25 base pair and U35 are apparently the major binding sites to GlnRS, with G36 contributing both to binding and recognition. Furthermore, we show that E. coli tryptophanyl-tRNA synthetase also displays tRNA-dependent changes in tryptophan affinity when charging a noncognate tRNA. The ability of tRNA to optimize amino acid recognition reveals a novel mechanism for maintaining translational fidelity and also provides a strong basis for the coevolution of tRNAs and their cognate synthetases.
Collapse
Affiliation(s)
- M Ibba
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Correct recognition of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases is central to the maintenance of translational fidelity. The hypothesis that synthetases recognize anticodon nucleotides was proposed in 1964 and had considerable experimental support by the mid-1970s. Nevertheless, the idea was not widely accepted until relatively recently in part because the methodologies initially available for examining tRNA recognition proved hampering for adequately testing alternative hypotheses. Implementation of new technologies has led to a reasonably complete picture of how tRNAs are recognized. The anticodon is indeed important for 17 of the 20 Escherichia coli isoaccepting groups. For many of the isoaccepting groups, the acceptor stem or position 73 (or both) is important as well.
Collapse
Affiliation(s)
- M E Saks
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | |
Collapse
|
10
|
Rogers MJ, Adachi T, Inokuchi H, Söll D. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase. Proc Natl Acad Sci U S A 1994; 91:291-5. [PMID: 7506418 PMCID: PMC42933 DOI: 10.1073/pnas.91.1.291] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Wild-type Escherichia coli glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18) poorly aminoacylates opal suppressors (GLN) derived from tRNA(Gln). Mutations in glnS (the gene encoding GlnRS) that compensate for impaired aminoacylation were isolated by genetic selection. Two glnS mutants were obtained by using opal suppressors differing in the nucleotides composing the base pair at 3.70: glnS113 with an Asp-235-->Asn change selected with GLNA3U70 (GLN carrying G3-->A and C70-->U changes), and glnS114 with a Gln-318-->Arg change selected with GLNU70 (GLN carrying a C70-->U change). The Asp-235-->Asn change was identified previously by genetic selection. Additional mutants were isolated by site-directed mutagenesis followed by genetic selection; the mutant enzymes have single amino acid changes (Lys-317-->Arg and Gln-318-->Lys). A number of mutants with no phenotype also were obtained randomly. In vitro aminoacylation of a tRNA(Gln) transcript by GlnRS enzymes with Lys-317-->Arg, Gln-318-->Lys, or Gln-318-->Arg changes shows that the enzyme's kinetic parameters are not greatly affected by the mutations. However, aminoacylation of a tRNA(Gln) transcript with an opal (UCA) anticodon shows that the specificity constants (kcat/Km) for the mutant enzymes were 5-10 times above that of the wild-type GlnRS. Interactions between Lys-317 and Gln-318 with the inside of the L-shaped tRNA and with the side chain of Gln-234 provide a connection between the acceptor end-binding and anticodon-binding domains of GlnRS. The GlnRS mutants isolated suggest that perturbation of the interactions with the inside of the tRNA L shape results in relaxed anticodon recognition.
Collapse
Affiliation(s)
- M J Rogers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | | | | | | |
Collapse
|
11
|
Hogue CW, Szabo AG. Characterization of aminoacyl-adenylates in B. subtilis tryptophanyl-tRNA synthetase, by the fluorescence of tryptophan analogs 5-hydroxytryptophan and 7-azatryptophan. Biophys Chem 1993; 48:159-69. [PMID: 8298054 DOI: 10.1016/0301-4622(93)85007-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The tryptophan analogs 5-hydroxytryptophan (5HW) and 7-azatryptophan (7AW) are capable of being biosynthetically incorporated into bacterial proteins and can be used as intrinsic fluorescence probes of protein structure, function and dynamics. A prerequisite for analog incorporation is their recognition by tryptophanyl-tRNA synthetase (TrpRS) and the formation of the analog aminoacyladenylate in the enzyme's active site. The binding of 5HW and 7AW to B. subtilis TrpRS and the stability of the corresponding aminoacyladenylates of 5HW and 7AW were examined using their unique spectroscopic properties. The adenylate of 7AW in the active site of TrpRS exhibited intense fluorescence with a 10.5 ns fluorescence decay time. Enzyme-bound 7AW-adenylate was a long-lived intermediate with a half-life of over 9 hours. Enzyme-bound 5HW-adenylate fluorescence was quenched compared to that of 5HW in solution. The 5HW-adenylate/TrpRS complex was much less stable than that of 7AW, with a half-life of 33 minutes. Rapid hydrolysis of the 5HW-adenylate may explain the apparent proofreading observed which prohibits 5HW incorporation into proteins in the presence of tryptophan. Hydrolysis of the adenylates of both analogs restored the fluorescence parameters towards those of the analogs in solution. Neither 1-methyltryptophan nor 5-methoxytryptophan were capable of forming long-lived aminoacyladenylate intermediates in TrpRS. This study provides perspectives on the usefulness of 5HW and 7AW as intrinsic fluorescence probes of protein structure. The enhanced fluorescence of 7AW suggests its location in a buried hydrophobic environment in the protein. Exposure to water results in significant fluorescence quenching. These studies clearly demonstrate the utility of Trp analogs for the elucidation of molecular details of protein structure and dynamics.
Collapse
Affiliation(s)
- C W Hogue
- Division of Biological Science, National Research Council of Canada, Ottawa, Ont
| | | |
Collapse
|
12
|
Weygand-Durasević I, Schwob E, Söll D. Acceptor end binding domain interactions ensure correct aminoacylation of transfer RNA. Proc Natl Acad Sci U S A 1993; 90:2010-4. [PMID: 7680483 PMCID: PMC46010 DOI: 10.1073/pnas.90.5.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The recognition of the acceptor stem of tRNA(Gln) is an important element ensuring the accuracy of aminoacylation by Escherichia coli glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18). On the basis of known mutations and the crystal structure of the tRNA(Gln).GlnRS complex, we mutagenized at saturation two motifs in the acceptor end binding domain of GlnRS. Mutants with lowered tRNA specificity were then selected in vivo by suppression of a glutamine-specific amber mutation (lacZ1000) with an amber suppressor tRNA derived from tRNA(1Ser). The mischarging GlnRS mutants obtained in this way retain the ability to charge tRNA(Gln), but in addition, they misacylate a number of noncognate amber suppressor tRNAs. The critical residues responsible for specificity are Arg-130 and Glu-131, located in a part of GlnRS that binds the acceptor stem of tRNA(Gln). On the basis of the spectrum of tRNAs capable of being misacylated by such mutants we propose that, in addition to taking part in productive interactions, the acceptor end binding domain contributes to recognition specificity by rejecting noncognate tRNAs through negative interactions. Analysis of the catalytic properties of one of the mischarging enzymes, GlnRS100 (Arg-130-->Pro, Glu-131-->Asp), indicates that, while the kinetic parameters of the mutant enzyme are not dramatically changed, it binds noncognate tRNA(Glu) more stably than the wild-type enzyme does (Kd is 1/8 that of the wild type). Thus, the stability of the noncognate complex may be the basis for mischarging in vivo.
Collapse
Affiliation(s)
- I Weygand-Durasević
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | |
Collapse
|
13
|
Rogers MJ, Weygand-Durasević I, Schwob E, Sherman JM, Rogers KC, Adachi T, Inokuchi H, Söll D. Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase. Biochimie 1993; 75:1083-90. [PMID: 8199243 DOI: 10.1016/0300-9084(93)90007-f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The specific recognition by Escherichia coli glutaminyl-tRNA synthetase (GlnRS) of tRNA(Gln) is mediated by extensive protein:RNA contacts and changes in the conformation of tRNA(Gln) when complexed with GlnRS. In vivo accuracy of aminoacylation depends on two factors: competition between synthetases, and the context and recognition of identity elements in the tRNA. The structure of the tRNA(Gln):GlnRS complex supports studies from amber and opal suppressor tRNAs, complemented by in vitro aminoacylation of the mutated tRNA transcripts, that the glutamine identity elements are located in the anticodon and acceptor stem of tRNA(Gln). Recognition of individual functional groups in tRNA, for example the 2-amino group of guanosine, is also evident from the result with inosine-substituted tRNAs. Communication between anticodon and acceptor stem recognition is indicated by mutants in GlnRS isolated by genetic selection with opal suppressor tRNAs which are altered in interactions with the inside of the L-shaped tRNA. We have also used genetic selection to obtain mutants of GlnRS altered in acceptor stem recognition with relaxed specificity for amber suppressor tRNAs, and a more extensive mutational analysis shows the importance of the acceptor binding domain to accurate recognition of tRNA.
Collapse
Affiliation(s)
- M J Rogers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sherman JM, Rogers K, Rogers MJ, Söll D. Synthetase competition and tRNA context determine the in vivo identify of tRNA discriminator mutants. J Mol Biol 1992; 228:1055-62. [PMID: 1474577 DOI: 10.1016/0022-2836(92)90314-a] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The discriminator nucleotide (position 73) in tRNA has long been thought to play a role in tRNA identity as it is the only variable single-stranded nucleotide that is found near the site of aminoacylation. For this reason, a complete mutagenic analysis of the discriminator in three Escherichia coli amber suppressor tRNA backgrounds was undertaken; supE and supE-G1C72 glutamine tRNAs, gluA glutamate tRNA and supF tyrosine tRNA. The effect of mutation of the discriminator base on the identity of these tRNAs in vivo was assayed by N-terminal protein sequencing of E. coli dihydrofolate reductase, which is the product of suppression by the mutated amber suppressors, and confirmed by amino acid specific suppression experiments. In addition, suppressor efficiency assays were used to estimate the efficiency of aminoacylation in vivo. Our results indicate that the supE glutamine tRNA context can tolerate multiple mutations (including mutation of the discriminator and first base-pair) and still remain predominantly glutamine-accepting. Discriminator mutants of gluA glutamate tRNA exhibit increased and altered specificity probably due to the reduced ability of other synthetases to compete with glutamyl-tRNA synthetase. In the course of these experiments, a glutamate-specific mutant amber suppressor, gluA-A73, was created. Finally, in the case of supF tyrosine tRNA, the discriminator is an important identity element with partial to complete loss of tyrosine specificity resulting from mutation at this position. It is clear from these experiments that it may not be possible to assign a specific role in tRNA identity to the discriminator. The identity of a tRNA in vivo is determined by competition among aminoacyl-tRNA synthetases, which is in turn modulated by the nucleotide substitution as well as the tRNA context.
Collapse
MESH Headings
- Amino Acids/metabolism
- Amino Acyl-tRNA Synthetases/metabolism
- Binding, Competitive
- Escherichia coli/genetics
- Genes, Suppressor/genetics
- Mutation
- Protein Biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Gln/metabolism
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Glu/metabolism
- RNA, Transfer, Tyr/genetics
- RNA, Transfer, Tyr/metabolism
- Structure-Activity Relationship
- Tetrahydrofolate Dehydrogenase/biosynthesis
Collapse
Affiliation(s)
- J M Sherman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | | | |
Collapse
|
15
|
Englisch-Peters S, Conley J, Plumbridge J, Leptak C, Söll D, Rogers MJ. Mutant enzymes and tRNAs as probes of the glutaminyl-tRNA synthetase: tRNA(Gln) interaction. Biochimie 1991; 73:1501-8. [PMID: 1725262 DOI: 10.1016/0300-9084(91)90184-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper focuses on several aspects of the specificity of mutants of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) and tRNA(Gln). Temperature-sensitive mutants located in glnS, the gene for GlnRS, have been described previously. The mutations responsible for the temperature-sensitive phenotype were analyzed, and pseudorevertants of these mutants isolated and characterized. The nature of these mutations is discussed in terms of their location in the three-dimensional structure of the tRNA(Gln).GlnRS complex. In order to characterize the specificity of the aminoacylation reaction, mutant tRNA(Gln) species were synthesized with either a 2'-deoxy AMP or 3'-deoxy AMP as their 3'-terminal nucleotide. Subsequent assays for aminoacylation and ATP/PPi exchange activity established the esterification of glutamine to the 2'-hydroxyl of the terminal adenosine; there is no glutaminylation of the 3'-OH group. This correlates with the classification of GlnRS as a class I aminoacyl-tRNA synthetase. Mutations in tRNA(Gln) are discussed which affect the recognition of GlnRS and the current concept of glutamine identity in E coli is reviewed.
Collapse
Affiliation(s)
- S Englisch-Peters
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | | | | | | | |
Collapse
|