1
|
Abstract
Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is composed of several compounds such as mucus, inorganic salts, lipids, amines, nucleotides, enzymes, kallikrein inhibitor, natriuretic peptide, proteins with high molecular mass, peptides, free amino acids and neurotoxins. Neurotoxins are considered the most responsible for the envenoming syndrome due to their pharmacological action on ion channels such as voltage-gated sodium (Nav) and potassium (Kv) channels. The major goal of this review is to present important advances in Ts envenoming research, correlating both the crude Ts venom and isolated toxins with alterations observed in all human systems. The most remarkable event lies in the Ts induced massive releasing of neurotransmitters influencing, directly or indirectly, the entire body. Ts venom proved to extremely affect nervous and muscular systems, to modulate the immune system, to induce cardiac disorders, to cause pulmonary edema, to decrease urinary flow and to alter endocrine, exocrine, reproductive, integumentary, skeletal and digestive functions. Therefore, Ts venom possesses toxins affecting all anatomic systems, making it a lethal cocktail. However, its low lethality may be due to the low venom mass injected, to the different venom compositions, the body characteristics and health conditions of the victim and the local of Ts sting. Furthermore, we also described the different treatments employed during envenoming cases. In particular, throughout the review, an effort will be made to provide information from an extensive documented studies concerning Ts venom in vitro, in animals and in humans (a total of 151 references).
Collapse
|
2
|
Nunes KP, Torres FS, Borges MH, Matavel A, Pimenta AM, De Lima ME. New insights on arthropod toxins that potentiate erectile function. Toxicon 2013; 69:152-9. [DOI: 10.1016/j.toxicon.2013.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 02/21/2013] [Accepted: 03/22/2013] [Indexed: 12/19/2022]
|
3
|
Uckert S, Wilken M, Stief C, Trottmann M, Kuczyk M, Becker A. Is there a significance of histamine in the control of the human male sexual response? Andrologia 2011; 44 Suppl 1:538-42. [PMID: 21950740 DOI: 10.1111/j.1439-0272.2011.01222.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although histamine has been suggested to be involved in the control of male sexual function, including the induction of penile erection, its role in the human corpus cavernosum penis is still poorly understood. The aim of our study was to evaluate the course of histamine plasma levels through different stages of sexual arousal in the systemic and cavernous blood of healthy male subjects. Thirty four (34) healthy men were exposed to erotic stimuli to elicit penile erection. Blood was aspirated from the corpus cavernosum and a cubital vein during the penile conditions flaccidity, tumescence, rigidity and detumescence. Blood was also collected in the post-ejaculatory period. Plasma levels of histamine (ng ml(-1)) were determined by means of a radioimmunoassay. Histamine slightly decreased in the cavernous blood when the penis became tumescent. During rigidity, histamine decreased further but remained unaltered in the phase of detumescence and after ejaculation. In the systemic circulation, no alterations were observed with the initiation or termination of penile erection, whereas a significant drop was registered following ejaculation. Results are not in favour of the hypothesis of an excitatory role of histamine in the control of penile erection. Nevertheless, the amine might mediate biological events during the post-ejaculatory period.
Collapse
Affiliation(s)
- S Uckert
- Division of Surgery, Department of Urology & Urological Oncology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
4
|
Carneiro RFV, Nascimento NRFD, Costa PPC, Gomes VM, Souza AJF, Oliveira SCB, Santos Diz Filho EB, Zara FJ, Fonteles MC, Oliveira Toyama D, Toyama MH, Santos CF. The extract of the jellyfish Phyllorhiza punctata promotes neurotoxic effects. J Appl Toxicol 2011; 31:720-9. [DOI: 10.1002/jat.1620] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/26/2010] [Accepted: 10/28/2010] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Fernando José Zara
- UNESP; Campus Experimental do Litoral Paulista; São Vicente; São Paulo; Brazil
| | | | | | | | | |
Collapse
|
5
|
Kumar-Roiné S, Matsui M, Chinain M, Laurent D, Pauillac S. Modulation of inducible nitric oxide synthase gene expression in RAW 264.7 murine macrophages by Pacific ciguatoxin. Nitric Oxide 2008; 19:21-8. [DOI: 10.1016/j.niox.2008.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/22/2008] [Accepted: 03/04/2008] [Indexed: 02/05/2023]
|
6
|
Yuan J, DeSouza R, Westney OL, Wang R. Insights of priapism mechanism and rationale treatment for recurrent priapism. Asian J Androl 2008; 10:88-101. [DOI: 10.1111/j.1745-7262.2008.00314.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
7
|
Campos AR, Cunha KMA, Santos FA, Silveira ER, Uchoa DEA, Nascimento NRF, Rao VSN. Relaxant effects of an alkaloid-rich fraction from Aspidosperma ulei root bark on isolated rabbit corpus cavernosum. Int J Impot Res 2007; 20:255-63. [PMID: 18046335 DOI: 10.1038/sj.ijir.3901624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We described earlier that an alkaloid-rich fraction (F(3-5)) from Aspidosperma ulei (Markgr) induces penile erection-like behavioral responses in mice. This study verified a possible relaxant effect of this fraction on isolated rabbit corpus cavernosum (RbCC) strips precontracted by phenylephrine (1 microM) or K+ 60 mM. F(3-5) (1-300 microg ml(-1)) relaxed the RbCC strips in a concentration-dependent and reversible manner. The relaxant effect of F(3-5) (100 microg ml(-1)) on phenylephrine contraction was unaffected in the presence of atropine, N-omega-nitro-L-arginine methyl ester or 1H-[1,2,4]oxadiazole[4,3-a] quinoxalin-1-one and by preincubation with tetrodotoxin, glibenclamide, apamine and charybdotoxin suggesting that mechanisms other than cholinergic, nitrergic, sGC activation or potassium channel opening are probably involved. However, the phasic component of the contraction induced by K+ 60 mM as well as the maximal contraction elicited by increasing external Ca2+ concentrations in depolarized corpora cavernosa was inhibited by F(3-5). We conclude that F(3-5) relaxes the RbCC smooth muscle, at least in part, through a blockade of calcium influx or its function.
Collapse
Affiliation(s)
- A R Campos
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | | | | | | |
Collapse
|
8
|
Sahnoun Z, Chaker-Krichen S, Kassis M, Hakim A, Hammami S, Ghozzi H, Bouayed N, Bellasfar Z, Zeghal KM, Rebai T. INVESTIGATION OF THE MICROCIRCULATION AND THE STATE OF OXIDATIVE STRESS IN THE RAT AFTER SCORPION ENVENOMATION. Clin Exp Pharmacol Physiol 2007; 34:263-8. [PMID: 17324135 DOI: 10.1111/j.1440-1681.2007.04542.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Severe cases of scorpion envenomation (SE) generally show both respiratory and cardiocirculatory dysfunction. However, the pathophysiology of SE remains controversial. In the present study, we tried to explain the pathophysiology of the haemodynamic perturbations and cardiac failure in rats poisoned by the venom of Buthus occitanus tunetanus through a histomorphometric study of myocardial and muscular skeletal microcirculation and analysis of the oxidative stress state in order to evaluate the implication of the inflammatory process in the pathogenesis of SE. 2. Experiments were performed on 96 rats divided into 16 groups (n = 6 in each group). Two groups were used to determine the optimum conditions of venom administration and times when to measure haemodynamic parameters. The B. occitanus tunetanus venom was administered at a dose of 800 microg/kg and tissues were removed 5 and 20 min after envenomation. Six groups were used for histomorphometric study: two control groups, two poisoned groups an two melatonin-pretreated and poisoned groups. The histomorphometric study was performed on isolated hearts and skeletal muscles. The final eight groups of rats (two control groups, two envenomated groups, two control groups pretreated with melatonin and two groups pretreated and envenomated) were used to investigate the state of tissue oxidative stress during SE and to evaluate the anti-oxidant effect of melatonin on rats poisoned with B. occitanus tunetanus venom. This study was based on the determination of tissue malondialdehyde in isolated organs as an indicator of thiobarbituric acid-reactive substances (TBARS). Melatonin was injected at a dose of 5 mg/kg, i.v., 15 min before the administration of serum or venom. Data were compared using analysis of variance and Tukey's test for multiple pair-wise comparisons. 3. Five minutes after venom injection, a significant reduction in the mean relative volume of venules and arterioles in the heart and skeletal muscles of poisoned rats was noted. Twenty minutes after venom injection, these volumes were significantly increased in the heart and skeletal muscles of poisoned rats. Pretreatment of envenomated rats with melatonin resulted in a significant decrease in the mean relative volume of the venules and arterioles in the heart and skeletal muscles 5 and 20 min after venom injection compared with untreated envenomated rats. Investigation of the oxidative stress state showed a highly significant increase in TBARS in poisoned rats compared with control groups 5 and 20 min after venom injection. Melatonin pretreatment of rats poisoned with B. occitanus tunetanus venom resulted in an important and highly significant reduction of TBARS compared with untreated envenomated rats. 4. It appears from the results of the present study that administration of B. occitanus tunetanus venom engendered an excessive myocardial and skeletal muscular vasoconstriction attributed to massive catecholamine release followed by arteriolar and venular vasodilatation. This venous stasis at the muscular microcirculation could be due to myocardiac failure. However, the concomitant presence of arteriolar vasodilatation suggests an inflammatory process in the pathophysiology of SE. This process was suggested by the genesis of a state of oxidative stress in relation to the important lipoperoxidation, which was inhibited by administration of the anti-oxidant melatonin. Thus, melatonin pretreatment seemed to accentuate the first phase of vascular reactivity in envenomed rats and inhibit the second vasodilator phase observed 20 min after administration of the venom.
Collapse
Affiliation(s)
- Z Sahnoun
- Laboratory of Pharmacologie, Faculty of Medicine, Sfax, Tunisia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Toda N, Ayajiki K. Phylogenesis of constitutively formed nitric oxide in non-mammals. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 157:31-80. [PMID: 17236649 DOI: 10.1007/112_0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is widely recognized that nitric oxide (NO) in mammalian tissues is produced from L-arginine via catalysis by NO synthase (NOS) isoforms such as neuronal NOS (nNOS) and endothelial NOS (eNOS) that are constitutively expressed mainly in the central and peripheral nervous system and vascular endothelial cells, respectively. This review concentrates only on these constitutive NOS (cNOS) isoforms while excluding information about iNOS, which is induced mainly in macrophages upon stimulation by cytokines and polysaccharides. The NO signaling pathway plays a crucial role in the functional regulation of mammalian tissues and organs. Evidence has also been accumulated for the role of NO in invertebrates and non-mammalian vertebrates. Expression of nNOS in the brain and peripheral nervous system is widely determined by staining with NADPH (reduced nicotinamide adenine dinucleotide phosphate) diaphorase or NOS immunoreactivity, and functional roles of NO formed by nNOS are evidenced in the early phylogenetic stages (invertebrates and fishes). On the other hand, the endothelium mainly produces vasodilating prostanoids rather than NO or does not liberate endothelium-derived relaxing factor (EDRF) (fishes), and the ability of endothelial cells to liberate NO is observed later in phylogenetic stages (amphibians). This review article summarizes various types of interesting information obtained from lower organisms (invertebrates, fishes, amphibians, reptiles, and birds) about the properties and distribution of nNOS and eNOS and also the roles of NO produced by the cNOS as an important intercellular signaling molecule.
Collapse
Affiliation(s)
- N Toda
- Toyama Institute for Cardiovascular Pharmacology Research, 7-13, 1-Chome, Azuchi-machi, Chuo-ku, Osaka, Japan.
| | | |
Collapse
|
10
|
Teixeira CE, Baracat JS, Arantes EC, De Nucci G, Antunes E. Effects of β-adrenoceptor antagonists in the neural nitric oxide release induced by electrical field stimulation and sodium channel activators in the rabbit corpus cavernosum. Eur J Pharmacol 2005; 519:146-53. [PMID: 16084509 DOI: 10.1016/j.ejphar.2005.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/01/2005] [Accepted: 07/08/2005] [Indexed: 11/29/2022]
Abstract
Beta-Adrenoceptor antagonists may present receptor-independent mechanisms, such as blockade of voltage-gated sodium channels. This study aimed to investigate the effects of non-selective (propranolol), and selective beta1- (atenolol, metoprolol and betaxolol) and beta2-adrenoceptor (ICI 118,551) antagonists in the nitric oxide (NO)-mediated rabbit corpus cavernosum relaxations induced by either electrical field stimulation (EFS) or activators of voltage-gated sodium channels. The sodium channel blockers tetrodotoxin and saxitoxin abolished the relaxations induced by EFS or sodium channel activators of binding site-2 (aconitine and veratridine), site-3 (Ts3 toxin), site-4 (Ts1 toxin) and site-5 (brevetoxin-3). The beta-adrenoceptor antagonists failed to affect the relaxations induced by EFS, aconitine and veratridine. Relaxations induced by Ts3 and Ts1 toxins, as well as brevetoxin-3, were markedly reduced by prior addition of propranolol, betaxolol and ICI 118,551. During the established relaxation induced by Ts3 toxin, propranolol failed to restore the basal tone. In conclusion, beta-adrenoceptor antagonists may cause an allosteric inhibition at the binding site-3, -4 and -5 of voltage-gated sodium channels, leading to blockade of neural NO release.
Collapse
Affiliation(s)
- Cleber E Teixeira
- Department of Pharmacology, Faculty of Medical Sciences, UNICAMP, P.O. Box 6111, 13081-970, Campinas (SP), Brazil
| | | | | | | | | |
Collapse
|
11
|
Bomfim JHGG, de Godoy MAF, Giglio JR, de Oliveira AM, Arantes EC. Effects Induced by Tityus serrulatus Scorpion Venom and Its Toxins TsTX-I and TsTX-V on the Rat Isolated Retractor Penis Muscle. Pharmacology 2005; 73:190-8. [PMID: 15608440 DOI: 10.1159/000082804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 09/15/2004] [Indexed: 11/19/2022]
Abstract
The aims of the present study were to investigate the pharmacological effects induced by Tityus serrulatus venom (TsV) and its fractions and to compare with the effects induced by pure alpha (TsTX-V) and beta (TsTX-I) toxins isolated from TsV on rat retractor penis muscle (RPM). TsV, fractions X, XI, XIIa, XIIb (0.01-100 microg/ml) and TsTX-V (1 nmol/l-10 micromol/l) induced concentration-dependent contractions. Prazosin and guanethidine or tetrodotoxin (TTX, 5 micromol/l, 30 min) completely abolished these contractions, suggesting complete dependence on sympathetic nerves. TsV or fractions X, XI, XIIa, XIIb (0.01- 100 microg/ml), TsTX-I and TsTX-V (1 nmol/l-10 micromol/l) induced concentration-dependent relaxations in the precontracted RPM. TTX or N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 micromol/l, 30 min) completely abolished the relaxations. Our results suggest that most of TsV-derivated toxins induce contraction and relaxation on RPM by sympathetic and NANC nitrergic nerve stimulation. Noteworthy, TsTX-I only induces relaxation on RPM suggesting that this protein selectively acts on inhibitory nerves.
Collapse
|
12
|
Teixeira CE, de Oliveira JF, Baracat JS, Priviero FBM, Okuyama CE, Rodrigues Netto N, Fregonesi A, Antunes E, De Nucci G. Nitric oxide release from human corpus cavernosum induced by a purified scorpion toxin. Urology 2004; 63:184-9. [PMID: 14751389 DOI: 10.1016/s0090-4295(03)00785-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To investigate the effects of a purified scorpion toxin (Ts3) on human corpus cavernosum (HCC) in vitro. Scorpion venoms cause a massive release of neurotransmitters that contribute to the clinical symptoms resulting from envenomation. METHODS HCC strips were mounted in organ baths containing Krebs solution. After equilibration, the tissues were precontracted with phenylephrine (10 micromol/L). The relaxations caused by Ts3 (30 nmol/L) were compared with those induced by electrical field stimulation (1 to 20 Hz) and nitric oxide (NO, 1 to 100 micromol/L). RESULTS The addition of Ts3 evoked long-lasting relaxations of precontracted HCC strips, and exogenously applied NO and electrical field stimulation caused short-lived responses. The NO synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 micromol/L) reduced by 87% +/- 2% the Ts3-induced relaxations; this inhibition was reversed by pretreating the tissues with L-arginine (1 mmol/L). The relaxant responses mediated by Ts3 were blocked to a similar degree by the soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3,-alquinoxalin-1-one] (10 micromol/L). In contrast, the addition of the phosphodiesterase type 5 inhibitor sildenafil (0.1 micromol/L) significantly enhanced Ts3-evoked relaxations by 78% +/- 4%. The sodium channel blocker tetrodotoxin (1 micromol/L) completely blocked the relaxant responses elicited by both Ts3 and electrical field stimulation, without significantly affecting those elicited by NO. CONCLUSIONS The results indicate that Ts3 relaxes the HCC through the release of NO from nitrergic nerves. The elucidation of this mechanism is useful for the development of new therapeutic strategies to treat priapism after scorpion envenomation or to modulate sodium channel activity in the case of penile dysfunction.
Collapse
Affiliation(s)
- Cleber E Teixeira
- Department of Pharmacology, Faculty of Medical Sciences, UNICAMP, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Teixeira CE, Priviero FBM, Okuyama CE, De Nucci G, Antunes E. Pharmacological characterization of the presynaptic activity of Tityus serrulatus venom in the rat anococcygeus muscle. Toxicon 2003; 42:451-60. [PMID: 14529726 DOI: 10.1016/s0041-0101(03)00172-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Scorpion venoms are known to cause peripheral nerve stimulation with enhanced autonomic responses. This study, therefore, examined the effects of Tityus serrulatus venom (TSV) on adrenergic, cholinergic and nitrergic nerve fibers using the rat anococcygeus muscle. The contractile effects of TSV (1 microg/ml) and electrical field stimulation were markedly reduced by phentolamine (5 microM), prazosin (0.1 microM), guanethidine (30 microM) and tetrodotoxin (TTX, 1 microM), whereas imipramine (3 microM) enhanced these responses. The responses to tyramine (10 microM) were partially reduced by guanethidine and completely blocked by phentolamine, prazosin and imipramine. Atropine (1 microM) fully prevented carbachol (CCh, 30 microM)-induced contractions without affecting those mediated by TSV. Neostigmine significantly potentiated TSV-and ACh-evoked contractions, whereas hexamethonium had no effect. The relaxant responses induced by EFS and TSV (3 microg/ml) were completely blocked by L-NAME (100 microM), ODQ (1 microM) or TTX (1 microM). Addition of L-arginine (1 mM) reversed the effect of L-NAME. Thus, the motor and inhibitory responses of TSV in the rat anococcygeus muscle are mediated by prejunctional mechanisms dependent on Na(+) channel activation, causing the stimulation of NA and NO release from adrenergic and nitrergic nerve fibers, respectively.
Collapse
Affiliation(s)
- Cleber E Teixeira
- Department of Pharmacology, Faculty of Medical Sciences, UNICAMP, P.O. Box 6111, (SP) 13094-971, Campinas, Brazil.
| | | | | | | | | |
Collapse
|
14
|
Triguero D, González M, García-Pascual A, Costa G. Atypical relaxation by scorpion venom in the lamb urethral smooth muscle involves both NO-dependent and -independent responses. Naunyn Schmiedebergs Arch Pharmacol 2003; 368:151-9. [PMID: 14513201 DOI: 10.1007/s00210-003-0790-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 07/14/2003] [Indexed: 11/28/2022]
Abstract
The sustained depolarisation induced by alpha-toxins from scorpion venom (20 microg/ml(-1)) was used to test the hypothesis that an endogenous, photo-sensitive, nitrocompound could act as a stable nitrergic transmitter in the sheep (lamb) urethra. Scorpion venom-treatment effectively abolished neurogenic responses to electrical field stimulation, but it did not modify the spontaneous urethral photorelaxation. On the other hand, scorpion venom induced an atypical relaxation in noradrenaline-contracted preparations, which could be reverted, but not prevented, by tetrodotoxin (TTX, 1 microM). However, after TTX-pretreatment, relaxations elicited by scorpion venom were significantly delayed and slowed down, and similar responses were obtained in the presence of ouabain (10 microM), low sodium medium, or after the inhibition of the NO-cGMP pathway. Although the involvement of K(+) and Cl(-) channels can be ruled out since both charybdotoxin (300 nM) and chlorotoxin (50 nM) did not elicit any urethral relaxation nor modified the scorpion venom-induced one. However, a slow Ca(2+) channel seems to be involved. GVIA omega-conotoxin (1 microM), but not MVIIC omega-conotoxin (1 microM), significantly inhibited both EFS- and scorpion venom-induced relaxations and almost abolished the partial relaxation that was resistant to NO synthase inhibition. On the other hand, the presence of L-cis-diltiazem (0.3 mM), a selective inhibitor of cyclic nucleotide gated channels (CNGCs), also delayed and slowed down relaxation induced by scorpion venom, as well as abolish its reversal by TTX. L-cis-diltiazem pre-treatment induced a progressive decay in urethral relaxation brought about by electrical field stimulation only when repetitive, long duration stimulation protocols were used. Taken together, our results do not support the hypothesis of the endogenous, photo-sensitive, urethral nitrocompound as reflecting a stable nitrergic transmitter instead of NO. However, they suggest the involvement of both a NO-cGMP-dependent and TTX-sensitive component and a NO-independent response, mediated by GVIA omega-conotoxin-sensitive Ca(2+) channels, in the neurogenic relaxation of the urethral muscle. In addition, the likely involvement of CNGCs as an additional component of the cGMP signalling mechanism is suggested.
Collapse
Affiliation(s)
- Domingo Triguero
- Departmento de Fisiología, Facultad de Veterinaria, Universidad Complutense, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | | | | | | |
Collapse
|
15
|
Fernandes de Oliveira J, Teixeira CE, Arantes EC, de Nucci G, Antunes E. Relaxation of rabbit corpus cavernosum by selective activators of voltage-gated sodium channels: role of nitric oxide-cyclic guanosine monophosphate pathway. Urology 2003; 62:581-8. [PMID: 12946781 DOI: 10.1016/s0090-4295(03)00462-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To investigate the capacity of voltage-gated Na(+) channel activators such as batrachotoxin, aconitine, veratridine, Ts1 (formerly Tityus gamma-toxin), and brevetoxin-3 to induce relaxation of rabbit isolated corpus cavernosum (RbCC) and the pharmacologic mechanisms underlying this phenomenon. The voltage-gated Na(+) channels of the corpus cavernosum are essential for erectile function. A number of biologic toxins exert their effects by modifying the properties of these channels. METHODS Male New Zealand white rabbits were anesthetized with pentobarbital sodium. Strips of RbCC were transferred to 10-mL organ baths containing oxygenated and warmed Krebs solution. The RbCC strips were connected to force-displacement transducers, and changes in isometric force were recorded using a PowerLab 400 data acquisition system. Corporeal smooth muscle was precontracted submaximally with phenylephrine (10 micromol/L). RESULTS The binding site-2 (batrachotoxin, aconitine, and veratridine) and binding site-5 (brevetoxin-3) voltage-gated Na(+) channel activators caused slow-onset RbCC relaxations, and the binding site-4 activator Ts1 produced transitory relaxations followed by a return to baseline. The Na(+)channel blockers tetrodotoxin and saxitoxin (0.1 micromol/L each) abolished the relaxations induced by these agonists. Similarly, the nitric oxide synthase inhibitor N(omega)-nitro-l-arginine methyl ester (100 micromol/L) markedly reduced the relaxations and l-arginine (1 mmol/L) restored the relaxations. The soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxidiazolo[4,3-alpha] quinoxalin-1-one (10 micromol/L) reduced the relaxations, and the phosphodiesterase type 5 inhibitor sildenafil (100 nmol/L) significantly potentiated the relaxations by all activators. CONCLUSIONS Our results indicate that the relaxations evoked by selective activators of voltage-gated Na(+) channels are mediated by the release of nitric oxide from nitrergic nerves and the activation of the nitric oxide-cyclic guanosine monophosphate pathway in the smooth muscle cells of erectile tissue.
Collapse
|
16
|
Teixeira CE, Ifa DR, Corso G, Santagada V, Caliendo G, Antunes E, De Nucci G. Sequence and structure-activity relationship of a scorpion venom toxin with nitrergic activity in rabbit corpus cavernosum. FASEB J 2003; 17:485-7. [PMID: 12551849 DOI: 10.1096/fj.02-0635fje] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An alpha-toxin responsible for nitric oxide (NO) release in rabbit corpus cavernosum (RbCC) was isolated from Tityus serrulatus venom (TSV). The isolated peptide (molecular mass of 7427.66+/-0.15 Da) was identified as Ts3 after determination of Cys residues, N-terminal amino acid analysis, and proteolytic peptide mapping. Ts3 (30 nM) markedly relaxed the RbCC; this response was blocked by the NO synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (100 microM) and the Na+ channel blocker tetrodotoxin (100 nM). Synthetic peptides based on either Ts3 (P1-16, P17-32, P33-48, P49-64, P9-24, P25-40, P41-56, YGLPDKVPTKT) or Bukatoxin (isolated from Buthus martensi Karsch scorpion venom) sequence (Buka11, Buka11-B, PDKVP, PDSEP) were assayed. These peptides slightly relaxed the RbCC, and such an effect was independent of Na+ channel activation or NO release. Our results indicate that Ts3 exerts nitrergic actions and contributes to the relaxing activity of TSV in RbCC, thus providing a valuable tool to investigate the mechanisms underlying nerve activation in erectile tissues, because NO released from nitrergic fibers plays a key role in the erectile process. Our findings revealed the key importance of the Ts3 structure three-dimensional conformation maintenance for biological activity, because linear peptide sequences neither presented substantial relaxations nor was this effect related to nitrergic activity.
Collapse
Affiliation(s)
- Cleber E Teixeira
- Department of Pharmacology, Faculty of Medical Sciences, UNICAMP, Campinas (SP), 13081-970, Brazil.
| | | | | | | | | | | | | |
Collapse
|