1
|
Castón JR, Luque D. Conventional Electron Microscopy, Cryogenic Electron Microscopy, and Cryogenic Electron Tomography of Viruses. Subcell Biochem 2024; 105:81-134. [PMID: 39738945 DOI: 10.1007/978-3-031-65187-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Electron microscopy (EM) techniques have been crucial for understanding the structure of biological specimens such as cells, tissues and macromolecular assemblies. Viruses and related viral assemblies are ideal targets for structural studies that help to define essential biological functions. Whereas conventional EM methods use chemical fixation, dehydration, and staining of the specimens, cryogenic electron microscopy (cryo-EM) preserves the native hydrated state. Combined with image processing and three-dimensional reconstruction techniques, cryo-EM provides three-dimensional maps of these macromolecular complexes from projection images, at atomic or near-atomic resolutions. Cryo-EM is also a major technique in structural biology for dynamic studies of functional complexes, which are often unstable, flexible, scarce, or transient in their native environments. State-of-the-art techniques in structural virology now extend beyond purified symmetric capsids and focus on the asymmetric elements such as the packaged genome and minor structural proteins that were previously missed. As a tool, cryo-EM also complements high-resolution techniques such as X-ray diffraction and NMR spectroscopy; these synergistic hybrid approaches provide important new information. Three-dimensional cryogenic electron tomography (cryo-ET), a variation of cryo-EM, goes further, and allows the study of pleomorphic and complex viruses not only in their physiological state but also in their natural environment in the cell, thereby bridging structural studies at the molecular and cellular levels. Cryo-EM and cryo-ET have been applied successfully in basic research, shedding light on fundamental aspects of virus biology and providing insights into threatening viruses, including SARS-CoV-2, responsible for the COVID-19 pandemic.
Collapse
Affiliation(s)
- José R Castón
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Madrid, Spain.
| | - Daniel Luque
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Wilms L, Weßollek K, Peeters TB, Yazdi AS. Infektionen mit Herpes‐simplex‐ und Varizella‐zoster‐Virus. J Dtsch Dermatol Ges 2022; 20:1327-1353. [DOI: 10.1111/ddg.14917_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 08/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Larissa Wilms
- Klinik für Dermatologie und Venerologie Helios Klinikum Krefeld
| | | | | | | |
Collapse
|
3
|
Wilms L, Weßollek K, Peeters TB, Yazdi AS. Infections with Herpes simplex and Varicella zoster virus. J Dtsch Dermatol Ges 2022; 20:1327-1351. [DOI: 10.1111/ddg.14917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 08/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Larissa Wilms
- Department of Dermatology and Venereology Helios Klinikum Krefeld Germany
| | - Katharina Weßollek
- Department of Dermatology and Allergology University Hospital RWTH Aachen Germany
| | | | - Amir Sadegh Yazdi
- Department of Dermatology and Allergology University Hospital RWTH Aachen Germany
| |
Collapse
|
4
|
Wild P, Leisinger S, de Oliveira AP, Doehner J, Schraner EM, Fraevel C, Ackermann M, Kaech A. Nuclear envelope impairment is facilitated by the herpes simplex virus 1 Us3 kinase. F1000Res 2019; 8:198. [PMID: 31249678 PMCID: PMC6584977 DOI: 10.12688/f1000research.17802.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Capsids of herpes simplex virus 1 (HSV-1) are assembled in the nucleus, translocated either to the perinuclear space by budding at the inner nuclear membrane acquiring tegument and envelope, or released to the cytosol in a "naked" state via impaired nuclear pores that finally results in impairment of the nuclear envelope. The Us3 gene encodes a protein acting as a kinase, which is responsible for phosphorylation of numerous viral and cellular substrates. The Us3 kinase plays a crucial role in nucleus to cytoplasm capsid translocation. We thus investigate the nuclear surface in order to evaluate the significance of Us3 in maintenance of the nuclear envelope during HSV-1 infection. Methods: To address alterations of the nuclear envelope and capsid nucleus to cytoplasm translocation related to the function of the Us3 kinase we investigated cells infected with wild type HSV-1 or the Us3 deletion mutant R7041(∆Us3) by transmission electron microscopy, focused ion-beam electron scanning microscopy, cryo-field emission scanning electron microscopy, confocal super resolution light microscopy, and polyacrylamide gel electrophoresis. Results: Confocal super resolution microscopy and cryo-field emission scanning electron microscopy revealed decrement in pore numbers in infected cells. Number and degree of pore impairment was significantly reduced after infection with R7041(∆Us3) compared to infection with wild type HSV-1. The nuclear surface was significantly enlarged in cells infected with any of the viruses. Morphometric analysis revealed that additional nuclear membranes were produced forming multiple folds and caveolae, in which virions accumulated as documented by three-dimensional reconstruction after ion-beam scanning electron microscopy. Finally, significantly more R7041(∆Us3) capsids were retained in the nucleus than wild-type capsids whereas the number of R7041(∆Us3) capsids in the cytosol was significantly lower. Conclusions: The data indicate that Us3 kinase is involved in facilitation of nuclear pore impairment and, concomitantly, in capsid release through impaired nuclear envelope.
Collapse
Affiliation(s)
- Peter Wild
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
| | - Sabine Leisinger
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
| | | | - Jana Doehner
- Center for Microcopy and Image Analysis, Universit of Zürich, Zürich, CH-8057, Switzerland
| | - Elisabeth M. Schraner
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Cornel Fraevel
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Mathias Ackermann
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Andres Kaech
- Center for Microcopy and Image Analysis, Universit of Zürich, Zürich, CH-8057, Switzerland
| |
Collapse
|
5
|
Wild P, Kaech A, Schraner EM, Walser L, Ackermann M. Endoplasmic reticulum-to-Golgi transitions upon herpes virus infection. F1000Res 2017; 6:1804. [PMID: 30135710 PMCID: PMC6080407 DOI: 10.12688/f1000research.12252.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 09/29/2023] Open
Abstract
Background: Herpesvirus capsids are assembled in the nucleus before they are translocated to the perinuclear space by budding, acquiring tegument and envelope, or releasing to the cytoplasm in a "naked" state via impaired nuclear envelope. One model proposes that envelopment, "de-envelopment" and "re-envelopment" are essential steps for production of infectious virus. Glycoproteins gB/gH were reported to be essential for de-envelopment, by fusion of the "primary" envelope with the outer nuclear membrane. Yet, a high proportion of enveloped virions generated from genomes with deleted gB/gH were found in the cytoplasm and extracellular space, suggesting the existence of an alternative exit route. Methods: We investigated the relatedness between the nuclear envelope and membranes of the endoplasmic reticulum and Golgi complex, in cells infected with either herpes simplex virus 1 (HSV-1) or a Us3 deletion mutant thereof, or with bovine herpesvirus 1 (BoHV-1) by transmission and scanning electron microscopy, employing freezing technique protocols that lead to improved spatial and temporal resolution. Results: Scanning electron microscopy showed the Golgi complex as a compact entity in a juxtanuclear position covered by a membrane on the cis face. Transmission electron microscopy revealed that Golgi membranes merge with membranes of the endoplasmic reticulum forming an entity with the perinuclear space. All compartments contained enveloped virions. After treatment with brefeldin A, HSV-1 virions aggregated in the perinuclear space and endoplasmic reticulum, while infectious progeny virus was still produced. Conclusions: The data strongly suggest that virions are intraluminally transported from the perinuclear space via Golgi complex-endoplasmic reticulum transitions into Golgi cisternae for packaging into transport vacuoles. Furthermore, virions derived by budding at nuclear membranes are infective as has been shown for HSV-1 Us3 deletion mutants, which almost entirely accumulate in the perinuclear space. Therefore, de-envelopment followed by re-envelopment is not essential for production of infective progeny virus.
Collapse
Affiliation(s)
- Peter Wild
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, Zürich, Switzerland
| | - Elisabeth M. Schraner
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Ladina Walser
- Institute of Veterinary Anatomy, Zürich, Switzerland
| | | |
Collapse
|
6
|
Wild P, Kaech A, Schraner EM, Walser L, Ackermann M. Endoplasmic reticulum-to-Golgi transitions upon herpes virus infection. F1000Res 2017; 6:1804. [PMID: 30135710 PMCID: PMC6080407 DOI: 10.12688/f1000research.12252.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Herpesvirus capsids are assembled in the nucleus, translocated to the perinuclear space by budding, acquiring tegument and envelope, or released to the cytoplasm via impaired nuclear envelope. One model proposes that envelopment, "de-envelopment" and "re-envelopment" is essential for production of infectious virus. Glycoproteins gB/gH were reported to be essential for de-envelopment, by fusion of the "primary" envelope with the outer nuclear membrane. Yet, a high proportion of enveloped virions generated from genomes with deleted gB/gH were found in the cytoplasm and extracellular space, suggesting the existence of alternative exit routes. Methods: We investigated the relatedness between the nuclear envelope and membranes of the endoplasmic reticulum and Golgi complex, in cells infected with either herpes simplex virus 1 (HSV-1) or a Us3 deletion mutant thereof, or with bovine herpesvirus 1 (BoHV-1) by transmission and scanning electron microscopy, employing freezing technique protocols. Results: The Golgi complex is a compact entity in a juxtanuclear position covered by a membrane on the cis face. Golgi membranes merge with membranes of the endoplasmic reticulum forming an entity with the perinuclear space. All compartments contained enveloped virions. After treatment with brefeldin A, HSV-1 virions aggregated in the perinuclear space and endoplasmic reticulum, while infectious progeny virus was still produced. Conclusions: The data suggest that virions derived by budding at nuclear membranes are intraluminally transported from the perinuclear space via Golgi -endoplasmic reticulum transitions into Golgi cisternae for packaging. Virions derived by budding at nuclear membranes are infective like Us3 deletion mutants, which accumulate in the perinuclear space. Therefore, i) de-envelopment followed by re-envelopment is not essential for production of infective progeny virus, ii) the process taking place at the outer nuclear membrane is budding not fusion, and iii) naked capsids gain access to the cytoplasmic matrix via impaired nuclear envelope as reported earlier.
Collapse
Affiliation(s)
- Peter Wild
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, Zürich, Switzerland
| | - Elisabeth M. Schraner
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Ladina Walser
- Institute of Veterinary Anatomy, Zürich, Switzerland
| | | |
Collapse
|
7
|
Kautz E, de Carvalho Papa P, Reichler IM, Gram A, Boos A, Kowalewski MP. In vitro decidualisation of canine uterine stromal cells. Reprod Biol Endocrinol 2015; 13:85. [PMID: 26242174 PMCID: PMC4526293 DOI: 10.1186/s12958-015-0066-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/16/2015] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The uterine response to the presence of embryos is poorly understood in the domestic dog (Canis familiaris). The intimate embryo-maternal cross-talk, which begins following the hatching of blastocysts and embryo attachment leads to strong structural and functional remodelling of the uterus. A part of this process is decidualisation, comprising morphological and biochemical changes that result in formation of maternal stroma-derived decidual cells. These are an integral part of the canine placenta materna, which together with the maternal vascular endothelium are the only cells of the canine endotheliochorial placenta able to resist trophoblast invasion. These cells are also the only ones within the canine placenta expressing the progesterone receptor (PGR). Understanding the decidualisation process thus appears essential for understanding canine reproductive physiology. METHODS Here, we investigated the capability of canine uterine stromal cells to decidualise in vitro, thereby serving as a canine model of decidualisation. A dbcAMP-mediated approach was chosen during a time course of 24 - 72 h. Tissue material from six (n = 6) healthy, dioestric bitches was used (approximately 2 weeks after ovulation). Cells were characterized by differential staining, nearly 100 % of which were vimentin-positive. Scanning and transmission electron microscope analyses were applied, and morphological changes were recorded with a live cell imaging microscope. Expression of several decidualisation markers was investigated. RESULTS The in vitro cultured stromal cells acquired characteristics of decidual cells when incubated with 0.5 mM dbcAMP for 72 h. Their shape changed from elongated to rounded, while ultrastructural analysis revealed higher numbers of mitochondria and secretory follicles, and an increased proliferation rate. Elevated expression levels of IGF1, IGF2, PRLR and ERα were observed in decidualised cells; PRL and ERβ remained mostly below the detection limit, while PGR remained unaffected. The expression of smooth muscle α actin (αSMA), another decidualisation marker, was strongly induced. Among prostaglandin system members, levels of COX2 (PTGS2) and of PGE2-synthase (PTGES) were upregulated. Expression of the PGE2 receptors, PTGER2 and PTGER4, was clearly detectable. CONCLUSION An in vitro decidualisation model with canine uterine stromal cells was successfully established, allowing future, more detailed studies to be undertaken on the underlying molecular and endocrine mechanisms of canine decidualisation.
Collapse
Affiliation(s)
- Ewa Kautz
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| | - Paula de Carvalho Papa
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, Sector of Anatomy, University of Sao Paulo, Sao Paulo, Brazil.
| | - Iris M Reichler
- Section of Small Animal Reproduction, Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| |
Collapse
|
8
|
Conventional electron microscopy, cryo-electron microscopy and cryo-electron tomography of viruses. Subcell Biochem 2013; 68:79-115. [PMID: 23737049 DOI: 10.1007/978-94-007-6552-8_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electron microscopy (EM) techniques have been crucial for understanding the structure of biological specimens such as cells, tissues and macromolecular assemblies. Viruses and related viral assemblies are ideal targets for structural studies that help to define essential biological functions. Whereas conventional EM methods use chemical fixation, dehydration, and staining of the specimens, cryo-electron microscopy (cryo-EM) preserves the native hydrated state. Combined with image processing and three-dimensional reconstruction techniques, cryo-EM provides 3D maps of these macromolecular complexes from projection images, at subnanometer to near-atomic resolutions. Cryo-EM is also a major technique in structural biology for dynamic studies of functional complexes, which are often unstable, flexible, scarce or transient in their native environments. As a tool, cryo-EM complements high-resolution techniques such as X-ray diffraction and NMR spectroscopy; these synergistic hybrid approaches provide important new information. Three-dimensional cryo-electron tomography goes further, and allows the study of viruses not only in their physiological state, but also in their natural environment in the cell, thereby bridging structural studies at the molecular and cellular levels.
Collapse
|
9
|
Wild P, de Oliveira AP, Sonda S, Schraner EM, Ackermann M, Tobler K. The herpes simplex virus 1 U(S)3 regulates phospholipid synthesis. Virology 2012; 432:353-60. [PMID: 22789738 DOI: 10.1016/j.virol.2012.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/07/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Herpes simplex virus type 1 capsids bud at nuclear and Golgi membranes for envelopment by phospholipid bilayers. In the absence of U(S)3, nuclear membranes form multiple folds harboring virions that suggests disturbance in membrane turnover. Therefore, we investigated phospholipid metabolism in cells infected with the U(S)3 deletion mutant R7041(ΔU(S)3), and quantified membranes involved in viral envelopment. We report that (i) [(3)H]-choline incorporation into nuclear membranes and cytoplasmic membranes was enhanced peaking at 12 or 20 h post inoculation with wild type HSV-1 and R7041(ΔU(S)3), respectively, (ii) the surface area of nuclear membranes increased until 24 h of R7041(ΔU(S)3) infection forming folds that equaled ~45% of the nuclear surface, (iii) the surface area of viral envelopes between nuclear membranes equaled ~2400 R7041(ΔU(S)3) virions per cell, and (iv) during R7041(ΔU(S)3) infection, the Golgi complex expanded dramatically. The data indicate that U(S)3 plays a significant role in regulation of membrane biosynthesis.
Collapse
Affiliation(s)
- Peter Wild
- Institute of Veterinary Anatomy, University of Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
10
|
Running WE, Ni P, Kao CC, Reilly JP. Chemical reactivity of brome mosaic virus capsid protein. J Mol Biol 2012; 423:79-95. [PMID: 22750573 DOI: 10.1016/j.jmb.2012.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/01/2012] [Accepted: 06/20/2012] [Indexed: 12/12/2022]
Abstract
Viral particles are biological machines that have evolved to package, protect, and deliver the viral genome into the host via regulated conformational changes of virions. We have developed a procedure to modify lysine residues with S-methylthioacetimidate across the pH range from 5.5 to 8.5. Lysine residues that are not completely modified are involved in tertiary or quaternary structural interactions, and their extent of modification can be quantified as a function of pH. This procedure was applied to the pH-dependent structural transitions of brome mosaic virus (BMV). As the reaction pH increases from 5.5 to 8.5, the average number of modified lysine residues in the BMV capsid protein increases from 6 to 12, correlating well with the known pH-dependent swelling behavior of BMV virions. The extent of reaction of each of the capsid protein's lysine residues has been quantified at eight pH values using coupled liquid chromatography-tandem mass spectrometry. Each lysine can be assigned to one of three structural classes identified by inspection of the BMV virion crystal structure. Several lysine residues display reactivity that indicates their involvement in dynamic interactions that are not obvious in the crystal structure. The influence of several capsid protein mutants on the pH-dependent structural transition of BMV has also been investigated. Mutant H75Q exhibits an altered swelling transition accompanying solution pH increases. The H75Q capsids show increased reactivity at lysine residues 64 and 130, residues distal from the dimer interface occupied by H75, across the entire pH range.
Collapse
Affiliation(s)
- W E Running
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
11
|
Sutter E, de Oliveira AP, Tobler K, Schraner EM, Sonda S, Kaech A, Lucas MS, Ackermann M, Wild P. Herpes simplex virus 1 induces de novo phospholipid synthesis. Virology 2012; 429:124-35. [PMID: 22560864 DOI: 10.1016/j.virol.2012.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/02/2012] [Accepted: 04/10/2012] [Indexed: 11/25/2022]
Abstract
Herpes simplex virus type 1 capsids bud at nuclear membranes and Golgi membranes acquiring an envelope composed of phospholipids. Hence, we measured incorporation of phospholipid precursors into these membranes, and quantified changes in size of cellular compartments by morphometric analysis. Incorporation of [³H]-choline into both nuclear and cytoplasmic membranes was significantly enhanced upon infection. [³H]-choline was also part of isolated virions even grown in the presence of brefeldin A. Nuclei expanded early in infection. The Golgi complex and vacuoles increased substantially whereas the endoplasmic reticulum enlarged only temporarily. The data suggest that HSV-1 stimulates phospholipid synthesis, and that de novo synthesized phospholipids are inserted into nuclear and cytoplasmic membranes to i) maintain membrane integrity in the course of nuclear and cellular expansion, ii) to supply membrane constituents for envelopment of capsids by budding at nuclear membranes and Golgi membranes, and iii) to provide membranes for formation of transport vacuoles.
Collapse
Affiliation(s)
- Esther Sutter
- Electron Microscopy, Institute of Veterinary Anatomy, University of Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Cronobacter spp. are opportunistic food-borne pathogens that can cause severe and sometimes lethal infections in neonates. In some outbreaks, the sources of infection were traced to contaminated powdered infant formula (PIF) or contaminated utensils used for PIF reconstitution. In this study, we investigated biofilm formation in Cronobacter sakazakii strain ES5. To investigate the genetic basis of biofilm formation in Cronobacter on abiotic surfaces, we screened a library of random transposon mutants of strain ES5 for reduced biofilm formation using a polystyrene microtiter assay. Genetic characterization of the mutants led to identification of genes that are associated with cellulose biosynthesis and flagellar structure and biosynthesis and genes involved in basic cellular processes and virulence, as well as several genes whose functions are currently unknown. In two of the mutants, hypothetical proteins ESA_00281 and ESA_00282 had a strong impact on flow cell biofilm architecture, and their contribution to biofilm formation was confirmed by genetic complementation. In addition, adhesion of selected biofilm formation mutants to Caco-2 intestinal epithelial cells was investigated. Our findings suggest that flagella and hypothetical proteins ESA_00281 and ESA_00282, but not cellulose, contribute to adhesion of Cronobacter to this biotic surface.
Collapse
|
13
|
|
14
|
Zechmann B, Zellnig G. Rapid diagnosis of plant virus diseases by transmission electron microscopy. J Virol Methods 2009; 162:163-9. [PMID: 19665483 DOI: 10.1016/j.jviromet.2009.07.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
A clear and rapid diagnosis of plant virus diseases is of great importance for agriculture and scientific experiments in plant phytopathology. Even though negative staining and transmission electron microscopy (TEM) are often used for detection and identification of viral particles and provide rapid and reliable results, it is necessary to examine ultrastructural changes induced by viruses for clear identification of the disease. With conventional sample preparation for TEM it can take several days to obtain ultrastructural results and it is therefore not suitable for rapid diagnosis of virus diseases of plants. The use of microwave irradiation can reduce the time for sample preparation for TEM investigations. Two model virus-plant systems [Nicotiana tabacum plants infected with Tobacco mosaic virus (TMV), Cucurbita pepo plants infected with Zucchini yellow mosaic virus (ZYMV)] demonstrate that it is possible to diagnose ultrastructural alterations induced by viruses in less than half a day by using microwave irradiation for preparation of samples. Negative staining of the sap of plants infected with TMV and ZYMV and the examination of ultrastructure and size were also carried out during sample preparation thus permitting diagnosis of the viral agent by TEM in a few hours. These methods will contribute towards a rapid and clear identification of virus diseases of plants and will be useful for diagnostic purposes in agriculture and in plant phytopathology.
Collapse
Affiliation(s)
- Bernd Zechmann
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, 8010 Graz, Austria.
| | | |
Collapse
|