1
|
Baker TM, Waise S, Tarabichi M, Van Loo P. Aneuploidy and complex genomic rearrangements in cancer evolution. NATURE CANCER 2024; 5:228-239. [PMID: 38286829 PMCID: PMC7616040 DOI: 10.1038/s43018-023-00711-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Mutational processes that alter large genomic regions occur frequently in developing tumors. They range from simple copy number gains and losses to the shattering and reassembly of entire chromosomes. These catastrophic events, such as chromothripsis, chromoplexy and the formation of extrachromosomal DNA, affect the expression of many genes and therefore have a substantial effect on the fitness of the cells in which they arise. In this review, we cover large genomic alterations, the mechanisms that cause them and their effect on tumor development and evolution.
Collapse
Affiliation(s)
- Toby M Baker
- The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Waise
- The Francis Crick Institute, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, London, UK
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Peter Van Loo
- The Francis Crick Institute, London, UK.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Zhang X, Li L, Gao F, Liu B, Li J, Ren S, Peng S, Qiu W, Pu X, Ye Q. Fluorescent in situ hybridization has limitations in screening NRG1 gene rearrangements. Diagn Pathol 2024; 19:1. [PMID: 38173003 PMCID: PMC10762970 DOI: 10.1186/s13000-023-01424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND NRG1 fusion is a promising therapeutic target for various tumors but its prevalence is extremely low, and there are no standardized testing algorithms for genetic assessment. MOTHODS In this study, we analyzed 3008 tumors using Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) to screen for NRG1 translocation and p-HER3 expression. RESULTS Our results demonstrated no cases with p-HER3 positivity through IHC. Nonetheless, 29 cases (0.96%) were identified positive for NRG1 translocation through FISH, with three different signal types. FISH-positive cases were subsequently subjected to next-generation sequencing (NGS) testing. However, only eight of these cases were confirmed with NRG1 fusion through NGS. Notably, we divided FISH into three types and FISH type C group was consistent with NGS results. All NGS NRG1 fusion tumors were adenocarcinomas, with a higher prevalence in females. Our findings indicate that although FISH has limitations in screening NRG1 gene rearrangements, NRG1 fusions can be reliably detected with signals exhibiting low copy numbers of the 5'-end of the gene and no fusion signals. CONCLUSION Considering the high cost of NGS, FISH remains a useful method for screening NRG1 fusions in various types of tumors. This study provides valuable insights into the molecular mechanisms of NRG1 fusion and identifies potential treatment targets for patients suffering from this disease.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Pathology, Nanjing Jiangning Hospital, Nanjing, 211100, Jiangsu Province, China
| | - Lin Li
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Fuping Gao
- Department of Pathology, Nanjing Gaochun People's Hospital, Nanjing, 210008, Jiangsu Province, China
| | - Binbin Liu
- Department of Pathology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210008, Jiangsu Province, China
| | - Jing Li
- Berry Oncology Corporation, Beijing, 100102, China
| | - Shuang Ren
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Shuangshuang Peng
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Wei Qiu
- Department of Pathology, Nanjing Jiangning Hospital, Nanjing, 211100, Jiangsu Province, China.
| | - Xiaohong Pu
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu Province, China.
| | - Qing Ye
- Department of Pathology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230036, Anhui Province, China.
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui Province, China.
| |
Collapse
|
3
|
Murata MM, Giuliano AE, Tanaka H. Genome-Wide Analysis of Palindrome Formation with Next-Generation Sequencing (GAPF-Seq) and a Bioinformatics Pipeline for Assessing De Novo Palindromes in Cancer Genomes. Methods Mol Biol 2023; 2660:13-22. [PMID: 37191787 DOI: 10.1007/978-1-0716-3163-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA palindromes are a type of chromosomal aberration that appears frequently during tumorigenesis. They are characterized by sequences of nucleotides that are identical to their reverse complements and often arise due to illegitimate repair of DNA double-strand breaks, fusion of telomeres, or stalled replication forks, all of which are common adverse early events in cancer. Here, we describe the protocol for enriching palindromes from genomic DNA sources with low-input DNA amounts and detail a bioinformatics tool for assessing the enrichment and location of de novo palindrome formation from low-coverage whole-genome sequencing data.
Collapse
Affiliation(s)
- Michael M Murata
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA.
| | - Armando E Giuliano
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA.
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA, USA.
- Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA, USA.
| |
Collapse
|
4
|
Ilić M, Zaalberg IC, Raaijmakers JA, Medema RH. Life of double minutes: generation, maintenance, and elimination. Chromosoma 2022; 131:107-125. [PMID: 35487993 PMCID: PMC9470669 DOI: 10.1007/s00412-022-00773-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/20/2022]
Abstract
Advances in genome sequencing have revealed a type of extrachromosomal DNA, historically named double minutes (also referred to as ecDNA), to be common in a wide range of cancer types, but not in healthy tissues. These cancer-associated circular DNA molecules contain one or a few genes that are amplified when double minutes accumulate. Double minutes harbor oncogenes or drug resistance genes that contribute to tumor aggressiveness through copy number amplification in combination with favorable epigenetic properties. Unequal distribution of double minutes over daughter cells contributes to intratumoral heterogeneity, thereby increasing tumor adaptability. In this review, we discuss various models delineating the mechanism of generation of double minutes. Furthermore, we highlight how double minutes are maintained, how they evolve, and discuss possible mechanisms driving their elimination.
Collapse
Affiliation(s)
- Mila Ilić
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Irene C Zaalberg
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg, 100, 3584, CG Utrecht, The Netherlands
| | - Jonne A Raaijmakers
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Meléndez-Flórez MP, Valbuena DS, Cepeda S, Rangel N, Forero-Castro M, Martínez-Agüero M, Rondón-Lagos M. Profile of Chromosomal Alterations, Chromosomal Instability and Clonal Heterogeneity in Colombian Farmers Exposed to Pesticides. Front Genet 2022; 13:820209. [PMID: 35281828 PMCID: PMC8908452 DOI: 10.3389/fgene.2022.820209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Pesticides are a group of environmental pollutants widely used in agriculture to protect crops, and their indiscriminate use has led to a growing public awareness about the health hazards associated with exposure to these substances. In fact, exposure to pesticides has been associated with an increased risk of developing diseases, including cancer. In a study previously published by us, we observed the induction of specific chromosomal alterations and, in general, the deleterious effect of pesticides on the chromosomes of five individuals exposed to pesticides. Considering the importance of our previous findings and their implications in the identification of cytogenetic biomarkers for the monitoring of exposed populations, we decided to conduct a new study with a greater number of individuals exposed to pesticides. Considering the above, the aim of this study was to evaluate the type and frequency of chromosomal alterations, chromosomal variants, the level of chromosomal instability and the clonal heterogeneity in a group of thirty-four farmers occupationally exposed to pesticides in the town of Simijacá, Colombia, and in a control group of thirty-four unexposed individuals, by using Banding Cytogenetics and Molecular Cytogenetics (Fluorescence in situ hybridization). Our results showed that farmers exposed to pesticides had significantly increased frequencies of chromosomal alterations, chromosomal variants, chromosomal instability and clonal heterogeneity when compared with controls. Our results confirm the results previously reported by us, and indicate that occupational exposure to pesticides induces not only chromosomal instability but also clonal heterogeneity in the somatic cells of people exposed to pesticides. This study constitutes, to our knowledge, the first study that reports clonal heterogeneity associated with occupational exposure to pesticides. Chromosomal instability and clonal heterogeneity, in addition to reflecting the instability of the system, could predispose cells to acquire additional instability and, therefore, to an increased risk of developing diseases.
Collapse
Affiliation(s)
| | - Duvan Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Sebastián Cepeda
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Maribel Forero-Castro
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - María Martínez-Agüero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
6
|
Warburton A, Markowitz TE, Katz JP, Pipas JM, McBride AA. Recurrent integration of human papillomavirus genomes at transcriptional regulatory hubs. NPJ Genom Med 2021; 6:101. [PMID: 34848725 PMCID: PMC8632991 DOI: 10.1038/s41525-021-00264-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
Oncogenic human papillomavirus (HPV) genomes are often integrated into host chromosomes in HPV-associated cancers. HPV genomes are integrated either as a single copy or as tandem repeats of viral DNA interspersed with, or without, host DNA. Integration occurs frequently in common fragile sites susceptible to tandem repeat formation and the flanking or interspersed host DNA often contains transcriptional enhancer elements. When co-amplified with the viral genome, these enhancers can form super-enhancer-like elements that drive high viral oncogene expression. Here we compiled highly curated datasets of HPV integration sites in cervical (CESC) and head and neck squamous cell carcinoma (HNSCC) cancers, and assessed the number of breakpoints, viral transcriptional activity, and host genome copy number at each insertion site. Tumors frequently contained multiple distinct HPV integration sites but often only one “driver” site that expressed viral RNA. As common fragile sites and active enhancer elements are cell-type-specific, we mapped these regions in cervical cell lines using FANCD2 and Brd4/H3K27ac ChIP-seq, respectively. Large enhancer clusters, or super-enhancers, were also defined using the Brd4/H3K27ac ChIP-seq dataset. HPV integration breakpoints were enriched at both FANCD2-associated fragile sites and enhancer-rich regions, and frequently showed adjacent focal DNA amplification in CESC samples. We identified recurrent integration “hotspots” that were enriched for super-enhancers, some of which function as regulatory hubs for cell-identity genes. We propose that during persistent infection, extrachromosomal HPV minichromosomes associate with these transcriptional epicenters and accidental integration could promote viral oncogene expression and carcinogenesis.
Collapse
Affiliation(s)
- Alix Warburton
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD, 20892, USA
| | - Tovah E Markowitz
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joshua P Katz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Papenberg BW, Ingles J, Gao S, Feng J, Allen JL, Markwell SM, Interval ET, Montague PA, Wen S, Weed SA. Copy number alterations identify a smoking-associated expression signature predictive of poor outcome in head and neck squamous cell carcinoma. Cancer Genet 2021; 256-257:136-148. [PMID: 34130230 PMCID: PMC8273756 DOI: 10.1016/j.cancergen.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022]
Abstract
Cigarette smoking is a risk factor for the development of head and neck squamous cell carcinoma (HNSCC), partially due to tobacco-induced large-scale chromosomal copy-number alterations (CNAs). Identifying CNAs caused by smoking is essential in determining how gene expression from such regions impact tumor progression and patient outcome. We utilized The Cancer Genome Atlas (TCGA) whole genome sequencing data for HNSCC to directly identify amplified or deleted genes correlating with smoking pack-year based on linear modeling. Internal cross-validation identified 35 CNAs that significantly correlated with patient smoking, independent of human papillomavirus (HPV) status. The most abundant CNAs were chromosome 11q13.3-q14.4 amplification and 9p23.1/9p24.1 deletion. Evaluation of patient amplicons reveals four different patterns of 11q13 gene amplification in HNSCC resulting from breakage-fusion-bridge (BFB) events. . Predictive modeling identified 16 genes from these regions that denote poorer overall and disease-free survival with increased pack-year use, constituting a smoking-associated expression signature (SAES). Patients with altered expression of signature genes have increased risk of death and enhanced cervical lymph node involvement. The identified SAES can be utilized as a novel predictor of increased disease aggressiveness and poor outcome in smoking-associated HNSCC.
Collapse
Affiliation(s)
| | | | - Si Gao
- Department of Biostatistics USA
| | | | - Jessica L Allen
- Department of Biochemistry, Program in Cancer Cell Biology USA
| | | | - Erik T Interval
- Department of Otolaryngology, Head and Neck Surgery, West Virginia University, Morgantown, West Virginia, 26506 USA
| | - Phillip A Montague
- Department of Otolaryngology, Head and Neck Surgery, West Virginia University, Morgantown, West Virginia, 26506 USA
| | | | - Scott A Weed
- Department of Biochemistry, Program in Cancer Cell Biology USA.
| |
Collapse
|
8
|
Baik JY, Han HJ, Lee KH. DNA Double-Strand Breaks Affect Chromosomal Rearrangements during Methotrexate-Mediated Gene Amplification in Chinese Hamster Ovary Cells. Pharmaceutics 2021; 13:pharmaceutics13030376. [PMID: 33809068 PMCID: PMC8000239 DOI: 10.3390/pharmaceutics13030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Methotrexate (MTX)-mediated gene amplification has been widely used in Chinese hamster ovary (CHO) cells for the biomanufacturing of therapeutic proteins. Although many studies have reported chromosomal instability and extensive chromosomal rearrangements in MTX-mediated gene-amplified cells, which may be associated with cell line instability issues, the mechanisms of chromosomal rearrangement formation remain poorly understood. We tested the impact of DNA double-strand breaks (DSBs) on chromosomal rearrangements using bleomycin, a DSB-inducing reagent. Bleomycin-treated CHO-DUK cells, which are one of the host cell lines deficient in dihydrofolate reductase (Dhfr) activity, exhibited a substantial number of cells containing radial formations or non-radial formations with chromosomal rearrangements, suggesting that DSBs may be associated with chromosomal rearrangements. To confirm the causes of DSBs during gene amplification, we tested the effects of MTX treatment and the removal of nucleotide base precursors on DSB formation in Dhfr-deficient (i.e., CHO-DUK) and Dhfr-expressing (i.e., CHO-K1) cells. Immunocytochemistry demonstrated that MTX treatment did not induce DSBs per se, but a nucleotide shortage caused by the MTX-mediated inhibition of Dhfr activity resulted in DSBs. Our data suggest that a nucleotide shortage caused by MTX-mediated Dhfr inhibition in production cell lines is the primary cause of a marked increase in DSBs, resulting in extensive chromosomal rearrangements after gene amplification processes.
Collapse
Affiliation(s)
- Jong Youn Baik
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
- Department of Biological Engineering, Inha University, Incheon 22212, Korea;
- Correspondence: (J.Y.B.); (K.H.L.); Tel.: +82-32-860-7513 (J.Y.B.); +1-302-831-0344 (K.H.L.)
| | - Hye-Jin Han
- Department of Biological Engineering, Inha University, Incheon 22212, Korea;
| | - Kelvin H. Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
- Correspondence: (J.Y.B.); (K.H.L.); Tel.: +82-32-860-7513 (J.Y.B.); +1-302-831-0344 (K.H.L.)
| |
Collapse
|
9
|
Svetec Miklenić M, Svetec IK. Palindromes in DNA-A Risk for Genome Stability and Implications in Cancer. Int J Mol Sci 2021; 22:2840. [PMID: 33799581 PMCID: PMC7999016 DOI: 10.3390/ijms22062840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
A palindrome in DNA consists of two closely spaced or adjacent inverted repeats. Certain palindromes have important biological functions as parts of various cis-acting elements and protein binding sites. However, many palindromes are known as fragile sites in the genome, sites prone to chromosome breakage which can lead to various genetic rearrangements or even cell death. The ability of certain palindromes to initiate genetic recombination lies in their ability to form secondary structures in DNA which can cause replication stalling and double-strand breaks. Given their recombinogenic nature, it is not surprising that palindromes in the human genome are involved in genetic rearrangements in cancer cells as well as other known recurrent translocations and deletions associated with certain syndromes in humans. Here, we bring an overview of current understanding and knowledge on molecular mechanisms of palindrome recombinogenicity and discuss possible implications of DNA palindromes in carcinogenesis. Furthermore, we overview the data on known palindromic sequences in the human genome and efforts to estimate their number and distribution, as well as underlying mechanisms of genetic rearrangements specific palindromic sequences cause.
Collapse
Affiliation(s)
| | - Ivan Krešimir Svetec
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| |
Collapse
|
10
|
Toledo F. Mechanisms Generating Cancer Genome Complexity: Back to the Future. Cancers (Basel) 2020; 12:E3783. [PMID: 33334014 PMCID: PMC7765419 DOI: 10.3390/cancers12123783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Understanding the mechanisms underlying cancer genome evolution has been a major goal for decades. A recent study combining live cell imaging and single-cell genome sequencing suggested that interwoven chromosome breakage-fusion-bridge cycles, micronucleation events and chromothripsis episodes drive cancer genome evolution. Here, I discuss the "interphase breakage model," suggested from prior fluorescent in situ hybridization data that led to a similar conclusion. In this model, the rapid genome evolution observed at early stages of gene amplification was proposed to result from the interweaving of an amplification mechanism (breakage-fusion-bridge cycles) and of a deletion mechanism (micronucleation and stitching of DNA fragments retained in the nucleus).
Collapse
Affiliation(s)
- Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR3244 Dynamics of Genetic Information, 26 rue d'Ulm, CEDEX 05, 75248 Paris, France
| |
Collapse
|
11
|
Wilhelm T, Said M, Naim V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel) 2020; 11:E642. [PMID: 32532049 PMCID: PMC7348713 DOI: 10.3390/genes11060642] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chromosomal instability (CIN) is associated with many human diseases, including neurodevelopmental or neurodegenerative conditions, age-related disorders and cancer, and is a key driver for disease initiation and progression. A major source of structural chromosome instability (s-CIN) leading to structural chromosome aberrations is "replication stress", a condition in which stalled or slowly progressing replication forks interfere with timely and error-free completion of the S phase. On the other hand, mitotic errors that result in chromosome mis-segregation are the cause of numerical chromosome instability (n-CIN) and aneuploidy. In this review, we will discuss recent evidence showing that these two forms of chromosomal instability can be mechanistically interlinked. We first summarize how replication stress causes structural and numerical CIN, focusing on mechanisms such as mitotic rescue of replication stress (MRRS) and centriole disengagement, which prevent or contribute to specific types of structural chromosome aberrations and segregation errors. We describe the main outcomes of segregation errors and how micronucleation and aneuploidy can be the key stimuli promoting inflammation, senescence, or chromothripsis. At the end, we discuss how CIN can reduce cellular fitness and may behave as an anticancer barrier in noncancerous cells or precancerous lesions, whereas it fuels genomic instability in the context of cancer, and how our current knowledge may be exploited for developing cancer therapies.
Collapse
Affiliation(s)
- Therese Wilhelm
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
- UMR144 Cell Biology and Cancer, Institut Curie, 75005 Paris, France
| | - Maha Said
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| | - Valeria Naim
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| |
Collapse
|
12
|
Tanaka H, Watanabe T. Mechanisms Underlying Recurrent Genomic Amplification in Human Cancers. Trends Cancer 2020; 6:462-477. [PMID: 32383436 PMCID: PMC7285850 DOI: 10.1016/j.trecan.2020.02.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022]
Abstract
Focal copy-number increases (genomic amplification) pinpoint oncogenic driver genes and therapeutic targets in cancer genomes. With the advent of genomic technologies, recurrent genomic amplification has been mapped throughout the genome. Recurrent amplification could be solely due to positive selection for the tumor-promoting effects of amplified gene products. Alternatively, recurrence could result from the susceptibility of the loci to amplification. Distinguishing between these possibilities requires a full understanding of the amplification mechanisms. Two mechanisms, the formation of double minute (DM) chromosomes and breakage-fusion-bridge (BFB) cycles, have been repeatedly linked to genomic amplification, and the impact of both mechanisms has been confirmed in cancer genomics data. We review the details of these mechanisms and discuss the mechanisms underlying recurrence.
Collapse
Affiliation(s)
- Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA; Biomedical Sciences, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA.
| | - Takaaki Watanabe
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA; Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
13
|
Cepeda S, Forero-Castro M, Cárdenas-Nieto D, Martínez-Agüero M, Rondón-Lagos M. Chromosomal Instability in Farmers Exposed to Pesticides: High Prevalence of Clonal and Non-Clonal Chromosomal Alterations. Risk Manag Healthc Policy 2020; 13:97-110. [PMID: 32104116 PMCID: PMC7024798 DOI: 10.2147/rmhp.s230953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction An important economic activity in Colombia is agricultural production and farmers are frequently exposed to pesticides. Occupational exposure to pesticides is associated with an increased incidence of various diseases, including cancer, Parkinson’s disease, Alzheimer’s disease, reproductive disorders, and birth defects. However, although high genotoxicity is associated with these chemicals, information about the type and frequency of specific chromosomal alterations (CAs) and the level of chromosomal instability (CIN) induced by exposure to pesticides is scarce or absent. Methods In this study, CAs and CIN were assessed in peripheral blood lymphocytes (PBLs) from five farmers occupationally exposed to pesticides and from five unexposed individuals using GTG-banding and molecular cytogenetic analysis. Results A significant increase in clonal and non-clonal chromosomal alterations was observed in pesticide-exposed individuals compared with unexposed individuals (510±12,2 vs 73±5,7, respectively; p<0.008). Among all CAs, monosomies and deletions were more frequently observed in the exposed group. Also, a high frequency of fragilities was observed in the exposed group. Conclusion Together, these findings suggest that exposure to pesticides could be associated with CIN in PBLs and indicate the need for the establishment of educational programs on safety precautions when handling pesticides, such as wearing gloves, masks and boots, changing clothes and maintaining proper hygiene, among others. Further evaluation in other similar studies that include a greater number of individuals exposed to pesticides is necessary.
Collapse
Affiliation(s)
- Sebastian Cepeda
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Maribel Forero-Castro
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Diana Cárdenas-Nieto
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - María Martínez-Agüero
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 111221, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| |
Collapse
|
14
|
Kaushal S, Freudenreich CH. The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer 2019; 58:270-283. [PMID: 30536896 DOI: 10.1002/gcc.22721] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Alternative non-B form DNA structures, also called secondary structures, can form in certain DNA sequences under conditions that produce single-stranded DNA, such as during replication, transcription, and repair. Direct links between secondary structure formation, replication fork stalling, and genomic instability have been found for many repeated DNA sequences that cause disease when they expand. Common fragile sites (CFSs) are known to be AT-rich and break under replication stress, yet the molecular basis for their fragility is still being investigated. Over the past several years, new evidence has linked both the formation of secondary structures and transcription to fork stalling and fragility of CFSs. How these two events may synergize to cause fragility and the role of nuclease cleavage at secondary structures in rare and CFSs are discussed here. We also highlight evidence for a new hypothesis that secondary structures at CFSs not only initiate fragility but also inhibit healing, resulting in their characteristic appearance.
Collapse
Affiliation(s)
- Simran Kaushal
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, Massachusetts.,Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
15
|
|
16
|
Yi K, Ju YS. Patterns and mechanisms of structural variations in human cancer. Exp Mol Med 2018; 50:1-11. [PMID: 30089796 PMCID: PMC6082854 DOI: 10.1038/s12276-018-0112-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022] Open
Abstract
Next-generation sequencing technology has enabled the comprehensive detection of genomic alterations in human somatic cells, including point mutations, chromosomal rearrangements, and structural variations (SVs). Using sophisticated bioinformatics algorithms, unbiased catalogs of SVs are emerging from thousands of human cancer genomes for the first time. Via careful examination of SV breakpoints at single-nucleotide resolution as well as local DNA copy number changes, diverse patterns of genomic rearrangements are being revealed. These "SV signatures" provide deep insight into the mutational processes that have shaped genome changes in human somatic cells. This review summarizes the characteristics of recently identified complex SVs, including chromothripsis, chromoplexy, microhomology-mediated breakage-induced replication (MMBIR), and others, to provide a holistic snapshot of the current knowledge on genomic rearrangements in somatic cells.
Collapse
Affiliation(s)
- Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
17
|
Moelans CB, van Maldegem CMG, van der Wall E, van Diest PJ. Copy number changes at 8p11-12 predict adverse clinical outcome and chemo- and radiotherapy response in breast cancer. Oncotarget 2018; 9:17078-17092. [PMID: 29682206 PMCID: PMC5908307 DOI: 10.18632/oncotarget.24904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/12/2018] [Indexed: 01/15/2023] Open
Abstract
Purpose The short arm of chromosome 8 (8p) is a frequent target of loss of heterozygosity (LOH) in cancer, and 8p LOH is commonly associated with a more aggressive tumor phenotype. The 8p11-12 region is a recurrent breakpoint area characterized by a sharp decrease in gains/amplifications and increase in allelic loss towards 8pter. However, the clustering of genomic aberrations in this region, even in the absence of proximal amplifications or distal LOH, suggests that the 8p11-12 region could play a pivotal role in oncogenesis. Results Loss in the FGFR1 and ZNF703-containing 8p11 region was seen in 25% of patients, correlated with lower mRNA expression levels and independently predicted poor survival, particularly in systemic treatment-naïve patients and even without adjacent 8p12 loss. Amplification of FGFR1 at 8p11 and loss of DUSP26 and UNC5D, located in the 8p12 breakpoint region, independently predicted worse event free survival. Gains in the 8p12 region encompassing WRN, NRG1, DUSP26 and UNC5D, seen in 20-30% of patients, were associated with higher mRNA expression and independently predicted chemotherapy sensitivity. Losses at 8p12 independently predicted radiotherapy resistance. Material and methods Multiplex ligation-dependent probe amplification was used to investigate copy number aberrations at 8p11-12 in 234 female breast cancers. Alterations were correlated with clinicopathologic characteristics, survival and response to therapy. Results were validated using public METABRIC data. Conclusion Allelic loss and amplification in the 8p11-12 breakpoint region predict poor survival and chemo- and radiotherapy response. Assessment of 8p11-12 gene copy number status seems to augment existing prognostic and predictive tools.
Collapse
Affiliation(s)
- Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Tiwari A, Addis Jones O, Chan KL. 53BP1 can limit sister-chromatid rupture and rearrangements driven by a distinct ultrafine DNA bridging-breakage process. Nat Commun 2018; 9:677. [PMID: 29445165 PMCID: PMC5813243 DOI: 10.1038/s41467-018-03098-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Chromosome missegregation acts as one of the driving forces for chromosome instability and cancer development. Here, we find that in human cancer cells, HeLa and U2OS, depletion of 53BP1 (p53-binding protein 1) exacerbates chromosome non-disjunction resulting from a new type of sister-chromatid intertwinement, which is distinct from FANCD2-associated ultrafine DNA bridges (UFBs) induced by replication stress. Importantly, the sister DNA intertwinements trigger gross chromosomal rearrangements through a distinct process, named sister-chromatid rupture and bridging. In contrast to conventional anaphase bridge-breakage models, we demonstrate that chromatid axes of the intertwined sister-chromatids rupture prior to the breakage of the DNA bridges. Consequently, the ruptured sister arms remain tethered and cause signature chromosome rearrangements, including whole-arm (Robertsonian-like) translocation/deletion and isochromosome formation. Therefore, our study reveals a hitherto unreported chromatid damage phenomenon mediated by sister DNA intertwinements that may help to explain the development of complex karyotypes in tumour cells. Chromosome instability is associated with cancer formation. Here the authors identify in cultured human cancer cells a non-canonical DNA bridge breakage pathway leading to chromosome missegregation and rearrangements triggered by sister DNA intertwinements, which are limited by 53BP1.
Collapse
Affiliation(s)
- Ankana Tiwari
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Owen Addis Jones
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Kok-Lung Chan
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK.
| |
Collapse
|
19
|
Tomazella IM, Abril VV, Duarte JMB. Identifying Mazama gouazoubira (Artiodactyla; Cervidae) chromosomes involved in rearrangements induced by doxorubicin. Genet Mol Biol 2017; 40:460-467. [PMID: 28590504 PMCID: PMC5488465 DOI: 10.1590/1678-4685-gmb-2016-0275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/17/2017] [Indexed: 11/22/2022] Open
Abstract
The process of karyotype evolution in Cervidae from a common ancestor (2n = 70, FN = 70) has been marked by complex chromosomal rearrangements. This ancestral karyotype has been retained by the current species Mazama gouazoubira (Fischer 1814), for which a chromosomal polymorphism (Robertsonian translocations and the presence of B chromosomes) has been described, presumably caused by a chromosome fragility. Thus, this study has identified doxorubicin-induced chromosome aberrations and mapped the regions involved in breaks, which may be related to the chromosome evolution process. G-banding pattern showed that 21 pairs of chromosomes presented chromosomal aberrations, 60% of the total chromosome number of the species M. gouazoubira. Among chromosomes that carry aberrations, the region where they were most frequently concentrated was distal relative to the centromere. These data suggest that certain chromosomal regions may be more susceptible to chromosome fragility and consequently could be involved in karyotype differentiation in species of the family Cervidae.
Collapse
Affiliation(s)
- Iara Maluf Tomazella
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências
Agrárias e Veterinárias, Câmpus Jaboticabal, Departamento de Zootecnia, Núcleo de
Pesquisa e Conservação de Cervídeos (NUPECCE), Jaboticabal, SP, Brazil
| | - Vanessa Veltrini Abril
- Universidade Federal de Mato Grosso (UFMT), Campus Universitário do
Araguaia, Instituto de Ciências Biológicas e da Saúde (ICBS), Pontal do Araguaia, MT,
Brazil
| | - José Maurício Barbanti Duarte
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências
Agrárias e Veterinárias, Câmpus Jaboticabal, Departamento de Zootecnia, Núcleo de
Pesquisa e Conservação de Cervídeos (NUPECCE), Jaboticabal, SP, Brazil
| |
Collapse
|
20
|
Lengthening of high-yield production levels of monoclonal antibody-producing Chinese hamster ovary cells by downregulation of breast cancer 1. J Biosci Bioeng 2017; 123:382-389. [DOI: 10.1016/j.jbiosc.2016.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 11/19/2022]
|
21
|
Azeroglu B, Leach DRF. RecG controls DNA amplification at double-strand breaks and arrested replication forks. FEBS Lett 2017; 591:1101-1113. [PMID: 28155219 PMCID: PMC5412681 DOI: 10.1002/1873-3468.12583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/16/2022]
Abstract
DNA amplification is a powerful mutational mechanism that is a hallmark of cancer and drug resistance. It is therefore important to understand the fundamental pathways that cells employ to avoid over‐replicating sections of their genomes. Recent studies demonstrate that, in the absence of RecG, DNA amplification is observed at sites of DNA double‐strand break repair (DSBR) and of DNA replication arrest that are processed to generate double‐strand ends. RecG also plays a role in stabilising joint molecules formed during DSBR. We propose that RecG prevents a previously unrecognised mechanism of DNA amplification that we call reverse‐restart, which generates DNA double‐strand ends from incorrect loading of the replicative helicase at D‐loops formed by recombination, and at arrested replication forks.
Collapse
Affiliation(s)
- Benura Azeroglu
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, UK
| | - David R F Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, UK
| |
Collapse
|
22
|
Abstract
Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.
Collapse
Affiliation(s)
- Michalis Fragkos
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| | - Valeria Naim
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| |
Collapse
|
23
|
Abstract
Gene amplifications are mostly an attribute of tumor cells and drug resistant cells. Recently, we provided evidence for gene amplifications during differentiation of human and mouse neural progenitor cells. Here, we report gene amplifications in differentiating mouse myoblasts (C2C12 cells) covering a period of 7 days including pre-fusion, fusion and post-fusion stages. After differentiation induction we found an increase in copy numbers of CDK4 gene at day 3, of NUP133 at days 4 and 7, and of MYO18B at day 4. The amplification process was accompanied by gamma-H2AX foci that are indicative of double stand breaks. Amplifications during the differentiating process were also found in primary human myoblasts with the gene CDK4 and NUP133 amplified both in human and mouse myoblasts. Amplifications of NUP133 and CDK4 were also identified in vivo on mouse transversal cryosections at stage E11.5. In the course of myoblast differentiation, we found amplifications in cytoplasm indicative of removal of amplified sequences from the nucleus. The data provide further evidence that amplification is a fundamental mechanism contributing to the differentiation process in mammalians.
Collapse
|
24
|
Villalba-Campos M, Chuaire-Noack L, Sánchez-Corredor MC, Rondón-Lagos M. High chromosomal instability in workers occupationally exposed to solvents and paint removers. Mol Cytogenet 2016; 9:46. [PMID: 27325915 PMCID: PMC4913430 DOI: 10.1186/s13039-016-0256-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/09/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Painters are exposed to an extensive variety of harmful substances like aromatic hydrocarbons used as solvents and paint removers, some of which have shown clastogenic activity. These substances constitute a complex mixture of chemicals which contain well-known genotoxicants, such as Benzene, Toluene and Xylene. Thus, chronic occupational exposure to such substances may be considered to possess genotoxic risk. In Colombia the information available around the genotoxic damage (Chromosomal and DNA damage) in car paint shop workers is limited and the knowledge of this damage could contribute not only to a better understanding of the carcinogenic effect of this kind of substances but also could be used as biomarkers of occupational exposure to genotoxic agents. RESULTS In this study, the genotoxic effect of aromatic hydrocarbons was assessed in peripheral blood lymphocytes of 24 workers occupationally exposed and 24 unexposed donors, by using Cytogenetic analysis and comet assay. A high frequency of Chromosomal alterations was found in the exposed group in comparison with those observed in the unexposed group. Among the total of CAs observed in the exposed group, fragilities were most frequently found (100 %), followed by chromosomal breaks (58 %), structural (41.2 %) and numerical chromosomal alterations (21 %). Numerical chromosomal alterations, fragilities and chromosomal breaks showed significant differences between exposed and unexposed groups. Among the fragilities, fra(9)(q12) was the most frequently observed. DNA damage index was also significantly higher in the exposed group compared to the unexposed group (p < 0.000). CONCLUSIONS Our results revealed that occupational exposure to aromatic hydrocarbons is significantly associated with Chromosomal and DNA damage in car paint shops workers and are also indicative of high chromosomal instability. The high frequency of both Chromosomal Alterations and DNA Damage Index observed in this study indicates an urgent need of intervention not only to prevent the increased risk of developing cancer but also to the application of strict health control and motivation to the use of appropriate protecting devices during work.
Collapse
Affiliation(s)
- Mónica Villalba-Campos
- />Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, DC Colombia
| | - Lilian Chuaire-Noack
- />Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, DC Colombia
| | | | - Milena Rondón-Lagos
- />Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, DC Colombia
- />Department of Medical Sciences, University of Turin, Via Santena 7, 10126 Turin, Italy
| |
Collapse
|
25
|
Integration of HIV in the Human Genome: Which Sites Are Preferential? A Genetic and Statistical Assessment. Int J Genomics 2016; 2016:2168590. [PMID: 27294106 PMCID: PMC4880676 DOI: 10.1155/2016/2168590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/24/2016] [Indexed: 12/17/2022] Open
Abstract
Chromosomal fragile sites (FSs) are loci where gaps and breaks may occur and are preferential integration targets for some viruses, for example, Hepatitis B, Epstein-Barr virus, HPV16, HPV18, and MLV vectors. However, the integration of the human immunodeficiency virus (HIV) in Giemsa bands and in FSs is not yet completely clear. This study aimed to assess the integration preferences of HIV in FSs and in Giemsa bands using an in silico study. HIV integration positions from Jurkat cells were used and two nonparametric tests were applied to compare HIV integration in dark versus light bands and in FS versus non-FS (NFSs). The results show that light bands are preferential targets for integration of HIV-1 in Jurkat cells and also that it integrates with equal intensity in FSs and in NFSs. The data indicates that HIV displays different preferences for FSs compared to other viruses. The aim was to develop and apply an approach to predict the conditions and constraints of HIV insertion in the human genome which seems to adequately complement empirical data.
Collapse
|
26
|
Yun J, Song SH, Kang JY, Park J, Kim HP, Han SW, Kim TY. Reduced cohesin destabilizes high-level gene amplification by disrupting pre-replication complex bindings in human cancers with chromosomal instability. Nucleic Acids Res 2016; 44:558-72. [PMID: 26420833 PMCID: PMC4737181 DOI: 10.1093/nar/gkv933] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 08/09/2015] [Accepted: 09/08/2015] [Indexed: 01/03/2023] Open
Abstract
Gene amplification is a hallmark of cancer with chromosomal instability although the underlying mechanism by which altered copy numbers are maintained is largely unclear. Cohesin, involved in sister chromatid cohesion, DNA repair, cell cycle progression and transcriptional regulation of key developmental genes, is frequently overexpressed in human cancer. Here we show that cohesin-dependent change in DNA replication controls the copy numbers of amplified genes in cancer cells with chromosomal instability. We found that the down-regulation of elevated cohesin leads to copy number-associated gene expression changes without disturbing chromosomal segregation. Highly amplified genes form typical long-range chromatin interactions, which are stabilized by enriched cohesin. The spatial proximities among cohesin binding sites within amplified genes are decreased by RAD21-knockdown, resulting in the rapid decline of amplified gene expression. After several passages, cohesin depletion inhibits DNA replication initiation by reducing the recruitment of pre-replication complexes such as minichromosome maintenance subunits 7 (MCM7), DNA polymerase α, and CDC45 at replication origins near the amplified regions, and as a result, decreases the DNA copy numbers of highly amplified genes. Collectively, our data demonstrate that cohesin-mediated chromatin organization and DNA replication are important for stabilizing gene amplification in cancer cells with chromosomal instability.
Collapse
Affiliation(s)
- Jiyeon Yun
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 110-799, Republic of Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea
| | - Jee-Youn Kang
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 110-799, Republic of Korea
| | - Jinah Park
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea
| | - Hwang-Phill Kim
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 110-799, Republic of Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Internal Medicine, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Tae-You Kim
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 110-799, Republic of Korea Department of Internal Medicine, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| |
Collapse
|
27
|
Matsuyama R, Tsutsui T, Lee KH, Onitsuka M, Omasa T. Improved gene amplification by cell-cycle engineering combined with the Cre-loxP system in Chinese hamster ovary cells. J Biosci Bioeng 2015; 120:701-8. [DOI: 10.1016/j.jbiosc.2015.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/07/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
|
28
|
Pavlovic M, Arnal-Estapé A, Rojo F, Bellmunt A, Tarragona M, Guiu M, Planet E, Garcia-Albéniz X, Morales M, Urosevic J, Gawrzak S, Rovira A, Prat A, Nonell L, Lluch A, Jean-Mairet J, Coleman R, Albanell J, Gomis RR. Enhanced MAF Oncogene Expression and Breast Cancer Bone Metastasis. J Natl Cancer Inst 2015; 107:djv256. [PMID: 26376684 PMCID: PMC4681582 DOI: 10.1093/jnci/djv256] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 08/18/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There are currently no biomarkers for early breast cancer patient populations at risk of bone metastasis. Identification of mediators of bone metastasis could be of clinical interest. METHODS A de novo unbiased screening approach based on selection of highly bone metastatic breast cancer cells in vivo was used to determine copy number aberrations (CNAs) associated with bone metastasis. The CNAs associated with bone metastasis were examined in independent primary breast cancer datasets with annotated clinical follow-up. The MAF gene encoded within the CNA associated with bone metastasis was subjected to gain and loss of function validation in breast cancer cells (MCF7, T47D, ZR-75, and 4T1), its downstream mechanism validated, and tested in clinical samples. A multivariable Cox cause-specific hazard model with competing events (death) was used to test the association between 16q23 or MAF and bone metastasis. All statistical tests were two-sided. RESULTS 16q23 gain CNA encoding the transcription factor MAF mediates breast cancer bone metastasis through the control of PTHrP. 16q23 gain (hazard ratio (HR) for bone metastasis = 14.5, 95% confidence interval (CI) = 6.4 to 32.9, P < .001) as well as MAF overexpression (HR for bone metastasis = 2.5, 95% CI = 1.7 to 3.8, P < .001) in primary breast tumors were specifically associated with risk of metastasis to bone but not to other organs. CONCLUSIONS These results suggest that MAF is a mediator of breast cancer bone metastasis. 16q23 gain or MAF protein overexpression in tumors may help to select patients at risk of bone relapse.
Collapse
Affiliation(s)
- Milica Pavlovic
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Anna Arnal-Estapé
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Federico Rojo
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Anna Bellmunt
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Maria Tarragona
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Marc Guiu
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Evarist Planet
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Xabier Garcia-Albéniz
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Mónica Morales
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Jelena Urosevic
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Sylwia Gawrzak
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Ana Rovira
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Aleix Prat
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Lara Nonell
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Ana Lluch
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Joël Jean-Mairet
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Robert Coleman
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Joan Albanell
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG)
| | - Roger R Gomis
- Oncology Program (MP, AAE, AB, MT, MG, XGA, MM, JU, SG, RRG) and Biostatistics and Bioinformatics Unit (EP), Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Cancer Research Program (FR, AR, JA) and Microarray Analysis Service (LN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Pathology Department, IIS-Fundación Jimenez Diaz, Madrid, Spain (FR); Medical Oncology Service, Hospital del Mar, Barcelona, Spain (AR, JA); Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain (AL); Valencia Central University, Spain (AL); Inbiomotion, Barcelona, Spain (JJM); Sheffield Cancer Research Centre, Sheffield, UK (RC); Universitat Pompeu Fabra, Barcelona, Spain (JA); Translational Genomics, Vall d'Hebron Insitute of Oncology, Barcelona, Spain (AP); Department of Epidemiology, Harvard School of Public Health, Boston, MA (XGA); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (RRG).
| |
Collapse
|
29
|
Springer S, Yi KH, Park J, Rajpurohit A, Price AJ, Lauring J. Engineering targeted chromosomal amplifications in human breast epithelial cells. Breast Cancer Res Treat 2015; 152:313-21. [PMID: 26099605 PMCID: PMC4491111 DOI: 10.1007/s10549-015-3468-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 01/28/2023]
Abstract
Chromosomal amplifications are among the most common genetic alterations found in human cancers. However, experimental systems to study the processes that lead to specific, recurrent amplification events in human cancers are lacking. Moreover, some common amplifications, such as that at 8p11-12 in breast cancer, harbor multiple driver oncogenes, which are poorly modeled by conventional overexpression approaches. We sought to develop an experimental system to model recurrent chromosomal amplification events in human cell lines. Our strategy is to use homologous-recombination-mediated gene targeting to deliver a dominantly selectable, amplifiable marker to a specified chromosomal location. We used adeno-associated virus vectors to target human MCF-7 breast cancer cells at the ZNF703 locus, in the recurrent 8p11-12 amplicon, using the E. coli inosine monophosphate dehydrogenase (IMPDH) enzyme as a marker. We applied selective pressure using IMPDH inhibitors. Surviving clones were found to have increased copy number of ZNF703 (average 2.5-fold increase) by droplet digital PCR and FISH. Genome-wide array comparative genomic hybridization confirmed that amplifications had occurred on the short arm of chromosome 8, without changes on 8q or other chromosomes. Patterns of amplification were variable and similar to those seen in primary human breast cancers, including “sawtooth” patterns, distal copy number loss, and large continuous regions of copy number gain. This system will allow study of the cis- and trans-acting factors that are permissive for chromosomal amplification and provide a model to analyze oncogene cooperativity in amplifications harboring multiple candidate driver genes.
Collapse
Affiliation(s)
- Simeon Springer
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, CRB 1 Room 146, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ambroziak W, Koziorowski D, Duszyc K, Górka-Skoczylas P, Potulska-Chromik A, Sławek J, Hoffman-Zacharska D. Genomic instability in the PARK2 locus is associated with Parkinson's disease. J Appl Genet 2015; 56:451-461. [PMID: 25833766 PMCID: PMC4617850 DOI: 10.1007/s13353-015-0282-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/01/2022]
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder affecting mostly elderly people, although there is a group of patients developing so-called early-onset PD (EOPD). Mutations in the PARK2 gene are a common cause of autosomal recessive EOPD. PARK2 belongs to the family of extremely large human genes which are often localised in genomic common fragile sites (CFSs) and exhibit gross instability. PARK2 is located in the centre of FRA6E, the third most mutation-susceptible CFS of the human genome. The gene encompasses a region of 1.3 Mbp and, among its mutations, large rearrangements of single or multiple exons account for around 50 %. We performed an analysis of the PARK2 gene in a group of 344 PD patients with EOPD and classical form of the disease. Copy number changes were first identified using multiplex ligation probe amplification (MLPA), with their ranges characterised by array comparative genomic hybridisation (aCGH). Exact breakpoints were mapped using direct sequencing. Rearrangements were found in eight subjects, including five deletions and three duplications. Rearrangements were mostly non-recurrent and no repetitive sequences or extended homologies were identified in the regions flanking breakpoint junctions. However, in most cases, 1–3 bp microhomologies were present, strongly suggesting that microhomology-mediated mechanisms, specifically non-homologous end joining (NHEJ) and fork stalling and template switching (FoSTeS)/microhomology-mediated break-induced replication (MMBIR), are predominantly involved in the rearrangement processes in this genomic region.
Collapse
Affiliation(s)
- Wojciech Ambroziak
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17A, 01-211, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, Kondratowicza 8, 03-242, Warsaw, Poland
| | - Kinga Duszyc
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17A, 01-211, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Paulina Górka-Skoczylas
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Anna Potulska-Chromik
- Department of Neurology, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Jarosław Sławek
- Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Dębinki 7, 80-952, Gdańsk, Poland
| | - Dorota Hoffman-Zacharska
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17A, 01-211, Warsaw, Poland. .,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
31
|
Kondratova A, Watanabe T, Marotta M, Cannon M, Segall AM, Serre D, Tanaka H. Replication fork integrity and intra-S phase checkpoint suppress gene amplification. Nucleic Acids Res 2015; 43:2678-90. [PMID: 25672394 PMCID: PMC4357702 DOI: 10.1093/nar/gkv084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene amplification is a phenotype-causing form of chromosome instability and is initiated by DNA double-strand breaks (DSBs). Cells with mutant p53 lose G1/S checkpoint and are permissive to gene amplification. In this study we show that mammalian cells become proficient for spontaneous gene amplification when the function of the DSB repair protein complex MRN (Mre11/Rad50/Nbs1) is impaired. Cells with impaired MRN complex experienced severe replication stress and gained substrates for gene amplification during replication, as evidenced by the increase of replication-associated single-stranded breaks that were converted to DSBs most likely through replication fork reversal. Impaired MRN complex directly compromised ATM/ATR-mediated checkpoints and allowed cells to progress through cell cycle in the presence of DSBs. Such compromised intra-S phase checkpoints promoted gene amplification independently from mutant p53. Finally, cells adapted to endogenous replication stress by globally suppressing genes for DNA replication and cell cycle progression. Our results indicate that the MRN complex suppresses gene amplification by stabilizing replication forks and by securing DNA damage response to replication-associated DSBs.
Collapse
Affiliation(s)
- Anna Kondratova
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Takaaki Watanabe
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Michael Marotta
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Matthew Cannon
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Anca M Segall
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Hisashi Tanaka
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| |
Collapse
|
32
|
Meng X, Qi X, Guo H, Cai M, Li C, Zhu J, Chen F, Guo H, Li J, Zhao Y, Liu P, Jia X, Yu J, Zhang C, Sun W, Yu Y, Jin Y, Bai J, Wang M, Rosales J, Lee KY, Fu S. Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. J Med Genet 2014; 52:135-44. [PMID: 25537274 PMCID: PMC4316941 DOI: 10.1136/jmedgenet-2014-102703] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Gene amplification is a frequent manifestation of genomic instability that plays a role in tumour progression and development of drug resistance. It is manifested cytogenetically as extrachromosomal double minutes (DMs) or intrachromosomal homogeneously staining regions (HSRs). To better understand the molecular mechanism by which HSRs and DMs are formed and how they relate to the development of methotrexate (MTX) resistance, we used two model systems of MTX-resistant HT-29 colon cancer cell lines harbouring amplified DHFR primarily in (i) HSRs and (ii) DMs. Results In DM-containing cells, we found increased expression of non-homologous end joining (NHEJ) proteins. Depletion or inhibition of DNA-PKcs, a key NHEJ protein, caused decreased DHFR amplification, disappearance of DMs, increased formation of micronuclei or nuclear buds, which correlated with the elimination of DHFR, and increased sensitivity to MTX. These findings indicate for the first time that NHEJ plays a specific role in DM formation, and that increased MTX sensitivity of DM-containing cells depleted of DNA-PKcs results from DHFR elimination. Conversely, in HSR-containing cells, we found no significant change in the expression of NHEJ proteins. Depletion of DNA-PKcs had no effect on DHFR amplification and resulted in only a modest increase in sensitivity to MTX. Interestingly, both DM-containing and HSR-containing cells exhibited decreased proliferation upon DNA-PKcs depletion. Conclusions We demonstrate a novel specific role for NHEJ in the formation of DMs, but not HSRs, in MTX-resistant cells, and that NHEJ may be targeted for the treatment of MTX-resistant colon cancer.
Collapse
Affiliation(s)
- Xiangning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xiuying Qi
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Huanhuan Guo
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Mengdi Cai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chunxiang Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jing Zhu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Feng Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Huan Guo
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jie Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yuzhen Zhao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jingcui Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chunyu Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yang Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China Key Laboratory of Medical Genetics (Harbin Medical University), Heilongjiang Higher Education Institutions, Harbin, China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jesusa Rosales
- Departments of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Ki-Young Lee
- Cell Biology & Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China Key Laboratory of Medical Genetics (Harbin Medical University), Heilongjiang Higher Education Institutions, Harbin, China
| |
Collapse
|
33
|
Vogt N, Gibaud A, Lemoine F, de la Grange P, Debatisse M, Malfoy B. Amplicon rearrangements during the extrachromosomal and intrachromosomal amplification process in a glioma. Nucleic Acids Res 2014; 42:13194-205. [PMID: 25378339 PMCID: PMC4245956 DOI: 10.1093/nar/gku1101] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/18/2023] Open
Abstract
The mechanisms of gene amplification in tumour cells are poorly understood and the relationship between extrachromosomal DNA molecules, named double minutes (dmins), and intrachromosomal homogeneously staining regions (hsr) is not documented at nucleotide resolution. Using fluorescent in situ hybridization and whole genome sequencing, we studied a xenografted human oligodendroglioma where the co-amplification of the EGFR and MYC loci was present in the form of dmins at early passages and of an hsr at later passages. The amplified regions underwent multiple rearrangements and deletions during the formation of the dmins and their transformation into hsr. In both forms of amplification, non-homologous end-joining and microhomology-mediated end-joining rather than replication repair mechanisms prevailed in fusions. Small fragments, some of a few tens of base pairs, were associated in contigs. They came from clusters of breakpoints localized hundreds of kilobases apart in the amplified regions. The characteristics of some pairs of junctions suggest that at least some fragments were not fused randomly but could result from the concomitant repair of neighbouring breakpoints during the interaction of remote DNA sequences. This characterization at nucleotide resolution of the transition between extra- and intrachromosome amplifications highlights a hitherto uncharacterized organization of the amplified regions suggesting the involvement of new mechanisms in their formation.
Collapse
Affiliation(s)
- Nicolas Vogt
- Institut Curie, Centre de Recherche, F-75248 Paris, France CNRS, UMR3244, F-75248 Paris, France UPMC, F-75248 Paris, France
| | - Anne Gibaud
- Institut Curie, Centre de Recherche, F-75248 Paris, France CNRS, UMR3244, F-75248 Paris, France UPMC, F-75248 Paris, France
| | | | | | - Michelle Debatisse
- Institut Curie, Centre de Recherche, F-75248 Paris, France CNRS, UMR3244, F-75248 Paris, France UPMC, F-75248 Paris, France
| | - Bernard Malfoy
- Institut Curie, Centre de Recherche, F-75248 Paris, France CNRS, UMR3244, F-75248 Paris, France UPMC, F-75248 Paris, France
| |
Collapse
|
34
|
Ozeri-Galai E, Tur-Sinai M, Bester AC, Kerem B. Interplay between genetic and epigenetic factors governs common fragile site instability in cancer. Cell Mol Life Sci 2014; 71:4495-506. [PMID: 25297918 PMCID: PMC11113459 DOI: 10.1007/s00018-014-1719-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 11/28/2022]
Abstract
Common fragile sites (CFSs) are regions within the normal chromosomal structure that were characterized as hotspots for genomic instability in cancer almost 30 years ago. In recent years, many efforts have been made to understand the basis of CFS fragility and their involvement in the genomic signature of instability found in malignant tumors. CFSs are among the first regions to undergo genomic instability during cancer development because of their intrinsic sensitivity to replication stress conditions, which result from oncogene expression. The preferred sensitivity of CFSs to replication stress stems from various mechanisms including: replication fork arrest at AT-rich repeats, origin paucity along large genomic regions, failure in activation of dormant origins, late replication timing, collision between replication and transcription along large genes, all leading to incomplete replication of the CFS region and resulting in chromosomal instability. Here we review shared and unique characteristics of CFSs, their underlying causes and implications, particularly for the development of cancer.
Collapse
Affiliation(s)
- Efrat Ozeri-Galai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - Michal Tur-Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - Assaf C. Bester
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| |
Collapse
|
35
|
Georgakilas AG, Tsantoulis P, Kotsinas A, Michalopoulos I, Townsend P, Gorgoulis VG. Are common fragile sites merely structural domains or highly organized "functional" units susceptible to oncogenic stress? Cell Mol Life Sci 2014; 71:4519-44. [PMID: 25238782 PMCID: PMC4232749 DOI: 10.1007/s00018-014-1717-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 01/07/2023]
Abstract
Common fragile sites (CFSs) are regions of the genome with a predisposition to DNA double-strand breaks in response to intrinsic (oncogenic) or extrinsic replication stress. CFS breakage is a common feature in carcinogenesis from its earliest stages. Given that a number of oncogenes and tumor suppressors are located within CFSs, a question that emerges is whether fragility in these regions is only a structural “passive” incident or an event with a profound biological effect. Furthermore, there is sparse evidence that other elements, like non-coding RNAs, are positioned with them. By analyzing data from various libraries, like miRbase and ENCODE, we show a prevalence of various cancer-related genes, miRNAs, and regulatory binding sites, such as CTCF within CFSs. We propose that CFSs are not only susceptible structural domains, but highly organized “functional” entities that when targeted, severe repercussion for cell homeostasis occurs.
Collapse
Affiliation(s)
- Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece
| | | | | | | | | | | |
Collapse
|
36
|
How a replication origin and matrix attachment region accelerate gene amplification under replication stress in mammalian cells. PLoS One 2014; 9:e103439. [PMID: 25061979 PMCID: PMC4111587 DOI: 10.1371/journal.pone.0103439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
The gene amplification plays a critical role in the malignant transformation of mammalian cells. The most widespread method for amplifying a target gene in cell culture is the use of methotrexate (Mtx) treatment to amplify dihydrofolate reductase (Dhfr). Whereas, we found that a plasmid bearing both a mammalian origin of replication (initiation region; IR) and a matrix attachment region (MAR) was spontaneously amplified in mammalian cells. In this study, we attempted to uncover the underlying mechanism by which the IR/MAR sequence might accelerate Mtx induced Dhfr amplification. The plasmid containing the IR/MAR was extrachromosomally amplified, and then integrated at multiple chromosomal locations within individual cells, increasing the likelihood that the plasmid might be inserted into a chromosomal environment that permits high expression and further amplification. Efficient amplification of this plasmid alleviated the genotoxicity of Mtx. Clone-based cytogenetic and sequence analysis revealed that the plasmid was amplified in a chromosomal context by breakage-fusion-bridge cycles operating either at the plasmid repeat or at the flanking fragile site activated by Mtx. This mechanism explains how a circular molecule bearing IR/MAR sequences of chromosomal origin might be amplified under replication stress, and also provides insight into gene amplification in human cancer.
Collapse
|
37
|
Infection with retroviral vectors leads to perturbed DNA replication increasing vector integrations into fragile sites. Sci Rep 2014; 3:2189. [PMID: 23852038 PMCID: PMC3711054 DOI: 10.1038/srep02189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/18/2013] [Indexed: 01/16/2023] Open
Abstract
Genome instability is a hallmark of cancer. Common fragile sites (CFSs) are specific regions in the human genome that are sensitive to replication stress and are prone to genomic instability in different cancer types. Here we molecularly cloned a new CFS, FRA11H, in 11q13. The genomic region of FRA11H harbors a hotspot of chromosomal breakpoints found in different types of cancer, indicating that this region is unstable during cancer development. We further found that FRA11H is a hotspot for integrations of Murine Leukemia Virus (MLV)-based vectors, following CD34+ infections in vitro as well as ex-vivo during gene therapy trials. Importantly, we found that the MLV-based vector infection in-vitro leads to replication perturbation, DNA damage and increased CFS expression. This suggests that infection by MLV-based vectors leads to replication-induced genome instability, raising further concerns regarding the use of retroviral vectors in gene therapy trials.
Collapse
|
38
|
Overexpression of mutant cell division cycle 25 homolog B (CDC25B) enhances the efficiency of selection in Chinese hamster ovary cells. Cytotechnology 2013; 65:1017-26. [PMID: 24248275 DOI: 10.1007/s10616-013-9662-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022] Open
Abstract
The effects of mutant cell division cycle 25 homolog B (CDC25B) overexpression on the generation of cells producing a monoclonal antibody were investigated in Chinese hamster ovary (CHO) cells. Mutant CDC25B (m-CDC25B) expression plasmids were transfected into CHO DG44-derived cells producing a monoclonal antibody, and the frequency of highly producing cells was assessed following gene amplification in the presence of 250 nM methotrexate. Most of the clones obtained from the m-CDC25B-overexpressing cells had higher antibody titers than did mock-transfected control cells. This arose from either higher transgene copy numbers or higher mRNA expression levels for the antibody. However, the high mRNA expression levels were not always accompanied by increases in transgene copy numbers. Our results suggest that cells producing high levels of a monoclonal antibody can be selected efficiently using m-CDC25B overexpression.
Collapse
|
39
|
Matsenko NY, Kovalenko SP. DNA structural features on borders of ERBB2 amplicons in breast cancer. Mol Biol 2013. [DOI: 10.1134/s0026893313050142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Marotta M, Chen X, Watanabe T, Faber PW, Diede SJ, Tapscott S, Tubbs R, Kondratova A, Stephens R, Tanaka H. Homology-mediated end-capping as a primary step of sister chromatid fusion in the breakage-fusion-bridge cycles. Nucleic Acids Res 2013; 41:9732-40. [PMID: 23975201 PMCID: PMC3834830 DOI: 10.1093/nar/gkt762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Breakage-fusion-bridge (BFB) cycle is a series of chromosome breaks and duplications that could lead to the increased copy number of a genomic segment (gene amplification). A critical step of BFB cycles leading to gene amplification is a palindromic fusion of sister chromatids following the rupture of a dicentric chromosome during mitosis. It is currently unknown how sister chromatid fusion is produced from a mitotic break. To delineate the process, we took an integrated genomic, cytogenetic and molecular approach for the recurrent MCL1 amplicon at chromosome 1 in human tumor cells. A newly developed next-generation sequencing-based approach identified a cluster of palindromic fusions within the amplicon at ∼50-kb intervals, indicating a series of breaks and fusions by BFB cycles. The physical location of the amplicon (at the end of a broken chromosome) further indicated BFB cycles as underlying processes. Three palindromic fusions were mediated by the homologies between two nearby inverted Alu repeats, whereas the other two fusions exhibited microhomology-mediated events. Such breakpoint sequences indicate that homology-mediated fold-back capping of broken ends followed by DNA replication is an underlying mechanism of sister chromatid fusion. Our results elucidate nucleotide-level events during BFB cycles and end processing for naturally occurring mitotic breaks.
Collapse
Affiliation(s)
- Michael Marotta
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA, Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick, MD 21702, USA, Genomics Facility, University of Chicago, Chicago, IL 60637, USA, Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA, Department of Molecular Pathology, Cleveland Clinic, Cleveland, OH 44195, USA and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Peng M, Bakker JL, Dicioccio RA, Gille JJP, Zhao H, Odunsi K, Sucheston L, Jaafar L, Mivechi NF, Waisfisz Q, Ko L. Inactivating Mutations in GT198 in Familial and Early-Onset Breast and Ovarian Cancers. Genes Cancer 2013; 4:15-25. [PMID: 23946868 DOI: 10.1177/1947601913486344] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/16/2013] [Indexed: 01/03/2023] Open
Abstract
The human GT198 gene (gene symbol PSMC3IP) is located at chromosome 17q21, 470 kb proximal to BRCA1, a locus previously linked to breast and ovarian cancer predisposition. Its protein product (also known as TBPIP and Hop2) has been shown to regulate steroid hormone receptor-mediated gene activation and to stimulate homologous recombination in DNA repair. Here, we screened germline mutations in GT198 in familial and early-onset breast and ovarian cancer patients. We have identified 8 germline variants in a total of 212 index patients including reoccurring nonsense mutation c.310C>T (p.Q104X) and 5' UTR mutation c.-37A>T, each found in 2 unrelated families. Most identified index patients from cancer families had early onsets with a median age of 35 years. c.310C>T was absent in a total of 564 control individuals analyzed. GT198 gene amplification with an imbalanced mutant copy gain was identified in the blood DNA of one of the patients carrying c.310C>T. When tested, this truncating mutation abolished DNA damage-induced Rad51 foci formation. In addition, we have identified 15 somatic mutations in 2 tumors from 1 patient carrying germline mutation c.-37A>T. The presence of a somatic mutation on the wild-type allele showed that GT198 was biallelically mutated in the tumor. The somatic mutations identified near a splicing junction site caused defective alternative splicing and truncated the open reading frame. Therefore, distinct mutations may cause a similar consequence by truncating the full-length protein and inducing a loss of the wild type. Our study provides the first evidence of the presence of inactivating mutations in GT198 in familial and early-onset breast and ovarian cancer patients. Mutations in GT198, a gene regulating DNA repair, potentially contribute to an increased risk in familial breast and ovarian cancers.
Collapse
Affiliation(s)
- Min Peng
- Cancer Center, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Common Fragile Site Profiling in Epithelial and Erythroid Cells Reveals that Most Recurrent Cancer Deletions Lie in Fragile Sites Hosting Large Genes. Cell Rep 2013; 4:420-8. [DOI: 10.1016/j.celrep.2013.07.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/05/2013] [Accepted: 07/02/2013] [Indexed: 01/22/2023] Open
|
43
|
Gibaud A, Vogt N, Brison O, Debatisse M, Malfoy B. Characterization at nucleotide resolution of the homogeneously staining region sites of insertion in two cancer cell lines. Nucleic Acids Res 2013; 41:8210-9. [PMID: 23821669 PMCID: PMC3783161 DOI: 10.1093/nar/gkt566] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanisms of formation of intrachromosomal amplifications in tumours are still poorly understood. By using quantitative polymerase chain reaction, DNA sequencing, chromosome walking, in situ hybridization on metaphase chromosomes and whole-genome analysis, we studied two cancer cell lines containing an MYC oncogene amplification with acquired copies ectopically inserted in rearranged chromosomes 17. These intrachromosomal amplifications result from the integration of extrachromosomal DNA molecules. Replication stress could explain the formation of the double-strand breaks involved in their insertion and in the rearrangements of the targeted chromosomes. The sequences of the junctions indicate that homologous recombination was not involved in their formation and support a non-homologous end-joining process. The replication stress-inducible common fragile sites present in the amplicons may have driven the intrachromosomal amplifications. Mechanisms associating break-fusion-bridge cycles and/or chromosome fragmentation may have led to the formation of the uncovered complex structures. To our knowledge, this is the first characterization of an intrachromosomal amplification site at nucleotide resolution.
Collapse
Affiliation(s)
- Anne Gibaud
- Institut Curie, Centre de Recherche, CNRS, UMR3244 and UPMC, 26 Rue d'Ulm, F-75248 Paris, France
| | | | | | | | | |
Collapse
|
44
|
Bardelli A, Corso S, Bertotti A, Hobor S, Valtorta E, Siravegna G, Sartore-Bianchi A, Scala E, Cassingena A, Zecchin D, Apicella M, Migliardi G, Galimi F, Lauricella C, Zanon C, Perera T, Veronese S, Corti G, Amatu A, Gambacorta M, Diaz LA, Sausen M, Velculescu VE, Comoglio P, Trusolino L, Di Nicolantonio F, Giordano S, Siena S. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov 2013; 3:658-73. [PMID: 23729478 DOI: 10.1158/2159-8290.cd-12-0558] [Citation(s) in RCA: 534] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
EGF receptor (EGFR)-targeted monoclonal antibodies are effective in a subset of metastatic colorectal cancers. Inevitably, all patients develop resistance, which occurs through emergence of KRAS mutations in approximately 50% of the cases. We show that amplification of the MET proto-oncogene is associated with acquired resistance in tumors that do not develop KRAS mutations during anti-EGFR therapy. Amplification of the MET locus was present in circulating tumor DNA before relapse was clinically evident. Functional studies show that MET activation confers resistance to anti-EGFR therapy both in vitro and in vivo. Notably, in patient-derived colorectal cancer xenografts, MET amplification correlated with resistance to EGFR blockade, which could be overcome by MET kinase inhibitors. These results highlight the role of MET in mediating primary and secondary resistance to anti-EGFR therapies in colorectal cancer and encourage the use of MET inhibitors in patients displaying resistance as a result of MET amplification.
Collapse
|
45
|
Lee KH, Onitsuka M, Honda K, Ohtake H, Omasa T. Rapid construction of transgene-amplified CHO cell lines by cell cycle checkpoint engineering. Appl Microbiol Biotechnol 2013; 97:5731-41. [DOI: 10.1007/s00253-013-4923-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 01/02/2023]
|
46
|
Zhu J, Yu Y, Meng X, Fan Y, Zhang Y, Zhou C, Yue Z, Jin Y, Zhang C, Yu L, Ji W, Jia X, Guan R, Wu J, Yu J, Bai J, Guan XY, Wang M, Lee KY, Sun W, Fu S. De novo-generated small palindromes are characteristic of amplicon boundary junction of double minutes. Int J Cancer 2013; 133:797-806. [PMID: 23382041 PMCID: PMC3734650 DOI: 10.1002/ijc.28084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 01/21/2013] [Indexed: 12/20/2022]
Abstract
Double minutes (DMs) are hallmarks of gene amplification. However, their molecular structure and the mechanisms of formation are largely unknown. To elucidate the structure and underlying molecular mechanism of DMs, we obtained and cloned DMs using microdissection; and degenerated oligonucleotide primed polymerase chain reaction (DOP-PCR) from the ovarian cancer cell line UACC-1598. Two large amplicons, the 284 kb AmpMYCN, originating from locus 2p24.3 and the 391 kb AmpEIF5A2, from locus 3q26.2, were found co-amplified on the same DMs. The two amplicons are joined through a complex 7 kb junction DNA sequence. Analysis of the junction has revealed three de novo created small palindromes surrounding the six breakpoints. Consistent with these observations, we further found that 70% of the 57 reported DM junction sequences have de novo creation of small palindromic sequences surrounding the breakpoints. Together, our findings indicate that de novo-generated small palindromic sequences are characteristic of amplicon boundary junctions on DMs. It is possible that the de novo-generated small palindromic sequences, which may be generated through non-homologous end joining in concert with a novel DNA repair machinery, play a common role in amplicon rejoining and gene amplification.
Collapse
Affiliation(s)
- Jing Zhu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shams I, Malik A, Manov I, Joel A, Band M, Avivi A. Transcription pattern of p53-targeted DNA repair genes in the hypoxia-tolerant subterranean mole rat Spalax. J Mol Biol 2013; 425:1111-8. [PMID: 23318952 DOI: 10.1016/j.jmb.2013.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/31/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
The tumor suppressor gene p53 induces growth arrest and/or apoptosis in response to DNA damage/hypoxia. Inactivation of p53 confers a selective advantage to tumor cells under a hypoxic microenvironment during tumor progression. The subterranean blind mole rat, Spalax, spends its life underground at low-oxygen tensions, hence developing a wide range of respiratory/molecular adaptations to hypoxic stress, including critical changes in p53 structure and signaling pathway. The highly conserved p53 Arg(R)-172 is substituted by lysine (K) in Spalax, identical with a tumor-associated mutation. Functionality assays revealed that Spalax p53 is unable to activate apoptotic target genes but is still capable of activating cell cycle arrest genes. Furthermore, we have shown that the transcription patterns of representative p53-induced genes (Apaf1 and Mdm2) in Spalax are influenced by hypoxia. Cell cycle arrest allows the cells to repair DNA damage via different DNA repair genes. We tested the transcription pattern of three p53-related DNA repair genes (p53R2, Mlh1, and Msh2) under normoxia and short-acute hypoxia in Spalax, C57BL/6 wild-type mice, and two strains of mutant C57BL/6 mice, each carrying a different mutation at the R172 position. Our results show that while wild-type/mutant mice exhibit strong hypoxia-induced reductions of repair gene transcript levels, no such inhibition is found in Spalax under hypoxia. Moreover, unlike mouse p53R2, Spalax p53R2 transcript levels are strongly elevated under hypoxia. These results suggest that critical repair functions, which are known to be inhibited under hypoxia in mice, remain active in Spalax, as part of its unique hypoxia tolerance mechanisms.
Collapse
Affiliation(s)
- Imad Shams
- Institute of Evolution, University of Haifa, Haifa 31905, Israel.
| | | | | | | | | | | |
Collapse
|
48
|
Single-stranded annealing induced by re-initiation of replication origins provides a novel and efficient mechanism for generating copy number expansion via non-allelic homologous recombination. PLoS Genet 2013; 9:e1003192. [PMID: 23300490 PMCID: PMC3536649 DOI: 10.1371/journal.pgen.1003192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/08/2012] [Indexed: 11/24/2022] Open
Abstract
Copy number expansions such as amplifications and duplications contribute to human phenotypic variation, promote molecular diversification during evolution, and drive the initiation and/or progression of various cancers. The mechanisms underlying these copy number changes are still incompletely understood, however. We recently demonstrated that transient, limited re-replication from a single origin in Saccharomyces cerevisiae efficiently induces segmental amplification of the re-replicated region. Structural analyses of such re-replication induced gene amplifications (RRIGA) suggested that RRIGA could provide a new mechanism for generating copy number variation by non-allelic homologous recombination (NAHR). Here we elucidate this new mechanism and provide insight into why it is so efficient. We establish that sequence homology is both necessary and sufficient for repetitive elements to participate in RRIGA and show that their recombination occurs by a single-strand annealing (SSA) mechanism. We also find that re-replication forks are prone to breakage, accounting for the widespread DNA damage associated with deregulation of replication proteins. These breaks appear to stimulate NAHR between re-replicated repeat sequences flanking a re-initiating replication origin. Our results support a RRIGA model where the expansion of a re-replication bubble beyond flanking homologous sequences followed by breakage at both forks in trans provides an ideal structural context for SSA–mediated NAHR to form a head-to-tail duplication. Given the remarkable efficiency of RRIGA, we suggest it may be an unappreciated contributor to copy number expansions in both disease and evolution. Duplications and amplifications of chromosomal segments are frequently observed in eukaryotic genomes, including both normal and cancerous human genomes. These copy number variations contribute to the phenotypic variation upon which natural selection acts. For example, the amplification of genes whose excessive copy number facilitates uncontrolled cell division is often selected for during tumor development. Copy number variations can often arise when repetitive sequence elements, which are dispersed throughout eukaryotic genomes, undergo a rearrangement called non-allelic homologous recombination. Exactly how these rearrangements occur is poorly understood. Here, using budding yeast to model this class of copy number variation, we uncover a new and highly efficient mechanism by which these variations can be generated. The precipitating event is the aberrant re-initiation of DNA replication at a replication origin. Normally the hundreds to thousands of origins scattered throughout a eukaryotic genome are tightly controlled such that each is permitted to initiate only once per cell cycle. However, disruptions in these controls can allow origins to re-initiate, and we show how the resulting DNA re-replication structure can be readily converted into a tandem duplication via non-allelic homologous recombination. Hence, the re-initiation of DNA replication is a potential source of copy number variation both in disease and during evolution.
Collapse
|
49
|
Abstract
Genomic profiling of mantle cell lymphoma (MCL) cells has enabled a better understanding of the complex mechanisms underlying the pathogenesis of disease. Besides the t(11;14)(q13;q32) leading to cyclin D1 overexpression, MCL exhibits a characteristic pattern of DNA copy number aberrations that differs from those detected in other B-cell lymphomas. These genomic changes disrupt selected oncogenes and suppressor genes that are required for lymphoma development and progression, many of which are components of cell cycle, DNA damage response and repair, apoptosis, and cell-signaling pathways. Additionally, some of them may represent effective therapeutic targets. A number of genomic and molecular abnormalities have been correlated with the clinical outcome of patients with MCL and are considered prognostic factors. However, only a few genomic markers have been shown to predict the response to current or novel targeted therapies. One representative example is the high-level amplification of the BCL2 gene, which predicts a good response to pro-apoptotic BH3 mimetic drugs. In summary, genomic analyses have contributed to the substantial advances made in the comprehension of the pathogenesis of MCL, providing a solid basis for the identification of optimal therapeutic targets and for the design of new molecular therapies aiming to cure this fatal disease.
Collapse
Affiliation(s)
- Melissa Rieger Menanteau
- Division of Oncology, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | |
Collapse
|
50
|
Marotta M, Chen X, Inoshita A, Stephens R, Budd GT, Crowe JP, Lyons J, Kondratova A, Tubbs R, Tanaka H. A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications. Breast Cancer Res 2012. [PMID: 23181561 PMCID: PMC4053137 DOI: 10.1186/bcr3362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Segmental duplications (low-copy repeats) are the recently duplicated genomic segments in the human genome that display nearly identical (> 90%) sequences and account for about 5% of euchromatic regions. In germline, duplicated segments mediate nonallelic homologous recombination and thus cause both non-disease-causing copy-number variants and genomic disorders. To what extent duplicated segments play a role in somatic DNA rearrangements in cancer remains elusive. Duplicated segments often cluster and form genomic blocks enriched with both direct and inverted repeats (complex genomic regions). Such complex regions could be fragile and play a mechanistic role in the amplification of the ERBB2 gene in breast tumors, because repeated sequences are known to initiate gene amplification in model systems. Methods We conducted polymerase chain reaction (PCR)-based assays for primary breast tumors and analyzed publically available array-comparative genomic hybridization data to map a common copy-number breakpoint in ERBB2-amplified primary breast tumors. We further used molecular, bioinformatics, and population-genetics approaches to define duplication contents, structural variants, and haplotypes within the common breakpoint. Results We found a large (> 300-kb) block of duplicated segments that was colocalized with a common-copy number breakpoint for ERBB2 amplification. The breakpoint that potentially initiated ERBB2 amplification localized in a region 1.5 megabases (Mb) on the telomeric side of ERBB2. The region is very complex, with extensive duplications of KRTAP genes, structural variants, and, as a result, a paucity of single-nucleotide polymorphism (SNP) markers. Duplicated segments are varied in size and degree of sequence homology, indicating that duplications have occurred recurrently during genome evolution. Conclusions Amplification of the ERBB2 gene in breast tumors is potentially initiated by a complex region that has unusual genomic features and thus requires rigorous, labor-intensive investigation. The haplotypes we provide could be useful to identify the potential association between the complex region and ERBB2 amplification.
Collapse
|