1
|
Ishikawa K, Soejima S, Nishimura T, Saitoh S. Arrayed CRISPRi library to suppress genes required for Schizosaccharomyces pombe viability. J Cell Biol 2025; 224:e202404085. [PMID: 39378339 PMCID: PMC11465072 DOI: 10.1083/jcb.202404085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/06/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
The fission yeast, Schizosaccharomyces pombe, is an excellent eukaryote model organism for studying essential biological processes. Its genome contains ∼1,200 genes essential for cell viability, most of which are evolutionarily conserved. To study these essential genes, resources enabling conditional perturbation of target genes are required. Here, we constructed comprehensive arrayed libraries of plasmids and strains to knock down essential genes in S. pombe using dCas9-mediated CRISPRi. These libraries cover ∼98% of all essential genes in fission yeast. We estimate that in ∼60% of these strains, transcription of a target gene was repressed so efficiently that cell proliferation was significantly inhibited. To demonstrate the usefulness of these libraries, we performed metabolic analyses with knockdown strains and revealed flexible interaction among metabolic pathways. Libraries established in this study enable comprehensive functional analyses of essential genes in S. pombe and will facilitate the understanding of essential biological processes in eukaryotes.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Cell Biology, Institute of Life Science, Kurume University, Kurume, Japan
| | - Saeko Soejima
- Department of Cell Biology, Institute of Life Science, Kurume University, Kurume, Japan
| | - Takashi Nishimura
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Shigeaki Saitoh
- Department of Cell Biology, Institute of Life Science, Kurume University, Kurume, Japan
| |
Collapse
|
2
|
Sun L, Chen X, Song C, Shi W, Liu L, Bai S, Wang X, Chen J, Jiang C, Wang SM, Luo ZQ, Wang R, Wang Y, Jin QW. Negative regulation of APC/C activation by MAPK-mediated attenuation of Cdc20 Slp1 under stress. eLife 2024; 13:RP97896. [PMID: 39412391 PMCID: PMC11483130 DOI: 10.7554/elife.97896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Mitotic anaphase onset is a key cellular process tightly regulated by multiple kinases. The involvement of mitogen-activated protein kinases (MAPKs) in this process has been established in Xenopus egg extracts. However, the detailed regulatory cascade remains elusive, and it is also unknown whether the MAPK-dependent mitotic regulation is evolutionarily conserved in the single-cell eukaryotic organisms such as fission yeast (Schizosaccharomyces pombe). Here, we show that two MAPKs in S. pombe indeed act in concert to restrain anaphase-promoting complex/cyclosome (APC/C) activity upon activation of the spindle assembly checkpoint (SAC). One MAPK, Pmk1, binds to and phosphorylates Slp1Cdc20, the co-activator of APC/C. Phosphorylation of Slp1Cdc20 by Pmk1, but not by Cdk1, promotes its subsequent ubiquitylation and degradation. Intriguingly, Pmk1-mediated phosphorylation event is also required to sustain SAC under environmental stress. Thus, our study establishes a new underlying molecular mechanism of negative regulation of APC/C by MAPK upon stress stimuli, and provides a previously unappreciated framework for regulation of anaphase entry in eukaryotic cells.
Collapse
Affiliation(s)
- Li Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Xuejin Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Chunlin Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Wenjing Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Libo Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Shuang Bai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Xi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Jiali Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Chengyu Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Shuang-min Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Zhou-qing Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Ruiwen Wang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou UniversityFuzhouChina
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Quan-wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| |
Collapse
|
3
|
Villa-Consuegra S, Tallada VA, Jimenez J. Aurora B kinase erases monopolar microtubule-kinetochore arrays at the meiosis I-II transition. iScience 2023; 26:108339. [PMID: 38026180 PMCID: PMC10654595 DOI: 10.1016/j.isci.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
During meiosis, faithful chromosome segregation requires monopolar spindle microtubule-kinetochore arrays in MI to segregate homologous chromosomes, but bipolar in MII to segregate sister chromatids. Using fission yeasts, we found that the universal Aurora B kinase localizes to kinetochores in metaphase I and in the mid-spindle during anaphase I, as in mitosis; but in the absence of an intervening S phase, the importin α Imp1 propitiates its release from the spindle midzone to re-localize at kinetochores during meiotic interkinesis. We show that "error-correction" activity of kinetochore re-localized Aurora B becomes essential to erase monopolar arrangements from anaphase I, a prerequisite to satisfy the spindle assembly checkpoint (SAC) and to generate proper bipolar arrays at the onset of MII. This microtubule-kinetochore resetting activity of Aurora B at the MI-MII transition is required to prevent chromosome missegregation in meiosis II, a type of error often associated with birth defects and infertility in humans.
Collapse
Affiliation(s)
- Sergio Villa-Consuegra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Víctor A. Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Juan Jimenez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| |
Collapse
|
4
|
London N, Medina-Pritchard B, Spanos C, Rappsilber J, Jeyaprakash AA, Allshire RC. Direct recruitment of Mis18 to interphase spindle pole bodies promotes CENP-A chromatin assembly. Curr Biol 2023; 33:4187-4201.e6. [PMID: 37714149 DOI: 10.1016/j.cub.2023.08.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
CENP-A chromatin specifies mammalian centromere identity, and its chaperone HJURP replenishes CENP-A when recruited by the Mis18 complex (Mis18C) via M18BP1/KNL2 to CENP-C at kinetochores during interphase. However, the Mis18C recruitment mechanism remains unresolved in species lacking M18BP1, such as fission yeast. Fission yeast centromeres cluster at G2 spindle pole bodies (SPBs) when CENP-ACnp1 is replenished and where Mis18C also localizes. We show that SPBs play an unexpected role in concentrating Mis18C near centromeres through the recruitment of Mis18 by direct binding to the major SPB linker of nucleoskeleton and cytoskeleton (LINC) component Sad1. Mis18C recruitment by Sad1 is important for CENP-ACnp1 chromatin establishment and acts in parallel with a CENP-C-mediated Mis18C recruitment pathway to maintain centromeric CENP-ACnp1 but operates independently of Sad1-mediated centromere clustering. SPBs therefore provide a non-chromosomal scaffold for both Mis18C recruitment and centromere clustering during G2. This centromere-independent Mis18-SPB recruitment provides a mechanism that governs de novo CENP-ACnp1 chromatin assembly by the proximity of appropriate sequences to SPBs and highlights how nuclear spatial organization influences centromere identity.
Collapse
Affiliation(s)
- Nitobe London
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Bethan Medina-Pritchard
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK; Institute of Biotechnology, Technische Universität, 13355 Berlin, Germany
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK; Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
5
|
GRANT Motif Regulates CENP-A Incorporation and Restricts RNA Polymerase II Accessibility at Centromere. Genes (Basel) 2022; 13:genes13101697. [PMID: 36292582 PMCID: PMC9602348 DOI: 10.3390/genes13101697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Precise chromosome segregation is essential for maintaining genomic stability, and its proper execution centers on the centromere, a chromosomal locus that mounts the kinetochore complex to mediate attachment of chromosomes to the spindle microtubules. The location of the centromere is epigenetically determined by a centromere-specific histone H3 variant, CENP-A. Many human cancers exhibit overexpression of CENP-A, which correlates with occurrence of aneuploidy in these malignancies. Centromeric targeting of CENP-A depends on its histone fold, but recent studies showed that the N-terminal tail domain (NTD) also plays essential roles. Here, we investigated implications of NTD in conferring aneuploidy formation when CENP-A is overexpressed in fission yeast. A series of mutant genes progressively lacking one amino acid of the NTD have been constructed for overexpression in wild-type cells using the intermediate strength nmt41 promoter. Constructs hosting disrupted GRANT (Genomic stability-Regulating site within CENP-A N-Terminus) motif in NTD results in growth retardation, aneuploidy, increased localization to the centromere, upregulated RNA polymerase II accessibility and transcriptional derepression of the repressive centromeric chromatin, suggesting that GRANT residues fine-tune centromeric CENP-A incorporation and restrict RNA polymerase II accessibility. This work highlighted the importance of CENP-A NTD, particularly the GRANT motif, in aneuploidy formation of overexpressed CENP-A in fission yeast.
Collapse
|
6
|
Bai S, Sun L, Wang X, Wang SM, Luo ZQ, Wang Y, Jin QW. Recovery from spindle checkpoint-mediated arrest requires a novel Dnt1-dependent APC/C activation mechanism. PLoS Genet 2022; 18:e1010397. [PMID: 36108046 PMCID: PMC9514617 DOI: 10.1371/journal.pgen.1010397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/27/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Abstract
The activated spindle assembly checkpoint (SAC) potently inhibits the anaphase-promoting complex/cyclosome (APC/C) to ensure accurate chromosome segregation at anaphase. Early studies have recognized that the SAC should be silenced within minutes to enable rapid APC/C activation and synchronous segregation of chromosomes once all kinetochores are properly attached, but the underlying silencers are still being elucidated. Here, we report that the timely silencing of SAC in fission yeast requires dnt1+, which causes severe thiabendazole (TBZ) sensitivity and increased rate of lagging chromosomes when deleted. The absence of Dnt1 results in prolonged inhibitory binding of mitotic checkpoint complex (MCC) to APC/C and attenuated protein levels of Slp1Cdc20, consequently slows the degradation of cyclin B and securin, and eventually delays anaphase entry in cells released from SAC activation. Interestingly, Dnt1 physically associates with APC/C upon SAC activation. We propose that this association may fend off excessive and prolonged MCC binding to APC/C and help to maintain Slp1Cdc20 stability. This may allow a subset of APC/C to retain activity, which ensures rapid anaphase onset and mitotic exit once SAC is inactivated. Therefore, our study uncovered a new player in dictating the timing and efficacy of APC/C activation, which is actively required for maintaining cell viability upon recovery from the inhibition of APC/C by spindle checkpoint.
Collapse
Affiliation(s)
- Shuang Bai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shuang-min Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhou-qing Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail: (ZL); (YW); (QJ)
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail: (ZL); (YW); (QJ)
| | - Quan-wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail: (ZL); (YW); (QJ)
| |
Collapse
|
7
|
The Mis6 inner kinetochore subcomplex maintains CENP-A nucleosomes against centromeric non-coding transcription during mitosis. Commun Biol 2022; 5:818. [PMID: 35970865 PMCID: PMC9378642 DOI: 10.1038/s42003-022-03786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Centromeres are established by nucleosomes containing the histone H3 variant CENP-A. CENP-A is recruited to centromeres by the Mis18–HJURP machinery. During mitosis, CENP-A recruitment ceases, implying the necessity of CENP-A maintenance at centromeres, although the exact underlying mechanism remains elusive. Herein, we show that the inner kinetochore protein Mis6 (CENP-I) and Mis15 (CENP-N) retain CENP-A during mitosis in fission yeast. Eliminating Mis6 or Mis15 during mitosis caused immediate loss of pre-existing CENP-A at centromeres. CENP-A loss occurred due to the transcriptional upregulation of non-coding RNAs at the central core region of centromeres, as confirmed by the observation RNA polymerase II inhibition preventing CENP-A loss from centromeres in the mis6 mutant. Thus, we concluded that the inner kinetochore complex containing Mis6–Mis15 blocks the indiscriminate transcription of non-coding RNAs at the core centromere, thereby retaining the epigenetic inheritance of CENP-A during mitosis. The kinetochore protein Mis6 (CENP-I) plays an important role in CENP-A maintenance during mitosis in fission yeast and blocks the indiscriminate transcription of non-coding RNAs at the core centromere to retain CENP-A during mitosis.
Collapse
|
8
|
Wu W, McHugh T, Kelly DA, Pidoux AL, Allshire RC. Establishment of centromere identity is dependent on nuclear spatial organization. Curr Biol 2022; 32:3121-3136.e6. [PMID: 35830853 PMCID: PMC9616734 DOI: 10.1016/j.cub.2022.06.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/24/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
The establishment of centromere-specific CENP-A chromatin is influenced by epigenetic and genetic processes. Central domain sequences from fission yeast centromeres are preferred substrates for CENP-ACnp1 incorporation, but their use is context dependent, requiring adjacent heterochromatin. CENP-ACnp1 overexpression bypasses heterochromatin dependency, suggesting that heterochromatin ensures exposure to conditions or locations permissive for CENP-ACnp1 assembly. Centromeres cluster around spindle-pole bodies (SPBs). We show that heterochromatin-bearing minichromosomes localize close to SPBs, consistent with this location promoting CENP-ACnp1 incorporation. We demonstrate that heterochromatin-independent de novo CENP-ACnp1 chromatin assembly occurs when central domain DNA is placed near, but not far from, endogenous centromeres or neocentromeres. Moreover, direct tethering of central domain DNA at SPBs permits CENP-ACnp1 assembly, suggesting that the nuclear compartment surrounding SPBs is permissive for CENP-ACnp1 incorporation because target sequences are exposed to high levels of CENP-ACnp1 and associated assembly factors. Thus, nuclear spatial organization is a key epigenetic factor that influences centromere identity.
Collapse
Affiliation(s)
- Weifang Wu
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Toni McHugh
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - David A Kelly
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Alison L Pidoux
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
9
|
Jiménez-Martín A, Pineda-Santaella A, Pinto-Cruz J, León-Periñán D, García-Sánchez S, Delgado-Gestoso D, Marín-Toral L, Fernández-Álvarez A. The Rabl chromosome configuration masks a kinetochore reassembly mechanism in yeast mitosis. Mol Biol Cell 2022; 33:br8. [PMID: 35274979 PMCID: PMC9282007 DOI: 10.1091/mbc.e20-09-0600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
During cell cycle progression in metazoans, the kinetochore is assembled at mitotic onset and disassembled during mitotic exit. Once assembled, the kinetochore complex attached to centromeres interacts directly with the spindle microtubules, the vehicle of chromosome segregation. This reassembly program is assumed to be absent in budding and fission yeast, because most kinetochore proteins are stably maintained at the centromeres throughout the entire cell cycle. Here, we show that the reassembly program of the outer kinetochore at mitotic onset is unexpectedly conserved in the fission yeast Schizosaccharomyces pombe. We identified this behavior by removing the Rabl chromosome configuration, in which centromeres are permanently associated with the nuclear envelope beneath the spindle pole body during interphase. In addition to having evolutionary implications for kinetochore reassembly, our results aid the understanding of the molecular processes responsible for kinetochore disassembly and assembly during mitotic entry.
Collapse
Affiliation(s)
- Alberto Jiménez-Martín
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
- Instituto de Biología Funcional y Genómica (IBFG); Consejo Superior de Investigaciones Científicas and Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alberto Pineda-Santaella
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
| | - Jesús Pinto-Cruz
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
| | - Daniel León-Periñán
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
| | - Sabas García-Sánchez
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
| | - David Delgado-Gestoso
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
| | - Laura Marín-Toral
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
| | - Alfonso Fernández-Álvarez
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
- Instituto de Biología Funcional y Genómica (IBFG); Consejo Superior de Investigaciones Científicas and Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
10
|
Deng DJ, Xia QC, Jia GS, Suo F, Chen JL, Sun L, Wang JQ, Wang SM, Du LL, Wang Y, Jin QW. Perturbation of kinetochore function using GFP-binding protein in fission yeast. G3 GENES|GENOMES|GENETICS 2021; 11:6353032. [PMID: 34849791 PMCID: PMC8527488 DOI: 10.1093/g3journal/jkab290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 11/12/2022]
Abstract
Abstract
Using genetic mutations to study protein functions in vivo is a central paradigm of modern biology. Single-domain camelid antibodies generated against GFP have been engineered as nanobodies or GFP-binding proteins (GBPs) that can bind GFP as well as some GFP variants with high affinity and selectivity. In this study, we have used GBP-mCherry fusion protein as a tool to perturb the natural functions of a few kinetochore proteins in the fission yeast Schizosaccharomyces pombe. We found that cells simultaneously expressing GBP-mCherry and the GFP-tagged inner kinetochore protein Cnp1 are sensitive to high temperature and microtubule drug thiabendazole (TBZ). In addition, kinetochore-targeted GBP-mCherry by a few major kinetochore proteins with GFP tags causes defects in faithful chromosome segregation. Thus, this setting compromises the functions of kinetochores and renders cells to behave like conditional mutants. Our study highlights the potential of using GBP as a general tool to perturb the function of some GFP-tagged proteins in vivo with the objective of understanding their functional relevance to certain physiological processes, not only in yeasts, but also potentially in other model systems.
Collapse
Affiliation(s)
- Da-Jie Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qian-Cheng Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Guo-Song Jia
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jia-Li Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Li Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jin-Qing Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shuang-Min Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Quan-Wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
11
|
Tan HL, Lim KK, Yang Q, Fan JS, Sayed AMM, Low LS, Ren B, Lim TK, Lin Q, Mok YK, Liou YC, Chen ES. Prolyl isomerization of the CENP-A N-terminus regulates centromeric integrity in fission yeast. Nucleic Acids Res 2019; 46:1167-1179. [PMID: 29194511 DOI: 10.1093/nar/gkx1180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/22/2017] [Indexed: 01/15/2023] Open
Abstract
Centromeric identity and chromosome segregation are determined by the precise centromeric targeting of CENP-A, the centromere-specific histone H3 variant. The significance of the amino-terminal domain (NTD) of CENP-A in this process remains unclear. Here, we assessed the functional significance of each residue within the NTD of CENP-A from Schizosaccharomyces pombe (SpCENP-A) and identified a proline-rich 'GRANT' (Genomic stability-Regulating site within CENP-A N-Terminus) motif that is important for CENP-A function. Through sequential mutagenesis, we show that GRANT proline residues are essential for coordinating SpCENP-A centromeric targeting. GRANT proline-15 (P15), in particular, undergoes cis-trans isomerization to regulate chromosome segregation fidelity, which appears to be carried out by two FK506-binding protein (FKBP) family prolyl cis-trans isomerases. Using proteomics analysis, we further identified the SpCENP-A-localizing chaperone Sim3 as a SpCENP-A NTD interacting protein that is dependent on GRANT proline residues. Ectopic expression of sim3+ complemented the chromosome segregation defect arising from the loss of these proline residues. Overall, cis-trans proline isomerization is a post-translational modification of the SpCENP-A NTD that confers precise propagation of centromeric integrity in fission yeast, presumably via targeting SpCENP-A to the centromere.
Collapse
Affiliation(s)
- Hwei Ling Tan
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
| | - Kim Kiat Lim
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
| | - Qiaoyun Yang
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | | | - Liy Sim Low
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
| | - Bingbing Ren
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456 Singapore
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456 Singapore
| |
Collapse
|
12
|
Asymmetrical localization of Nup107-160 subcomplex components within the nuclear pore complex in fission yeast. PLoS Genet 2019; 15:e1008061. [PMID: 31170156 PMCID: PMC6553703 DOI: 10.1371/journal.pgen.1008061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/01/2019] [Indexed: 01/05/2023] Open
Abstract
The nuclear pore complex (NPC) forms a gateway for nucleocytoplasmic transport. The outer ring protein complex of the NPC (the Nup107-160 subcomplex in humans) is a key component for building the NPC. Nup107-160 subcomplexes are believed to be symmetrically localized on the nuclear and cytoplasmic sides of the NPC. However, in S. pombe immunoelectron and fluorescence microscopic analyses revealed that the homologous components of the human Nup107-160 subcomplex had an asymmetrical localization: constituent proteins spNup132 and spNup107 were present only on the nuclear side (designated the spNup132 subcomplex), while spNup131, spNup120, spNup85, spNup96, spNup37, spEly5 and spSeh1 were localized only on the cytoplasmic side (designated the spNup120 subcomplex), suggesting the complex was split into two pieces at the interface between spNup96 and spNup107. This contrasts with the symmetrical localization reported in other organisms. Fusion of spNup96 (cytoplasmic localization) with spNup107 (nuclear localization) caused cytoplasmic relocalization of spNup107. In this strain, half of the spNup132 proteins, which interact with spNup107, changed their localization to the cytoplasmic side of the NPC, leading to defects in mitotic and meiotic progression similar to an spNup132 deletion strain. These observations suggest the asymmetrical localization of the outer ring spNup132 and spNup120 subcomplexes of the NPC is necessary for normal cell cycle progression in fission yeast. The nuclear pore complexes (NPCs) form gateways to transport intracellular molecules between the nucleus and the cytoplasm across the nuclear envelope. The Nup107-160 subcomplex, that forms nuclear and cytoplasmic outer rings, is a key complex responsible for building the NPC by symmetrical localization on the nuclear and cytoplasmic sides of the nuclear pore. This structural characteristic was found in various organisms including humans and budding yeasts, and therefore believed to be common among “all” eukaryotes. However, in this paper, we revealed an asymmetrical localization of the homologous components of the human Nup107-160 subcomplex in fission yeast by immunoelectron and fluorescence microscopic analyses: in this organism, the Nup107-160 subcomplex is split into two pieces, and each of the split pieces is differentially distributed to the nuclear and cytoplasmic side of the NPC: one piece is only in the nuclear side while the other piece is only in the cytoplasmic side. This contrasts with the symmetrical localization reported in other organisms. In addition, we confirmed that the asymmetrical configuration of the outer ring structure is necessary for cell cycle progression in fission yeast. This study provides notions of diverse structures and functions of NPCs evolved in eukaryotes.
Collapse
|
13
|
Negative Regulation of the Mis17-Mis6 Centromere Complex by mRNA Decay Pathway and EKC/KEOPS Complex in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2019; 9:1815-1823. [PMID: 30967422 PMCID: PMC6553542 DOI: 10.1534/g3.119.400227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The mitotic kinetochore forms at the centromere for proper chromosome segregation. Deposition of the centromere-specific histone H3 variant, spCENP-A/Cnp1, is vital for the formation of centromere-specific chromatin and the Mis17-Mis6 complex of the fission yeast Schizosaccharomyces pombe is required for this deposition. Here we identified extragenic suppressors for a Mis17-Mis6 complex temperature-sensitive (ts) mutant, mis17-S353P, using whole-genome sequencing. The large and small daughter nuclei phenotype observed in mis17-S353P was greatly rescued by these suppressors. Suppressor mutations in two ribonuclease genes involved in the mRNA decay pathway, exo2 and pan2, may affect Mis17 protein level, as mis17 mutant protein level was recovered in mis17-S353P exo2 double mutant cells. Suppressor mutations in EKC/KEOPS complex genes may not regulate Mis17 protein level, but restored centromeric localization of spCENP-A/Cnp1, Mis6 and Mis15 in mis17-S353P. Therefore, the EKC/KEOPS complex may inhibit Mis17-Mis6 complex formation or centromeric localization. Mutational analysis in protein structure indicated that suppressor mutations in the EKC/KEOPS complex may interfere with its kinase activity or complex formation. Our results suggest that the mRNA decay pathway and the EKC/KEOPS complex negatively regulate Mis17-Mis6 complex-mediated centromere formation by distinct and unexpected mechanisms.
Collapse
|
14
|
Isolation of Fission Yeast Condensin Temperature-Sensitive Mutants with Single Amino Acid Substitutions Targeted to Hinge Domain. G3-GENES GENOMES GENETICS 2019; 9:1777-1783. [PMID: 30914423 PMCID: PMC6505169 DOI: 10.1534/g3.119.400156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Essential genes cannot be deleted from the genome; therefore, temperature-sensitive (ts) mutants and cold-sensitive (cs) mutants are very useful to discover functions of essential genes in model organisms such as Schizosaccharomyces pombe and Saccharomyces cerevisiae. To isolate ts/cs mutants for essential genes of interest, error-prone mutagenesis (or random mutagenesis) coupled with in vitro selection has been widely used. However, this method often introduces multiple silent mutations, in addition to the mutation responsible for ts/cs, with the result that one cannot discern which mutation is responsible for the ts/cs phenotype. In addition, the location of the responsible mutation introduced is random, whereas it is preferable to isolate ts/cs mutants with single amino acid substitutions, located in a targeted motif or domain of the protein of interest. To solve these problems, we have developed a method to isolate ts/cs mutants with single amino acid substitutions in targeted regions using site-directed mutagenesis. This method takes advantage of the empirical fact that single amino acid substitutions (L/S -> P or G/A -> E/D) often cause ts or cs. Application of the method to condensin and cohesin hinge domains was successful: ∼20% of the selected single amino acid substitutions turned out to be ts or cs. This method is versatile in fission yeast and is expected to be broadly applicable to isolate ts/cs mutants with single amino acid substitutions in targeted regions of essential genes. 11 condensin hinge ts mutants were isolated using the method and their responsible mutations are broadly distributed in hinge domain. Characterization of these mutants will be very helpful to understand the function of hinge domain.
Collapse
|
15
|
Hocquet C, Robellet X, Modolo L, Sun XM, Burny C, Cuylen-Haering S, Toselli E, Clauder-Münster S, Steinmetz L, Haering CH, Marguerat S, Bernard P. Condensin controls cellular RNA levels through the accurate segregation of chromosomes instead of directly regulating transcription. eLife 2018; 7:38517. [PMID: 30230473 PMCID: PMC6173581 DOI: 10.7554/elife.38517] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022] Open
Abstract
Condensins are genome organisers that shape chromosomes and promote their accurate transmission. Several studies have also implicated condensins in gene expression, although any mechanisms have remained enigmatic. Here, we report on the role of condensin in gene expression in fission and budding yeasts. In contrast to previous studies, we provide compelling evidence that condensin plays no direct role in the maintenance of the transcriptome, neither during interphase nor during mitosis. We further show that the changes in gene expression in post-mitotic fission yeast cells that result from condensin inactivation are largely a consequence of chromosome missegregation during anaphase, which notably depletes the RNA-exosome from daughter cells. Crucially, preventing karyotype abnormalities in daughter cells restores a normal transcriptome despite condensin inactivation. Thus, chromosome instability, rather than a direct role of condensin in the transcription process, changes gene expression. This knowledge challenges the concept of gene regulation by canonical condensin complexes.
Collapse
Affiliation(s)
- Clémence Hocquet
- CNRS Laboratory of Biology and Modelling of the Cell, Lyon, France.,Université de Lyon, ENSL, UCBL, Lyon, France
| | - Xavier Robellet
- CNRS Laboratory of Biology and Modelling of the Cell, Lyon, France.,Université de Lyon, ENSL, UCBL, Lyon, France
| | - Laurent Modolo
- CNRS Laboratory of Biology and Modelling of the Cell, Lyon, France.,Université de Lyon, ENSL, UCBL, Lyon, France
| | - Xi-Ming Sun
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Claire Burny
- CNRS Laboratory of Biology and Modelling of the Cell, Lyon, France.,Université de Lyon, ENSL, UCBL, Lyon, France
| | - Sara Cuylen-Haering
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Esther Toselli
- CNRS Laboratory of Biology and Modelling of the Cell, Lyon, France.,Université de Lyon, ENSL, UCBL, Lyon, France
| | | | - Lars Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian H Haering
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pascal Bernard
- CNRS Laboratory of Biology and Modelling of the Cell, Lyon, France.,Université de Lyon, ENSL, UCBL, Lyon, France
| |
Collapse
|
16
|
Lu M, He X. Ccp1 modulates epigenetic stability at centromeres and affects heterochromatin distribution in Schizosaccharomyces pombe. J Biol Chem 2018; 293:12068-12080. [PMID: 29899117 PMCID: PMC6078436 DOI: 10.1074/jbc.ra118.003873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/02/2018] [Indexed: 12/26/2022] Open
Abstract
Distinct chromatin organization features, such as centromeres and heterochromatin domains, are inherited epigenetically. However, the mechanisms that modulate the accuracy of epigenetic inheritance, especially at the individual nucleosome level, are not well-understood. Here, using ChIP and next-generation sequencing (ChIP-Seq), we characterized Ccp1, a homolog of the histone chaperone Vps75 in budding yeast that functions in centromere chromatin duplication and heterochromatin maintenance in fission yeast (Schizosaccharomyces pombe). We show that Ccp1 is enriched at the central core regions of the centromeres. Of note, among all histone chaperones characterized, deletion of the ccp1 gene uniquely reduced the rate of epigenetic switching, manifested as position effect variegation within the centromeric core region (CEN-PEV). In contrast, gene deletion of other histone chaperones either elevated the PEV switching rates or did not affect centromeric PEV. Ccp1 and the kinetochore components Mis6 and Sim4 were mutually dependent for centromere or kinetochore association at the proper levels. Moreover, Ccp1 influenced heterochromatin distribution at multiple loci in the genome, including the subtelomeric and the pericentromeric regions. We also found that Gar2, a protein predominantly enriched in the nucleolus, functions similarly to Ccp1 in modulating the epigenetic stability of centromeric regions, although its mechanism remained unclear. Together, our results identify Ccp1 as an important player in modulating epigenetic stability and maintaining proper organization of multiple chromatin domains throughout the fission yeast genome.
Collapse
Affiliation(s)
- Min Lu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangwei He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
17
|
Xu X, Kanai R, Nakazawa N, Wang L, Toyoshima C, Yanagida M. Suppressor mutation analysis combined with 3D modeling explains cohesin's capacity to hold and release DNA. Proc Natl Acad Sci U S A 2018; 115:E4833-E4842. [PMID: 29735656 PMCID: PMC6003501 DOI: 10.1073/pnas.1803564115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cohesin is a fundamental protein complex that holds sister chromatids together. Separase protease cleaves a cohesin subunit Rad21/SCC1, causing the release of cohesin from DNA to allow chromosome segregation. To understand the functional organization of cohesin, we employed next-generation whole-genome sequencing and identified numerous extragenic suppressors that overcome either inactive separase/Cut1 or defective cohesin in the fission yeast Schizosaccharomyces pombe Unexpectedly, Cut1 is dispensable if suppressor mutations cause disorders of interfaces among essential cohesin subunits Psm1/SMC1, Psm3/SMC3, Rad21/SCC1, and Mis4/SCC2, the crystal structures of which suggest physical and functional impairment at the interfaces of Psm1/3 hinge, Psm1 head-Rad21, or Psm3 coiled coil-Rad21. Molecular-dynamics analysis indicates that the intermolecular β-sheets in the cohesin hinge of cut1 suppressor mutants remain intact, but a large mobility change occurs at the coiled coil bound to the hinge. In contrast, suppressors of rad21-K1 occur in either the head ATPase domains or the Psm3 coiled coil that interacts with Rad21. Suppressors of mis4-G1326E reside in the head of Psm3/1 or the intragenic domain of Mis4. These may restore the binding of cohesin to DNA. Evidence is provided that the head and hinge of SMC subunits are proximal, and that they coordinate to form arched coils that can hold or release DNA by altering the angles made by the arched coiled coils. By combining molecular modeling with suppressor sequence analysis, we propose a cohesin structure designated the "hold-and-release" model, which may be considered as an alternative to the prevailing "ring" model.
Collapse
Affiliation(s)
- Xingya Xu
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan
| | - Ryuta Kanai
- Institute of Quantitative Biosciences, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Norihiko Nakazawa
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan
| | - Li Wang
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan
| | - Chikashi Toyoshima
- Institute of Quantitative Biosciences, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan;
| |
Collapse
|
18
|
Yukawa M, Kawakami T, Okazaki M, Kume K, Tang NH, Toda T. A microtubule polymerase cooperates with the kinesin-6 motor and a microtubule cross-linker to promote bipolar spindle assembly in the absence of kinesin-5 and kinesin-14 in fission yeast. Mol Biol Cell 2017; 28:3647-3659. [PMID: 29021344 PMCID: PMC5706992 DOI: 10.1091/mbc.e17-08-0497] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
Kinesin-5 is required for bipolar spindle assembly; yet in the absence of kinesins-5 and -14, cells can form spindles. In fission yeast, three distinct pathways compensate for their loss. Microtubule polymerase, kinesin-6, and microtubule cross-linker execute individual roles in concert at different mitotic stages in place of the two kinesins. Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end–directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end–directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly.
Collapse
Affiliation(s)
- Masashi Yukawa
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan .,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Tomoki Kawakami
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Masaki Okazaki
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Kazunori Kume
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.,Laboratory of Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Takashi Toda
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan .,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|
19
|
Kinetochore Components Required for Centromeric Chromatin Assembly Are Impacted by Msc1 in Schizosaccharomyces pombe. Genetics 2017; 207:559-569. [PMID: 28827290 DOI: 10.1534/genetics.117.300183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/15/2017] [Indexed: 01/02/2023] Open
Abstract
Eukaryotic chromosome segregation requires a protein complex known as the kinetochore that mediates attachment between mitotic spindle microtubules and centromere-specific nucleosomes composed of the widely conserved histone variant CENP-A. Mutations in kinetochore proteins of the fission yeast Schizosaccharomyces pombe lead to chromosome missegregation such that daughter cells emerge from mitosis with unequal DNA content. We find that multiple copies of Msc1-a fission yeast homolog of the KDM5 family of proteins-suppresses the temperature-sensitive growth defect of several kinetochore mutants, including mis16 and mis18, as well as mis6, mis15, and mis17, components of the Constitutive Centromere Associated Network (CCAN). On the other hand, deletion of msc1 exacerbates both the growth defect and chromosome missegregation phenotype of each of these mutants. The C-terminal PHD domains of Msc1, previously shown to associate with a histone deacetylase activity, are necessary for Msc1 function when kinetochore mutants are compromised. We also demonstrate that, in the absence of Msc1, the frequency of localization to the kinetochore of Mis16 and Mis15 is altered from wild-type cells. As we show here for msc1, others have shown that elevating cnp1 levels acts similarly to promote survival of the CCAN mutants. The rescue of mis15 and mis17 by cnp1 is, however, independent of msc1 Thus, Msc1 appears to contribute to the chromatin environment at the centromere: the absence of Msc1 sensitizes cells to perturbations in kinetochore function, while elevating Msc1 overcomes loss of function of critical components of the kinetochore and centromere.
Collapse
|
20
|
Musacchio A, Desai A. A Molecular View of Kinetochore Assembly and Function. BIOLOGY 2017; 6:E5. [PMID: 28125021 PMCID: PMC5371998 DOI: 10.3390/biology6010005] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
Abstract
Kinetochores are large protein assemblies that connect chromosomes to microtubules of the mitotic and meiotic spindles in order to distribute the replicated genome from a mother cell to its daughters. Kinetochores also control feedback mechanisms responsible for the correction of incorrect microtubule attachments, and for the coordination of chromosome attachment with cell cycle progression. Finally, kinetochores contribute to their own preservation, across generations, at the specific chromosomal loci devoted to host them, the centromeres. They achieve this in most species by exploiting an epigenetic, DNA-sequence-independent mechanism; notable exceptions are budding yeasts where a specific sequence is associated with centromere function. In the last 15 years, extensive progress in the elucidation of the composition of the kinetochore and the identification of various physical and functional modules within its substructure has led to a much deeper molecular understanding of kinetochore organization and the origins of its functional output. Here, we provide a broad summary of this progress, focusing primarily on kinetochores of humans and budding yeast, while highlighting work from other models, and present important unresolved questions for future studies.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, Dortmund 44227, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen 45117, Germany.
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA.
- Department of Cellular & Molecular Medicine, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Hara M, Fukagawa T. Critical Foundation of the Kinetochore: The Constitutive Centromere-Associated Network (CCAN). PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:29-57. [PMID: 28840232 DOI: 10.1007/978-3-319-58592-5_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The kinetochore is a large protein complex, which is assembled at the centromere of a chromosome to ensure faithful chromosome segregation during M-phase. The centromere in most eukaryotes is epigenetically specified by DNA sequence-independent mechanisms. The constitutive centromere-associated network (CCAN) is a subcomplex in the kinetochore that localizes to the centromere throughout the cell cycle. The CCAN has interfaces bound to the centromeric chromatin and the spindle microtubule-binding complex; therefore, it functions as a foundation of kinetochore formation. Here, we summarize recent progress in our understanding of the structure and organization of the CCAN. We also discuss an additional role of the CCAN in the maintenance of centromere position and dynamic reorganization of the CCAN.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Nakazawa N, Mehrotra R, Arakawa O, Yanagida M. ICRF
‐193, an anticancer topoisomerase
II
inhibitor, induces arched telophase spindles that snap, leading to a ploidy increase in fission yeast. Genes Cells 2016; 21:978-93. [DOI: 10.1111/gtc.12397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/26/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Norihiko Nakazawa
- G0 Cell Unit Okinawa Institute of Science and Technology Graduate University Onna‐son Okinawa 904‐0495 Japan
| | - Rajesh Mehrotra
- G0 Cell Unit Okinawa Institute of Science and Technology Graduate University Onna‐son Okinawa 904‐0495 Japan
- Department of Biological Sciences BITS Pilani Rajasthan 333031 India
| | - Orie Arakawa
- G0 Cell Unit Okinawa Institute of Science and Technology Graduate University Onna‐son Okinawa 904‐0495 Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit Okinawa Institute of Science and Technology Graduate University Onna‐son Okinawa 904‐0495 Japan
| |
Collapse
|
23
|
Cleavage and polyadenylation factor, Rna14 is an essential protein required for the maintenance of genomic integrity in fission yeast Schizosaccharomyces pombe. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:189-97. [DOI: 10.1016/j.bbamcr.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/28/2015] [Accepted: 11/11/2015] [Indexed: 11/24/2022]
|
24
|
Lim KK, Ong TYR, Tan YR, Yang EG, Ren B, Seah KS, Yang Z, Tan TS, Dymock BW, Chen ES. Mutation of histone H3 serine 86 disrupts GATA factor Ams2 expression and precise chromosome segregation in fission yeast. Sci Rep 2015; 5:14064. [PMID: 26369364 PMCID: PMC4570208 DOI: 10.1038/srep14064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic genomes are packed into discrete units, referred to as nucleosomes, by organizing around scaffolding histone proteins. The interplay between these histones and the DNA can dynamically regulate the function of the chromosomal domain. Here, we interrogated the function of a pair of juxtaposing serine residues (S86 and S87) that reside within the histone fold of histone H3. We show that fission yeast cells expressing a mutant histone H3 disrupted at S86 and S87 (hht2-S86AS87A) exhibited unequal chromosome segregation, disrupted transcriptional silencing of centromeric chromatin, and reduced expression of Ams2, a GATA-factor that regulates localization of the centromere-specific histone H3 variant CENP-A. We found that overexpression of ams2+ could suppress the chromosome missegregation phenotype that arose in the hht2-S86AS87A mutant. We further demonstrate that centromeric localization of SpCENP-Acnp1-1 was significantly compromised in hht2-S86AS87A, suggesting synergism between histone H3 and the centromere-targeting domain of SpCENP-A. Taken together, our work presents evidence for an uncharacterized serine residue in fission yeast histone H3 that affects centromeric integrity via regulating the expression of the SpCENP-A-localizing Ams2 protein. [173/200 words]
Collapse
Affiliation(s)
- Kim Kiat Lim
- Department of Biochemistry, School of Medicine, National University of Singapore, Singapore.,National University Health System (NUHS), National University of Singapore, Singapore
| | - Terenze Yao Rui Ong
- Department of Biochemistry, School of Medicine, National University of Singapore, Singapore.,National University Health System (NUHS), National University of Singapore, Singapore
| | - Yue Rong Tan
- Department of Biochemistry, School of Medicine, National University of Singapore, Singapore.,National University Health System (NUHS), National University of Singapore, Singapore
| | - Eugene Guorong Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Bingbing Ren
- Department of Biochemistry, School of Medicine, National University of Singapore, Singapore.,National University Health System (NUHS), National University of Singapore, Singapore
| | - Kwi Shan Seah
- Department of Biochemistry, School of Medicine, National University of Singapore, Singapore.,National University Health System (NUHS), National University of Singapore, Singapore
| | - Zhe Yang
- Department of Biochemistry, School of Medicine, National University of Singapore, Singapore.,National University Health System (NUHS), National University of Singapore, Singapore
| | - Tsu Soo Tan
- School of Chemical &Life Sciences, Nanyang Polytechnic, Singapore
| | - Brian W Dymock
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, School of Medicine, National University of Singapore, Singapore.,National University Health System (NUHS), National University of Singapore, Singapore.,Synthetic Biology Research Consortium, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
25
|
An S, Kim H, Cho US. Mis16 Independently Recognizes Histone H4 and the CENP-ACnp1-Specific Chaperone Scm3sp. J Mol Biol 2015; 427:3230-3240. [PMID: 26343758 DOI: 10.1016/j.jmb.2015.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 12/14/2022]
Abstract
CENP-A is a centromere-specific histone H3 variant that is required for kinetochore assembly and accurate chromosome segregation. For it to function properly, CENP-A must be specifically localized to centromeres. In fission yeast, Scm3sp and the Mis18 complex, composed of Mis16, Eic1, and Mis18, function as a CENP-A(Cnp1)-specific chaperone and a recruiting factor, respectively, and together ensure accurate delivery of CENP-A(Cnp1) to centromeres. Although how Scm3sp specifically recognizes CENP-A(Cnp1) has been revealed recently, the recruiting mechanism of CENP-A(Cnp1) via the Mis18 complex remains unknown. In this study, we have determined crystal structures of Schizosaccharomyces japonicus Mis16 alone and in complex with the helix 1 of histone H4 (H4α1). Crystal structures followed by mutant analysis and affinity pull-downs have revealed that Mis16 recognizes both H4α1 and Scm3sp independently within the CENP-A(Cnp1)/H4:Scm3sp complex. This observation suggests that Mis16 gains CENP-A(Cnp1) specificity by recognizing both Scm3sp and histone H4. Our studies provide insights into the molecular mechanisms underlying specific recruitment of CENP-A(Cnp1)/H4:Scm3sp into centromeres.
Collapse
Affiliation(s)
- Sojin An
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, SPC 5606, Ann Arbor, MI 48109, USA
| | - Hanseong Kim
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, SPC 5606, Ann Arbor, MI 48109, USA
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, SPC 5606, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Inner Kinetochore Protein Interactions with Regional Centromeres of Fission Yeast. Genetics 2015; 201:543-61. [PMID: 26275423 PMCID: PMC4596668 DOI: 10.1534/genetics.115.179788] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/10/2015] [Indexed: 01/19/2023] Open
Abstract
Centromeres of the fission yeast Schizosaccharomyces pombe lack the highly repetitive sequences that make most other "regional" centromeres refractory to analysis. To map fission yeast centromeres, we applied H4S47C-anchored cleavage mapping and native and cross-linked chromatin immunoprecipitation with paired-end sequencing. H3 nucleosomes are nearly absent from the central domain, which is occupied by centromere-specific H3 (cenH3 or CENP-A) nucleosomes with two H4s per particle that are mostly unpositioned and are more widely spaced than nucleosomes elsewhere. Inner kinetochore proteins CENP-A, CENP-C, CENP-T, CENP-I, and Scm3 are highly enriched throughout the central domain except at tRNA genes, with no evidence for preferred kinetochore assembly sites. These proteins are weakly enriched and less stably incorporated in H3-rich heterochromatin. CENP-A nucleosomes protect less DNA from nuclease digestion than H3 nucleosomes, while CENP-T protects a range of fragment sizes. Our results suggest that CENP-T particles occupy linkers between CENP-A nucleosomes and that classical regional centromeres differ from other centromeres by the absence of CENP-A nucleosome positioning.
Collapse
|
27
|
Kobayashi K, Fujii T, Asada R, Ooka M, Hirota K. Development of a targeted flip-in system in avian DT40 cells. PLoS One 2015; 10:e0122006. [PMID: 25799417 PMCID: PMC4370768 DOI: 10.1371/journal.pone.0122006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/09/2015] [Indexed: 12/20/2022] Open
Abstract
Gene-targeting to create null mutants or designed-point mutants is a powerful tool for the molecular dissection of complex phenotypes involving DNA repair, signal transduction, and metabolism. Because gene-targeting is critically impaired in mutants exhibiting attenuated homologous recombination (HR), it is believed that gene-targeting is mediated via homologous recombination, though the precise mechanism remains unknown. We explored gene-targeting in yeast and avian DT40 cells. In animal cells, gene-targeting is activated by DNA double strand breaks introduced into the genomic region where gene-targeting occurs. This is evidenced by the fact that introducing double strand breaks at targeted genome sequences via artificial endonucleases such as TALEN and CRISPR facilitates gene-targeting. We found that in fission yeast, Schizosaccharomyces pombe, gene-targeting was initiated from double strand breaks on both edges of the homologous arms in the targeting construct. Strikingly, we also found efficient gene-targeting initiated on the edges of homologous arms in avian DT40 cells, a unique animal cell line in which efficient gene-targeting has been demonstrated. It may be that yeast and DT40 cells share some mechanism in which unknown factors detect and recombine broken DNA ends at homologous arms accompanied by crossover. We found efficient targeted integration of gapped plasmids accompanied by crossover in the DT40 cells. To take advantage of this finding, we developed a targeted flip-in system for avian DT40 cells. This flip-in system enables the rapid generation of cells expressing tag-fused proteins and the stable expression of transgenes from OVA loci.
Collapse
Affiliation(s)
- Kaori Kobayashi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Toshihiko Fujii
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ryuta Asada
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Masato Ooka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
- * E-mail:
| |
Collapse
|
28
|
Xu X, Nakazawa N, Yanagida M. Condensin HEAT subunits required for DNA repair, kinetochore/centromere function and ploidy maintenance in fission yeast. PLoS One 2015; 10:e0119347. [PMID: 25764183 PMCID: PMC4357468 DOI: 10.1371/journal.pone.0119347] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/23/2015] [Indexed: 11/18/2022] Open
Abstract
Condensin, a central player in eukaryotic chromosomal dynamics, contains five evolutionarily-conserved subunits. Two SMC (structural maintenance of chromosomes) subunits contain ATPase, hinge, and coiled-coil domains. One non-SMC subunit is similar to bacterial kleisin, and two other non-SMC subunits contain HEAT (similar to armadillo) repeats. Here we report isolation and characterization of 21 fission yeast (Schizosaccharomyces pombe) mutants for three non-SMC subunits, created using error-prone mutagenesis that resulted in single-amino acid substitutions. Beside condensation, segregation, and DNA repair defects, similar to those observed in previously isolated SMC and cnd2 mutants, novel phenotypes were observed for mutants of HEAT-repeats containing Cnd1 and Cnd3 subunits. cnd3-L269P is hypersensitive to the microtubule poison, thiabendazole, revealing defects in kinetochore/centromere and spindle assembly checkpoints. Three cnd1 and three cnd3 mutants increased cell size and doubled DNA content, thereby eliminating the haploid state. Five of these mutations reside in helix B of HEAT repeats. Two non-SMC condensin subunits, Cnd1 and Cnd3, are thus implicated in ploidy maintenance.
Collapse
Affiliation(s)
- Xingya Xu
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Norihiko Nakazawa
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- * E-mail:
| |
Collapse
|
29
|
Agarwal M, Mehta G, Ghosh SK. Role of Ctf3 and COMA subcomplexes in meiosis: Implication in maintaining Cse4 at the centromere and numeric spindle poles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:671-84. [PMID: 25562757 DOI: 10.1016/j.bbamcr.2014.12.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 12/16/2022]
Abstract
During mitosis and meiosis, kinetochore, a conserved multi-protein complex, connects microtubule with the centromere and promotes segregation of the chromosomes. In budding yeast, central kinetochore complex named Ctf19 has been implicated in various functions and is believed to be made up of three biochemically distinct subcomplexes: COMA, Ctf3 and Iml3-Chl4. In this study, we aimed to identify whether Ctf3 and COMA subcomplexes have any unshared function at the kinetochore. Our data suggests that both these subcomplexes may work as a single functional unit without any unique functions, which we tested. Analysis of severity of the defects in the mutants suggests that COMA is epistatic to Ctf3 subcomplex. Interestingly, we noticed that these subcomplexes affect the organization of mitotic and meiotic kinetochores with subtle differences and they promote maintenance of Cse4 at the centromeres specifically during meiosis which is similar to the role of Mis6 (Ctf3 homolog) in fission yeast during mitosis. Interestingly, analysis of ctf3Δ and ctf19Δ mutants revealed a novel role of Ctf19 complex in regulation of SPB cohesion and duplication in meiosis.
Collapse
Affiliation(s)
- Meenakshi Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 40076, India
| | - Gunjan Mehta
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 40076, India
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 40076, India.
| |
Collapse
|
30
|
The kinetochore protein Kis1/Eic1/Mis19 ensures the integrity of mitotic spindles through maintenance of kinetochore factors Mis6/CENP-I and CENP-A. PLoS One 2014; 9:e111905. [PMID: 25375240 PMCID: PMC4222959 DOI: 10.1371/journal.pone.0111905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022] Open
Abstract
Microtubules play multiple roles in a wide range of cellular phenomena, including cell polarity establishment and chromosome segregation. A number of microtubule regulators have been identified, including microtubule-associated proteins and kinases, and knowledge of these factors has contributed to our molecular understanding of microtubule regulation of each relevant cellular process. The known regulators, however, are insufficient to explain how those processes are linked to one another, underscoring the need to identify additional regulators. To find such novel mechanisms and microtubule regulators, we performed a screen that combined genetics and microscopy for fission yeast mutants defective in microtubule organization. We isolated approximately 900 mutants showing defects in either microtubule organization or the nuclear envelope, and these mutants were classified into 12 categories. We particularly focused on one mutant, kis1, which displayed spindle defects in early mitosis. The kis1 mutant frequently failed to assemble a normal bipolar spindle. The responsible gene encoded a kinetochore protein, Mis19 (also known as Eic1), which localized to the interface of kinetochores and spindle poles. We also found that the inner kinetochore proteins Mis6/CENP-I and Cnp1/CENP-A were delocalized from kinetochores in the kis1 cells and that kinetochore-microtubule attachment was defective. Another mutant, mis6, also displayed similar spindle defects. We conclude that Kis1 is required for inner kinetochore organization, through which Kis1 ensures kinetochore-microtubule attachment and spindle integrity. Thus, we propose an unexpected relationship between inner kinetochore organization and spindle integrity.
Collapse
|
31
|
Basilico F, Maffini S, Weir JR, Prumbaum D, Rojas AM, Zimniak T, De Antoni A, Jeganathan S, Voss B, van Gerwen S, Krenn V, Massimiliano L, Valencia A, Vetter IR, Herzog F, Raunser S, Pasqualato S, Musacchio A. The pseudo GTPase CENP-M drives human kinetochore assembly. eLife 2014; 3:e02978. [PMID: 25006165 PMCID: PMC4080450 DOI: 10.7554/elife.02978] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kinetochores, multi-subunit complexes that assemble at the interface with centromeres, bind spindle microtubules to ensure faithful delivery of chromosomes during cell division. The configuration and function of the kinetochore-centromere interface is poorly understood. We report that a protein at this interface, CENP-M, is structurally and evolutionarily related to small GTPases but is incapable of GTP-binding and conformational switching. We show that CENP-M is crucially required for the assembly and stability of a tetramer also comprising CENP-I, CENP-H, and CENP-K, the HIKM complex, which we extensively characterize through a combination of structural, biochemical, and cell biological approaches. A point mutant affecting the CENP-M/CENP-I interaction hampers kinetochore assembly and chromosome alignment and prevents kinetochore recruitment of the CENP-T/W complex, questioning a role of CENP-T/W as founder of an independent axis of kinetochore assembly. Our studies identify a single pathway having CENP-C as founder, and CENP-H/I/K/M and CENP-T/W as CENP-C-dependent followers.DOI: http://dx.doi.org/10.7554/eLife.02978.001.
Collapse
Affiliation(s)
- Federica Basilico
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - John R Weir
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Daniel Prumbaum
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ana M Rojas
- Computational Biology and Bioinformatics Group, Institute of Biomedicine of Seville, Campus Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Tomasz Zimniak
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-Universität, München, Munich, Germany
| | - Anna De Antoni
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Sadasivam Jeganathan
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Beate Voss
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Suzan van Gerwen
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Veronica Krenn
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Lucia Massimiliano
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alfonso Valencia
- Structural Biology and Biocomputing Programme, Spanish National Cancer Centre-CNIO, Madrid, Spain
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Franz Herzog
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-Universität, München, Munich, Germany
| | - Stefan Raunser
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
32
|
Hayashi T, Ebe M, Nagao K, Kokubu A, Sajiki K, Yanagida M. Schizosaccharomyces pombe centromere protein Mis19 links Mis16 and Mis18 to recruit CENP-A through interacting with NMD factors and the SWI/SNF complex. Genes Cells 2014; 19:541-54. [PMID: 24774534 DOI: 10.1111/gtc.12152] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/14/2014] [Indexed: 01/05/2023]
Abstract
CENP-A is a centromere-specific variant of histone H3 that is required for accurate chromosome segregation. The fission yeast Schizosaccharomyces pombe and mammalian Mis16 and Mis18 form a complex essential for CENP-A recruitment to centromeres. It is unclear, however, how the Mis16-Mis18 complex achieves this function. Here, we identified, by mass spectrometry, novel fission yeast centromere proteins Mis19 and Mis20 that directly interact with Mis16 and Mis18. Like Mis18, Mis19 and Mis20 are localized at the centromeres during interphase, but not in mitosis. Inactivation of Mis19 in a newly isolated temperature-sensitive mutant resulted in CENP-A delocalization and massive chromosome missegregation, whereas Mis20 was dispensable for proper chromosome segregation. Mis19 might be a bridge component for Mis16 and Mis18. We isolated extragenic suppressor mutants for temperature-sensitive mis18 and mis19 mutants and used whole-genome sequencing to determine the mutated sites. We identified two groups of loss-of-function suppressor mutations in non-sense-mediated mRNA decay factors (upf2 and ebs1), and in SWI/SNF chromatin-remodeling components (snf5, snf22 and sol1). Our results suggest that the Mis16-Mis18-Mis19-Mis20 CENP-A-recruiting complex, which is functional in the G1-S phase, may be counteracted by the SWI/SNF chromatin-remodeling complex and non-sense-mediated mRNA decay, which may prevent CENP-A deposition at the centromere.
Collapse
Affiliation(s)
- Takeshi Hayashi
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Rad51-dependent aberrant chromosome structures at telomeres and ribosomal DNA activate the spindle assembly checkpoint. Mol Cell Biol 2014; 34:1389-97. [PMID: 24469396 DOI: 10.1128/mcb.01704-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The spindle assembly checkpoint (SAC) monitors defects in kinetochore-microtubule attachment or lack of tension at kinetochores and arrests cells at prometaphase. In fission yeast, the double mutant between pot1Δ and the helicase-dead point mutant of the RecQ helicase Rqh1 gene (rqh1-hd) accumulates Rad51-dependent recombination intermediates at telomeres and enters mitosis with those intermediates. Here, we found that SAC-dependent prometaphase arrest occurred more frequently in pot1Δ rqh1-hd double mutants than in rqh1-hd single mutants. SAC-dependent prometaphase arrest also occurred more frequently in rqh1-hd single mutants after cells were released from DNA replication block compared to the rqh1-hd single mutant in the absence of exogenous insult to the DNA. In both cases, Mad2 foci persisted longer than usual at kinetochores, suggesting a defect in kinetochore-microtubule attachment. In pot1Δ rqh1-hd double mutants and rqh1-hd single mutants released from DNA replication block, SAC-dependent prometaphase arrest was suppressed by the removal of the recombination or replication intermediates. Our results indicate that the accumulation of recombination or replication intermediates induces SAC-dependent prometaphase arrest, possibly by affecting kinetochore-microtubule attachment.
Collapse
|
34
|
Kinetochore assembly and heterochromatin formation occur autonomously in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 2014; 111:1903-8. [PMID: 24449889 DOI: 10.1073/pnas.1216934111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kinetochores in multicellular eukaryotes are usually associated with heterochromatin. Whether this heterochromatin simply promotes the cohesion necessary for accurate chromosome segregation at cell division or whether it also has a role in kinetochore assembly is unclear. Schizosaccharomyces pombe is an important experimental system for investigating centromere function, but all of the previous work with this species has exploited a single strain or its derivatives. The laboratory strain and most other S. pombe strains contain three chromosomes, but one recently discovered strain, CBS 2777, contains four. We show that the genome of CBS 2777 is related to that of the laboratory strain by a complex chromosome rearrangement. As a result, two of the kinetochores in CBS 2777 contain the central core sequences present in the laboratory strain centromeres, but lack adjacent heterochromatin. The closest block of heterochromatin to these rearranged kinetochores is ∼100 kb away at new telomeres. Despite lacking large amounts of adjacent heterochromatin, the rearranged kinetochores bind CENP-A(Cnp1) and CENP-C(Cnp3) in similar quantities and with similar specificities as those of the laboratory strain. The simplest interpretation of this result is that constitutive kinetochore assembly and heterochromatin formation occur autonomously.
Collapse
|
35
|
Epigenetically induced paucity of histone H2A.Z stabilizes fission-yeast ectopic centromeres. Nat Struct Mol Biol 2013; 20:1397-406. [PMID: 24186062 DOI: 10.1038/nsmb.2697] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 09/16/2013] [Indexed: 11/08/2022]
Abstract
In most eukaryotes, centromeres are epigenetically defined by nucleosomes that contain the histone H3 variant centromere protein A (CENP-A). Specific targeting of the CENP-A-loading chaperone to the centromere is vital for stable centromere propagation; however, the existence of ectopic centromeres (neocentromeres) indicates that this chaperone can function in different chromatin environments. The mechanism responsible for accommodating the CENP-A chaperone at noncentromeric regions is poorly understood. Here, we report the identification of transient, immature neocentromeres in Schizosaccharomyces pombe that show reduced association with the CENP-A chaperone Scm3, owing to persistence of the histone H2A variant H2A.Z. After the acquisition of adjacent heterochromatin or relocation of the immature neocentromeres to subtelomeric regions, H2A.Z was depleted and Scm3 was replenished, thus leading to subsequent stabilization of the neocentromeres. These findings provide new insights into histone variant-mediated epigenetic control of neocentromere establishment.
Collapse
|
36
|
Nakamura T, Pluskal T, Nakaseko Y, Yanagida M. Impaired coenzyme A synthesis in fission yeast causes defective mitosis, quiescence-exit failure, histone hypoacetylation and fragile DNA. Open Biol 2013; 2:120117. [PMID: 23091701 PMCID: PMC3472395 DOI: 10.1098/rsob.120117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/22/2012] [Indexed: 12/02/2022] Open
Abstract
Biosynthesis of coenzyme A (CoA) requires a five-step process using pantothenate and cysteine in the fission yeast Schizosaccharomyces pombe. CoA contains a thiol (SH) group, which reacts with carboxylic acid to form thioesters, giving rise to acyl-activated CoAs such as acetyl-CoA. Acetyl-CoA is essential for energy metabolism and protein acetylation, and, in higher eukaryotes, for the production of neurotransmitters. We isolated a novel S. pombe temperature-sensitive strain ppc1-537 mutated in the catalytic region of phosphopantothenoylcysteine synthetase (designated Ppc1), which is essential for CoA synthesis. The mutant becomes auxotrophic to pantothenate at permissive temperature, displaying greatly decreased levels of CoA, acetyl-CoA and histone acetylation. Moreover, ppc1-537 mutant cells failed to restore proliferation from quiescence. Ppc1 is thus the product of a super-housekeeping gene. The ppc1-537 mutant showed combined synthetic lethal defects with five of six histone deacetylase mutants, whereas sir2 deletion exceptionally rescued the ppc1-537 phenotype. In synchronous cultures, ppc1-537 cells can proceed to the S phase, but lose viability during mitosis failing in sister centromere/kinetochore segregation and nuclear division. Additionally, double-strand break repair is defective in the ppc1-537 mutant, producing fragile broken DNA, probably owing to diminished histone acetylation. The CoA-supported metabolism thus controls the state of chromosome DNA.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | | | | | | |
Collapse
|
37
|
Kakui Y, Sato M, Okada N, Toda T, Yamamoto M. Microtubules and Alp7-Alp14 (TACC-TOG) reposition chromosomes before meiotic segregation. Nat Cell Biol 2013; 15:786-96. [PMID: 23770679 DOI: 10.1038/ncb2782] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 05/10/2013] [Indexed: 12/11/2022]
Abstract
Tethering kinetochores at spindle poles facilitates their efficient capture and segregation by microtubules at mitotic onset in yeast. During meiotic prophase of fission yeast, however, kinetochores are detached from the poles, which facilitates meiotic recombination but may cause a risk of chromosome mis-segregation during meiosis. How cells circumvent this dilemma remains unclear. Here we show that an extensive microtubule array assembles from the poles at meiosis I onset and retrieves scattered kinetochores towards the poles to prevent chromosome drift. Moreover, the microtubule-associated protein complex Alp7-Alp14 (the fission yeast orthologues of mammalian TACC-TOG) is phosphorylated by Polo kinase, which promotes its meiosis-specific association to the outer kinetochore complex Nuf2-Ndc80 of scattered kinetochores, thereby assisting in capturing remote kinetochores. Although TOG was recently characterized as a microtubule polymerase, Dis1 (the other TOG orthologue in fission yeast), together with the Dam1 complex, plays a role in microtubule shortening to pull kinetochores polewards. Thus, microtubules and their binding proteins uniquely reconstitute chromosome configuration during meiosis.
Collapse
Affiliation(s)
- Yasutaka Kakui
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
38
|
Aoki K, Shiwa Y, Takada H, Yoshikawa H, Niki H. Regulation of nuclear envelope dynamics via APC/C is necessary for the progression of semi-open mitosis inSchizosaccharomyces japonicus. Genes Cells 2013; 18:733-52. [DOI: 10.1111/gtc.12072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/07/2013] [Indexed: 01/01/2023]
Affiliation(s)
| | - Yuh Shiwa
- Genome Research Center; NODAI Research Institute; Tokyo University of Agriculture; 1-1-1 Sakuragaoka; Setagaya-ku; Tokyo; 156-8502; Japan
| | - Hiraku Takada
- Department of Bioscience; Tokyo University of Agriculture; 1-1-1 Sakuragaoka; Setagaya-ku; Tokyo; 156-8502; Japan
| | | | | |
Collapse
|
39
|
Abstract
The nuclear envelope not only compartmentalizes the genome but is also home to the SUN-KASH domain proteins, which play essential roles both in genome organization and in linking the nucleus to the cytoskeleton. In interphase fission yeast cells, centromeres are clustered near the nuclear periphery. A recent report demonstrates that the inner nuclear membrane SUN domain protein Sad1 and a novel protein Csi1 connect centromeres to the nuclear envelope and that centromere clustering during interphase is critical for the efficient capture of kinetochores by microtubules during mitosis.
Collapse
Affiliation(s)
- Haitong Hou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
40
|
Tang NH, Takada H, Hsu KS, Toda T. The internal loop of fission yeast Ndc80 binds Alp7/TACC-Alp14/TOG and ensures proper chromosome attachment. Mol Biol Cell 2013; 24:1122-33. [PMID: 23427262 PMCID: PMC3623634 DOI: 10.1091/mbc.e12-11-0817] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 01/19/2023] Open
Abstract
The Ndc80 outer kinetochore complex plays a critical role in kinetochore-microtubule attachment, yet our understanding of the mechanism by which this complex interacts with spindle microtubules for timely and accurate chromosome segregation remains limited. Here we address this issue using an ndc80 mutant (ndc80-NH12) from fission yeast that contains a point mutation within a ubiquitous internal loop. This mutant is normal for assembly of the Ndc80 complex and bipolar spindle formation yet defective in proper end-on attachment to the spindle microtubule, with chromosome alignment defects and missegregation happening later during mitosis. We find that ndc80-NH12 exhibits impaired localization of the microtubule-associated protein complex Alp7/transforming acidic coiled coil (TACC)-Alp14/tumor-overexpressed gene (TOG) to the mitotic kinetochore. Consistently, wild-type Ndc80 binds these two proteins, whereas the Ndc80-NH12 mutant protein displays a substantial reduction of interaction. Crucially, forced targeting of Alp7-Alp14 to the outer kinetochore rescues ndc80-NH12-mutant phenotypes. The loop was previously shown to bind Dis1/TOG, by which it ensures initial chromosome capture during early mitosis. Strikingly, ndc80-NH12 is normal in Dis1 localization. Genetic results indicate that the loop recruits Dis1/TOG and Alp7/TACC-Alp14/TOG independently. Our work therefore establishes that the Ndc80 loop plays sequential roles in spindle-kinetochore attachment by connecting the Ndc80 complex to Dis1/TOG and Alp7/TACC-Alp14/TOG.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| | | | | | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| |
Collapse
|
41
|
Abstract
The centromere is essential for accurate chromosome segregation during mitosis and meiosis to achieve transmission of genetic information to daughter cells. To facilitate accurate chromosome segregation, the centromere serves several specific functions, including microtubule binding, spindle-checkpoint control, and sister chromatid cohesion. The kinetochore is formed on the centromere to achieve these functions. To understand kinetochore structure and function, it is critical to identify the protein components of the kinetochore and characterize the functional properties of each component. Here, we review recent progress with regard to the molecular architecture of the kinetochore and discuss the future directions for centromere biology.
Collapse
|
42
|
Sato H, Masuda F, Takayama Y, Takahashi K, Saitoh S. Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes. Curr Biol 2012; 22:658-67. [PMID: 22464190 DOI: 10.1016/j.cub.2012.02.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/24/2012] [Accepted: 02/21/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND The kinetochore is a multiprotein complex that forms on a chromosomal locus designated as the centromere, which links the chromosome to the spindle during mitosis and meiosis. Most eukaryotes, with the exception of holocentric species, have a single distinct centromere per chromosome, and the presence of multiple centromeres on a single chromosome is predicted to cause breakage and/or loss of that chromosome. However, some stably maintained non-Robertsonian translocated chromosomes have been reported, suggesting that the excessive centromeres are inactivated by an as yet undetermined mechanism. RESULTS We have developed systems to generate dicentric chromosomes containing two centromeres by fusing two chromosomes in fission yeast. Although the majority of cells harboring the artificial dicentric chromosome are arrested with elongated cell morphology in a manner dependent on the DNA structure checkpoint genes, a portion of the cells survive by converting the dicentric chromosome into a stable functional monocentric chromosome; either centromere was inactivated epigenetically or by DNA rearrangement. Mutations compromising kinetochore formation increased the frequency of epigenetic centromere inactivation. The inactivated centromere is occupied by heterochromatin and frequently reactivated in heterochromatin- or histone deacetylase-deficient mutants. CONCLUSIONS Chromosomes with multiple centromeres are stabilized by epigenetic centromere inactivation, which is initiated by kinetochore disassembly. Consequent heterochromatinization and histone deacetylation expanding from pericentric repeats to the central domain prevent reactivation of the inactivated centromere.
Collapse
Affiliation(s)
- Hiroshi Sato
- Division of Cell Biology, Institute of Life Science, Kurume University, Hyakunen-kohen 1-1, Kurume, Fukuoka 839-0864, Japan.
| | | | | | | | | |
Collapse
|
43
|
Okamoto SY, Sato M, Toda T, Yamamoto M. SCF ensures meiotic chromosome segregation through a resolution of meiotic recombination intermediates. PLoS One 2012; 7:e30622. [PMID: 22292001 PMCID: PMC3264600 DOI: 10.1371/journal.pone.0030622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 12/19/2011] [Indexed: 11/21/2022] Open
Abstract
The SCF (Skp1-Cul1-F-box) complex contributes to a variety of cellular events including meiotic cell cycle control, but its function during meiosis is not understood well. Here we describe a novel function of SCF/Skp1 in meiotic recombination and subsequent chromosome segregation. The skp1 temperature-sensitive mutant exhibited abnormal distribution of spindle microtubules in meiosis II, which turned out to originate from abnormal bending of the spindle in meiosis I. Bent spindles were reported in mitosis of this mutant, but it remained unknown how SCF could affect spindle morphology. We found that the meiotic bent spindle in skp1 cells was due to a hypertension generated by chromosome entanglement. The spindle bending was suppressed by inhibiting double strand break (DSB) formation, indicating that the entanglement was generated by the meiotic recombination machinery. Consistently, Rhp51/Rad51-Rad22/Rad52 foci persisted until meiosis I in skp1 cells, proving accumulation of recombination intermediates. Intriguingly bent spindles were also observed in the mutant of Fbh1, an F-box protein containing the DNA helicase domain, which is involved in meiotic recombination. Genetic evidence suggested its cooperation with SCF/Skp1. Thus, SCF/Skp1 together with Fbh1 is likely to function in the resolution of meiotic recombination intermediates, thereby ensuring proper chromosome segregation.
Collapse
Affiliation(s)
- Shin-ya Okamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | - Masamitsu Sato
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Honcho Kawaguchi, Saitama, Japan
- * E-mail:
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Masayuki Yamamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| |
Collapse
|
44
|
Choi ES, Strålfors A, Castillo AG, Durand-Dubief M, Ekwall K, Allshire RC. Identification of noncoding transcripts from within CENP-A chromatin at fission yeast centromeres. J Biol Chem 2011; 286:23600-7. [PMID: 21531710 PMCID: PMC3123123 DOI: 10.1074/jbc.m111.228510] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The histone H3 variant CENP-A is the most favored candidate for an epigenetic mark that specifies the centromere. In fission yeast, adjacent heterochromatin can direct CENP-ACnp1 chromatin establishment, but the underlying features governing where CENP-ACnp1 chromatin assembles are unknown. We show that, in addition to centromeric regions, a low level of CENP-ACnp1 associates with gene promoters where histone H3 is depleted by the activity of the Hrp1Chd1 chromatin-remodeling factor. Moreover, we demonstrate that noncoding RNAs are transcribed by RNA polymerase II (RNAPII) from CENP-ACnp1 chromatin at centromeres. These analyses reveal a similarity between centromeres and a subset of RNAPII genes and suggest a role for remodeling at RNAPII promoters within centromeres that influences the replacement of histone H3 with CENP-ACnp1.
Collapse
Affiliation(s)
- Eun Shik Choi
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
Shiroiwa Y, Hayashi T, Fujita Y, Villar-Briones A, Ikai N, Takeda K, Ebe M, Yanagida M. Mis17 is a regulatory module of the Mis6-Mal2-Sim4 centromere complex that is required for the recruitment of CenH3/CENP-A in fission yeast. PLoS One 2011; 6:e17761. [PMID: 21445296 PMCID: PMC3061866 DOI: 10.1371/journal.pone.0017761] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/09/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The centromere is the chromosome domain on which the mitotic kinetochore forms for proper segregation. Deposition of the centromeric histone H3 (CenH3, CENP-A) is vital for the formation of centromere-specific chromatin. The Mis6-Mal2-Sim4 complex of the fission yeast S. pombe is required for the recruitment of CenH3 (Cnp1), but its function remains obscure. METHODOLOGY/PRINCIPAL FINDINGS Mass spectrometry was performed on the proteins precipitated with Mis6- and Mis17-FLAG. The results together with the previously identified Sim4- and Mal2-TAP precipitated proteins indicated that the complex contains 12 subunits, Mis6, Sim4, Mal2, Mis15, Mis17, Cnl2, Fta1-4, Fta6-7, nine of which have human centromeric protein (CENP) counterparts. Domain dissection indicated that the carboxy-half of Mis17 is functional, while its amino-half is regulatory. Overproduction of the amino-half caused strong negative dominance, which led to massive chromosome missegregation and hypersensitivity to the histone deacetylase inhibitor TSA. Mis17 was hyperphosphorylated and overproduction-induced negative dominance was abolished in six kinase-deletion mutants, ssp2 (AMPK), ppk9 (AMPK), ppk15 (Yak1), ppk30 (Ark1), wis4 (Ssk2), and lsk1 (P-TEFb). CONCLUSIONS Mis17 may be a regulatory module of the Mis6 complex. Negative dominance of the Mis17 fragment is exerted while the complex and CenH3 remain at the centromere, a result that differs from the mislocalization seen in the mis17-362 mutant. The known functions of the kinases suggest an unexpected link between Mis17 and control of the cortex actin, nutrition, and signal/transcription. Possible interpretations are discussed.
Collapse
Affiliation(s)
| | - Takeshi Hayashi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
- Okinawa Institute of Science and Technology Promotion Corporation, Onna, Okinawa, Japan
| | - Yohta Fujita
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | - Nobuyasu Ikai
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kojiro Takeda
- Okinawa Institute of Science and Technology Promotion Corporation, Onna, Okinawa, Japan
| | - Masahiro Ebe
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsuhiro Yanagida
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
- Okinawa Institute of Science and Technology Promotion Corporation, Onna, Okinawa, Japan
- * E-mail:
| |
Collapse
|
46
|
Pluskal T, Hayashi T, Saitoh S, Fujisawa A, Yanagida M. Specific biomarkers for stochastic division patterns and starvation-induced quiescence under limited glucose levels in fission yeast. FEBS J 2011; 278:1299-315. [PMID: 21306563 PMCID: PMC3123465 DOI: 10.1111/j.1742-4658.2011.08050.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glucose as a source of energy is centrally important to our understanding of life. We investigated the cell division–quiescence behavior of the fission yeast Schizosaccharomyces pombe under a wide range of glucose concentrations (0–111 mm). The mode of S. pombe cell division under a microfluidic perfusion system was surprisingly normal under highly diluted glucose concentrations (5.6 mm, 1/20 of the standard medium, within human blood sugar levels). Division became stochastic, accompanied by a curious division-timing inheritance, in 2.2–4.4 mm glucose. A critical transition from division to quiescence occurred within a narrow range of concentrations (2.2–1.7 mm). Under starvation (1.1 mm) conditions, cells were mostly quiescent and only a small population of cells divided. Under fasting (0 mm) conditions, division was immediately arrested with a short chronological lifespan (16 h). When cells were first glucose starved prior to fasting, they possessed a substantially extended lifespan (∼14 days). We employed a quantitative metabolomic approach for S. pombe cell extracts, and identified specific metabolites (e.g. biotin, trehalose, ergothioneine, S-adenosyl methionine and CDP-choline), which increased or decreased at different glucose concentrations, whereas nucleotide triphosphates, such as ATP, maintained high concentrations even under starvation. Under starvation, the level of S-adenosyl methionine increased sharply, accompanied by an increase in methylated amino acids and nucleotides. Under fasting, cells rapidly lost antioxidant and energy compounds, such as glutathione and ATP, but, in fasting cells after starvation, these and other metabolites ensuring longevity remained abundant. Glucose-starved cells became resistant to 40 mm H2O2 as a result of the accumulation of antioxidant compounds.
Collapse
Affiliation(s)
- Tomáš Pluskal
- Okinawa Institute of Science and Technology Promotion Corporation, Okinawa, Japan
| | | | | | | | | |
Collapse
|
47
|
Shuaib M, Ouararhni K, Dimitrov S, Hamiche A. HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres. Proc Natl Acad Sci U S A 2010; 107:1349-54. [PMID: 20080577 PMCID: PMC2824361 DOI: 10.1073/pnas.0913709107] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human histone H3 variant, CENP-A, replaces the conventional histone H3 in centromeric chromatin and, together with centromere-specific DNA-binding factors, directs the assembly of the kinetochore. We purified the prenucelosomal e-CENP-A complex. We found that HJURP, a member of the complex, was required for cell cycle specific targeting of CENP-A to centromeres. HJURP facilitated efficient deposition of CENP-A/H4 tetramers to naked DNA in vitro. Bacterially expressed HJURP binds at a stoichiometric ratio to the CENP-A/H4 tetramer but not to the H3/H4 tetramer. The binding occurred through a conserved HJURP short N-terminal domain, termed CBD. The novel characteristic identified in vertebrates that we named TLTY box of CBD, was essential for formation of the HJURP-CENP-A/H4 complex. Our data identified HJURP as a vertebrate CENP-A chaperone and dissected its mode of interactions with CENP-A.
Collapse
Affiliation(s)
- Muhammad Shuaib
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Parc d’innovation, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Khalid Ouararhni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Parc d’innovation, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Stefan Dimitrov
- the Institut National de la Santé et de la Recherche Médicale, Université Joseph Fourier—Grenoble 1; Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, France
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Parc d’innovation, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| |
Collapse
|
48
|
Bernad R, Sánchez P, Losada A. Epigenetic specification of centromeres by CENP-A. Exp Cell Res 2009; 315:3233-41. [DOI: 10.1016/j.yexcr.2009.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
|
49
|
Fedyanina OS, Book AJ, Grishchuk EL. Tubulin heterodimers remain functional for one cell cycle after the inactivation of tubulin-folding cofactor D in fission yeast cells. Yeast 2009; 26:235-47. [PMID: 19330768 PMCID: PMC5705012 DOI: 10.1002/yea.1663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tubulin-folding cofactor D plays a major role in the formation of functional tubulin heterodimers, the subunits of microtubules (MTs) that are essential for cell division. Previous work has suggested that, in Schizosaccharomyces pombe, cofactor D function is required during G(1) or S phases of the cell cycle, and when it fails to function due to the temperature-sensitive mutation alp1-t1, cells are unable to segregate their chromosomes in the subsequent mitosis. Here we report that another mutation in the cofactor D gene, alp1-1315, causes failures in either the first or second mitosis in cells synchronized in G(1) or G(2) phases, respectively. Other results, however, suggest that the kinetics of viability loss in these mutants does not depend on progression through the cell cycle. When cofactor D function is perturbed in cells blocked in G(2), cytoplasmic MTs appear normal for 2-3 h but thereafter they disintegrate quickly, so that only a few short MTs remain. These residual MTs are, however, stably maintained, suggesting that they do not require active cofactor D function. The abrupt disassembly of MT cytoskeleton at restrictive temperature in non-cycling cofactor D mutant cells strongly suggests that the life-span of folded tubulin dimers might be downregulated. Indeed, this period is significantly shorter than the previously determined dissociation time of bovine tubulins in vitro. The death of mutant cells occurs inevitably after 2-3 h at restrictive temperature in the following mitosis, and is explained by the idea that MT structures formed in the absence of cofactor D cannot support normal cell division.
Collapse
|
50
|
Williams JS, Hayashi T, Yanagida M, Russell P. Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Mol Cell 2009; 33:287-98. [PMID: 19217403 PMCID: PMC2677390 DOI: 10.1016/j.molcel.2009.01.017] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 10/13/2008] [Accepted: 01/27/2009] [Indexed: 11/17/2022]
Abstract
Mis16 and Mis18 are subunits of a protein complex required for incorporation of the histone H3 variant CenH3 (Cnp1/CENP-A) into centromeric chromatin in Schizosaccharomyces pombe and mammals. How the Mis16-Mis18 complex performs this function is unknown. Here, we report that the Mis16-Mis18 complex is required for centromere localization of Scm3(Sp), a Cnp1-binding protein related to Saccharomyces cerevisiae Scm3. Scm3(Sp) is required for centromeric localization of Cnp1, while Scm3(Sp) localizes at centromeres independently of Cnp1. Like the Mis16-Mis18 complex but unlike Cnp1, Scm3(Sp) dissociates from centromeres during mitosis. Inactivation of Scm3(Sp) or Mis18 increases centromere localization of histones H3 and H2A/H2B, which are largely absent from centromeres in wild-type cells. Whereas S. cerevisiae Scm3 is proposed to replace histone H2A/H2B in centromeric nucleosomes, the dynamic behavior of S. pombe Scm3 suggests that it acts as a Cnp1 assembly/maintenance factor that directly mediates the stable deposition of Cnp1 into centromeric chromatin.
Collapse
Affiliation(s)
- Jessica S. Williams
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 90237, USA
| | - Takeshi Hayashi
- CREST Research Program, Japan Science and Technology Corporation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuhiro Yanagida
- CREST Research Program, Japan Science and Technology Corporation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Paul Russell
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 90237, USA
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 90237, USA
| |
Collapse
|