1
|
Nezami FR, Athanasiou LS, Edelman ER. Endovascular drug-delivery and drug-elution systems. BIOMECHANICS OF CORONARY ATHEROSCLEROTIC PLAQUE 2021:595-631. [DOI: 10.1016/b978-0-12-817195-0.00028-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
2
|
Lin S, Ran X, Yan X, Wang Q, Zhou JG, Hu T, Wang G. Systematical evolution on a Zn-Mg alloy potentially developed for biodegradable cardiovascular stents. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:122. [PMID: 31677119 DOI: 10.1007/s10856-019-6324-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/17/2019] [Indexed: 05/14/2023]
Abstract
To reduce the long-term side effects of permanent metallic stents, a new generation of cardiovascular stents called "biodegradable stents" is being extensively developed. Zinc has been considered as a promising candidate material for biodegradable cardiovascular stents due to its excellent biocompatibility and appropriate biodegradability. However, weak mechanical properties limit its further clinic application. In this study, hot extruded pure Zn and Zn-0.02 Mg alloy were prepared. Compared with pure Zn, Zn-0.02 Mg alloy showed more homogeneous microstructure, much smaller grain size and higher mechanical strength. Zn-0.02 Mg alloy presented uniform corrosion morphologies during the immersion process, and its corrosion rates was higher than that of pure Zn. Hemocompatibility results showed that the Zn-based alloy had extremely low hemolysis rate (0.74 ± 0.15%) and strong inhibitory effect on blood coagulation, platelet adhesion and aggregation. Zn-0.02 Mg alloy also exhibited excellent cytocompatibility. Its extracts could significantly promote the proliferation of endothelial cells. Moreover, the antibacterial activities of the Zn-based alloy were demonstrated by spread plate assay, live/dead viability assay and bacterial morphology observation. These results indicate that the extruded Zn-0.02 Mg alloy has a potential in biodegradable cardiovascular stents.
Collapse
Affiliation(s)
- Song Lin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiaolin Ran
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xinhao Yan
- Xi'an Advanced Medical Technology Co., Ltd, Xi'an, 710000, China
| | - Qilong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Jack G Zhou
- Xi'an Advanced Medical Technology Co., Ltd, Xi'an, 710000, China
| | - Tingzhang Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
3
|
Zhou C, Li HF, Yin YX, Shi ZZ, Li T, Feng XY, Zhang JW, Song CX, Cui XS, Xu KL, Zhao YW, Hou WB, Lu ST, Liu G, Li MQ, Ma JY, Toft E, Volinsky AA, Wan M, Yao XJ, Wang CB, Yao K, Xu SK, Lu H, Chang SF, Ge JB, Wang LN, Zhang HJ. Long-term in vivo study of biodegradable Zn-Cu stent: A 2-year implantation evaluation in porcine coronary artery. Acta Biomater 2019; 97:657-670. [PMID: 31401346 DOI: 10.1016/j.actbio.2019.08.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/11/2019] [Accepted: 08/06/2019] [Indexed: 01/11/2023]
Abstract
In the present study, a novel biodegradable Zn-0.8Cu coronary artery stent was fabricated and implanted into porcine coronary arteries for up to 24 months. Micro-CT analysis showed that the implanted stent was able to maintain structural integrity after 6 months, while its disintegration occurred after 9 months of implantation. After 24 months of implantation, approximately 28 ± 13 vol% of the stent remained. Optical coherence tomography and histological analysis showed that the endothelialization process could be completed within the first month after implantation, and no inflammation responses or thrombosis formation was observed within 24 months. Cross-section analysis indicated that the subsequent degradation products had been removed in the abluminal direction, guaranteeing that the strut could be replaced by normal tissue without the risk of contaminating the circulatory system, causing neither thrombosis nor inflammation response. The present work demonstrates that the Zn-0.8Cu stent has provided sufficient structural supporting and exhibited an appropriate degradation rate during 24 months of implantation without degradation product accumulation, thrombosis, or inflammation response. The results indicate that the Zn-0.8Cu coronary artery stent is promising for further clinical applications. STATEMENT OF SIGNIFICANCE: Although Zn and its alloys have been considered to be potential candidates of biodegradable metals for vascular stent use, by far, no Zn-based stent with appropriate medical device performance has been reported because of the low mechanical properties of zinc. The present work presents promising results of a Zn-Cu biodegradable vascular stent in porcine coronary arteries. The Zn-Cu stent fabricated in this work demonstrated adequate medical device performance both in vitro and in vivo and degraded at a proper rate without safety problems induced. Furthermore, large animal models have more cardiovascular similarities as humans. Results of this study may provide further information of the Zn-based stents for translational medicine research.
Collapse
Affiliation(s)
- Chao Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Department of Interventional and Vascular Surgery, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai 200072, PR China; National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, PR China
| | - Hua-Fang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yu-Xia Yin
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, PR China
| | - Zhang-Zhi Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Ting Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xiang-Yi Feng
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, PR China
| | - Jun-Wei Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, PR China
| | - Cai-Xia Song
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, PR China
| | - Xiao-Shan Cui
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, PR China
| | - Kai-Li Xu
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, PR China
| | - Yan-Wei Zhao
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, PR China
| | - Wen-Bo Hou
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, PR China
| | - Shou-Tao Lu
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, PR China
| | - Guang Liu
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, PR China
| | - Mao-Quan Li
- Department of Interventional and Vascular Surgery, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai 200072, PR China
| | - Jian-Ying Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032 PR China
| | - Egon Toft
- Biomedical Research Center, College of Medicine, Qatar University, Shareh Jamiaa, Post Box 2716, Doha, Qatar
| | - Alex A Volinsky
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Min Wan
- Shandong Quality Inspection Center for Medical Devices, No. 15166 Century Avenue, Jinan H-T Industrial Development Zone, Shandong 250101, PR China
| | - Xiu-Jun Yao
- Shandong Quality Inspection Center for Medical Devices, No. 15166 Century Avenue, Jinan H-T Industrial Development Zone, Shandong 250101, PR China
| | - Chang-Bin Wang
- Shandong Quality Inspection Center for Medical Devices, No. 15166 Century Avenue, Jinan H-T Industrial Development Zone, Shandong 250101, PR China
| | - Kang Yao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032 PR China
| | - Shi-Kun Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032 PR China
| | - Hao Lu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032 PR China
| | - Shu-Fu Chang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032 PR China
| | - Jun-Bo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032 PR China.
| | - Lu-Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Hai-Jun Zhang
- Department of Interventional and Vascular Surgery, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai 200072, PR China; National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou City, Shandong 251100, PR China; Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Niels Jernes Vej 10, Aalborg Ø 9220, Denmark.
| |
Collapse
|
4
|
Li W, Wu P, Zhang Y, Midgley AC, Yuan X, Wu Y, Wang L, Wang Z, Zhu M, Kong D. Bilayered Polymeric Micro- and Nanofiber Vascular Grafts as Abdominal Aorta Replacements: Long-Term in Vivo Studies in a Rat Model. ACS APPLIED BIO MATERIALS 2019; 2:4493-4502. [PMID: 35021409 DOI: 10.1021/acsabm.9b00641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wen Li
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Pingli Wu
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Yu Zhang
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Adam C. Midgley
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Xingyu Yuan
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Yifan Wu
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Lina Wang
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Zhihong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Meifeng Zhu
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| | - Deling Kong
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Qi Y, Li X, He Y, Zhang D, Ding J. Mechanism of Acceleration of Iron Corrosion by a Polylactide Coating. ACS APPLIED MATERIALS & INTERFACES 2019; 11:202-218. [PMID: 30511850 DOI: 10.1021/acsami.8b17125] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Strong and biodegradable materials are key to the development of next-generation medical devices for interventional treatment. Biodegradable polymers such as polylactide (PLA) have controllable degradation profiles, but their mechanical strength is much weaker than some metallic materials such as iron; on the other hand, tuning the corrosion rate of iron to a proper time range for biomedical applications has always been a challenge. Very recently, we have achieved a complete corrosion of iron stent in vivo within the clinically required time frame by combining a PLA coating, which provides a new biomaterial type for the next-generation biodegradable coronary stents termed as a metal-polymer composite stent. The underlying mechanism of accelerating iron corrosion by a PLA coating remains an open fundamental topic. Herein, we investigated the corrosion mechanism of an iron sheet under a PLA coating in the biomimetic in vitro condition. The Pourbaix diagram (potential vs pH) was calculated to present the thermodynamic driving force of iron corrosion in the biomimetic aqueous medium. Electrochemical methods were applied to track the dynamic corrosion process and inspect various potential cues influencing iron corrosion. The present work reveals that acceleration of iron corrosion by the PLA coating arises mainly from decreasing the local pH owing to PLA hydrolysis and from alleviating the deposition of the passivation layer by the polymer coating.
Collapse
Affiliation(s)
- Yongli Qi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen 518057 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
6
|
Lin S, Ran X, Yan X, Yan W, Wang Q, Yin T, Zhou JG, Hu T, Wang G. Corrosion behavior and biocompatibility evaluation of a novel zinc-based alloy stent in rabbit carotid artery model. J Biomed Mater Res B Appl Biomater 2018; 107:1814-1823. [PMID: 30408310 DOI: 10.1002/jbm.b.34274] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/21/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023]
Abstract
Zinc (Zn) and its alloys have been proved to be promising candidate materials for biodegradable cardiovascular stents. In this study, a novel extruded Zn-0.02 Mg-0.02Cu alloy was prepared. Compared with pure Zn, the Zn-based alloy showed higher mechanical properties, and the Zn-based alloy could significantly accelerate Zn2+ release, reaching 0.61 ± 0.11 μg/mL at 15 days of immersion. In vitro biocompatibility studies demonstrated that the Zn-based alloy had excellent cytocompatibility and hemocompatibility, including low hemolysis rate (0.63 ± 0.12%) and strong inhibitory effect on platelet adhesion. Subsequently, the Zn-based alloy stent was implanted into the left carotid arteries of New Zealand white rabbits for 12 months. All the rabbits survived without any adverse clinical events, and all the stented arteries were patent during the study period. Rapid endothelialization at 1 week of implantation was observed, suggesting a low cytotoxicity and thrombosis risk. The stent corroded slowly and no obvious intimal hyperplasia was observed for 6 months, after which corrosion accelerated at 12 months. In addition, no obvious thrombosis and systemic toxicity during implantation period were observed, indicating its potential as the backbone of biodegradable cardiovascular stents. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1814-1823, 2019.
Collapse
Affiliation(s)
- Song Lin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiaolin Ran
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xinhao Yan
- Xi'an Advanced Medical Technology Co., Ltd, Xi'an, 710000, China
| | - Wenhua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qilong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Jack G Zhou
- Xi'an Advanced Medical Technology Co., Ltd, Xi'an, 710000, China
| | - Tingzhang Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
7
|
Cai W, Chen L, Zhang L, Tu S, Fan L, Chen Z, Luo Y, Zheng X. Branch ostial optimization treatment and optimized provisional t-stenting with polymeric bioresorbable scaffolds: Ex-vivo morphologic and hemodynamic examination. Medicine (Baltimore) 2018; 97:e12972. [PMID: 30412122 PMCID: PMC6221742 DOI: 10.1097/md.0000000000012972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The optimal side-branch (SB) ostium treatment after provisional side-branch scaffolding remains a subject of debate in bioresorbable vascular scaffold (BVS) era. In this study, we evaluated a novel optimized provisional T-stenting technique (OPT) and assessed its feasibility by comparison with T and small protrusion technique (TAP).Two provisional SB scaffolding techniques (OPT, n = 5; TAP, n = 5) were performed using polymeric BVS in a bifurcated phantom. The sequential intermediate snuggling balloon dilation, also called ostial optimal technique, was added to OPT but not TAP to dilate the side-branch ostium while the final snuggling balloon dilation applied for both procedures. Microcomputed tomography (microCT) and optical coherence tomography (OCT) were performed to assess morphology, and computational fluid dynamics (CFD) was performed to assess hemodynamics in the scaffolded bifurcations. Compared with TAP in microCT analysis, OPT created shorter neo-carina length than TAP (0.34 ± 0.10 mm vs 1.02 ± 0.26 mm, P < .01), longer valgus struts length (2.49 ± 0.27 mm vs 1.78 ± 0.33 mm, P < .01) with larger MB ostial area (9.46 ± 0.04 mm vs 8.34 ± 0.09 mm, P < .01). OCT found that OPT significantly decreased the struts mal-apposition (13.20 ± 0.16% vs 1.94 ± 0.54%, P < .01). CFD revealed that OPT generated more favorable flow pattern than TAP, as indicated by less percent (4.68 ± 1.40% vs 8.88 ± 1.21%, P < .01) of low wall shear stress (<0.4 Pa) along the lateral walls.By using BVSs for bifurcation intervention, the sequential intermediate snuggling balloon dilation is feasible for optimizing ostial SB and facilitating subsequent SB scaffolding. Results show OPT is better than TAP for bifurcated morphology and hemodynamics in this ex-vivo study.
Collapse
Affiliation(s)
- Wei Cai
- Department of Cardiology, Fujian Medical University Union Hospital
- Provincial Institute of Coronary Artery Disease, Fujian, PR of China
| | - Lianglong Chen
- Department of Cardiology, Fujian Medical University Union Hospital
- Provincial Institute of Coronary Artery Disease, Fujian, PR of China
| | - Linlin Zhang
- Department of Cardiology, Fujian Medical University Union Hospital
- Provincial Institute of Coronary Artery Disease, Fujian, PR of China
| | - Sheng Tu
- Department of Cardiology, Fujian Medical University Union Hospital
- Provincial Institute of Coronary Artery Disease, Fujian, PR of China
| | - Lin Fan
- Department of Cardiology, Fujian Medical University Union Hospital
- Provincial Institute of Coronary Artery Disease, Fujian, PR of China
| | - Zhaoyang Chen
- Department of Cardiology, Fujian Medical University Union Hospital
- Provincial Institute of Coronary Artery Disease, Fujian, PR of China
| | - Yukun Luo
- Department of Cardiology, Fujian Medical University Union Hospital
- Provincial Institute of Coronary Artery Disease, Fujian, PR of China
| | - Xingchun Zheng
- Department of Cardiology, Fujian Medical University Union Hospital
- Provincial Institute of Coronary Artery Disease, Fujian, PR of China
| |
Collapse
|
8
|
Yang H, Wang C, Liu C, Chen H, Wu Y, Han J, Jia Z, Lin W, Zhang D, Li W, Yuan W, Guo H, Li H, Yang G, Kong D, Zhu D, Takashima K, Ruan L, Nie J, Li X, Zheng Y. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials 2017; 145:92-105. [PMID: 28858721 DOI: 10.1016/j.biomaterials.2017.08.022] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/09/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023]
Abstract
In the present study, pure zinc stents were implanted into the abdominal aorta of rabbits for 12 months. Multiscale analysis including micro-CT, scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and histological stainings was performed to reveal the fundamental degradation mechanism of the pure zinc stent and its biocompatibility. The pure zinc stent was able to maintain mechanical integrity for 6 months and degraded 41.75 ± 29.72% of stent volume after 12 months implantation. No severe inflammation, platelet aggregation, thrombosis formation or obvious intimal hyperplasia was observed at all time points after implantation. The degradation of the zinc stent played a beneficial role in the artery remodeling and healing process. The evolution of the degradation mechanism of pure zinc stents with time was revealed as follows: Before endothelialization, dynamic blood flow dominated the degradation of pure zinc stent, creating a uniform corrosion mode; After endothelialization, the degradation of pure zinc stent depended on the diffusion of water molecules, hydrophilic solutes and ions which led to localized corrosion. Zinc phosphate generated in blood flow transformed into zinc oxide and small amounts of calcium phosphate during the conversion of degradation microenvironment. The favorable physiological degradation behavior makes zinc a promising candidate for future stent applications.
Collapse
Affiliation(s)
- Hongtao Yang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Cong Wang
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Chaoqiang Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Houwen Chen
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Yifan Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jintao Han
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Zichang Jia
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Wenjiao Lin
- R&D Center, Lifetech Scientific (Shenzhen) Co Ltd, Shenzhen, 518057, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co Ltd, Shenzhen, 518057, China
| | - Wenting Li
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Wei Yuan
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Hui Guo
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Huafang Li
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Guangxin Yang
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Donghui Zhu
- Department of Biomedical Engineering, College of Engineering, University of North Texas, Denton, TX 76207, USA
| | - Kazuki Takashima
- Department of Mechanical Engineering and Materials Science, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Liqun Ruan
- Department of Mechanical Systems Engineering, Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto-shi, 860-8555, Japan
| | - Jianfeng Nie
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China; Department of Materials Science and Engineering, Monash University, Victoria, 3800, Australia.
| | - Xuan Li
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China; International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
9
|
Habib A, Mori H, Yahagi K, Finn AV. Contemporary Drug-Eluting Stents and Vascular Response. EUROPEAN MEDICAL JOURNAL 2017. [DOI: 10.33590/emj/10314324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Cardiovascular disease is a leading cause of death and disability worldwide. Current treatment strategies aimed at treating the consequences of coronary artery disease have embraced both optimal medical therapy and catheter based percutaneous coronary intervention with drug-eluting stents (DES). Current-generation DES elute predominantly mammalian target of rapamycin (mTOR) inhibitors, which act primarily as a cytostatic agent that retards vascular smooth muscle cell proliferation and migration; this occurs in response to injury and thus prevents restenosis. While DES have reduced restenosis, the use of first-generation DES was associated with an increased risk of late stent thrombosis and accelerated neointimal atherosclerosis (i.e. neoatherosclerosis), both major contributors to late stent failure. The underlying substrate of late DES failure is likely related to vascular endothelial dysfunction, which occurs after DES implantation. Initial concerns with first-generation DES have led to improvements in stent design, polymer load and biocompatibility, and pharmacologic agents, all of which have helped to improve healing responses, lessen late stent failure, and result in an overall improved safety profile. The armamentarium of DES has expanded from the current-generation durable polymer DES to bioresorbable polymer DES, polymer-free DES, and lastly totally bioresorbable vascular scaffolds with a goal of improving vascular responses and endothelial function while preserving anti-restenotic efficacy. We will review these contemporary DES in relation to their short and long-term effects on vascular biocompatibility and healing responses.
Collapse
Affiliation(s)
- Anwer Habib
- Parkview Heart Institute, Fort Wayne, Indiana, USA
| | | | | | - Aloke V. Finn
- CVPath Institute Inc., Gaithersburg, Maryland, USA; University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Ma Q, Lei K, Ding J, Yu L, Ding J. Design, synthesis and ring-opening polymerization of a new iodinated carbonate monomer: a universal route towards ultrahigh radiopaque aliphatic polycarbonates. Polym Chem 2017. [DOI: 10.1039/c7py01411b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A universal route towards ultrahigh radiopaque aliphatic polycarbonates was developed based on a new iodinated carbonate monomer.
Collapse
Affiliation(s)
- Qian Ma
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Kewen Lei
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Jian Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
11
|
van Haelst ST, Peeters Weem SM, Moll FL, de Borst GJ. Current status and future perspectives of bioresorbable stents in peripheral arterial disease. J Vasc Surg 2016; 64:1151-1159.e1. [DOI: 10.1016/j.jvs.2016.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
|