1
|
Zhao X, Gao C, Chen H, Chen X, Liu T, Gu D. C-Reactive Protein: An Important Inflammatory Marker of Coronary Atherosclerotic Disease. Angiology 2024:33197241273360. [PMID: 39126663 DOI: 10.1177/00033197241273360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Cardiovascular disease (CVD) is the most common cause of death worldwide, with coronary atherosclerotic heart disease (CHD) accounting for the majority of events. Evidence demonstrates that inflammation plays a vital role in the development of CHD. The association between C-reactive protein (CRP), a representative inflammatory biomarker, and atherosclerosis (AS), CHD, and inflammation has attracted attention. Therefore, we conducted an extensive search on PubMed using the aforementioned terms as search criteria and identified a total of 1246 articles published from January 2000 to April 2024. Both review and research-based articles consistently indicate CRP as a risk enhancer for CVD, contributing to the refinement of risk stratification and early identification of apparently healthy at-risk populations. Additionally, CRP reflects disease progression and predicts the prognosis of recurrent cardiovascular events. Anti-inflammatory therapeutic strategies targeting CRP also provide new treatment options for patients. This review focuses on the link between CRP and CHD, highlighting how CRP is involved in the pathological progression of AS and its potential value for clinical applications.
Collapse
Affiliation(s)
- Xiaona Zhao
- Guangxi University of Chinese Medicine, Nanning, China
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Cheng Gao
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hongfang Chen
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China
| | - Xi Chen
- Medical Department, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Tonggong Liu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
2
|
Weber ANR, Bittner ZA, Shankar S, Liu X, Chang TH, Jin T, Tapia-Abellán A. Recent insights into the regulatory networks of NLRP3 inflammasome activation. J Cell Sci 2020; 133:133/23/jcs248344. [PMID: 33273068 DOI: 10.1242/jcs.248344] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a fascinating cellular machinery endowed with the capacity for rapid proteolytic processing of the pro-inflammatory cytokine IL-1β and the cell death effector gasdermin D (GSDMD). Although its activity is essential to fight infection and support tissue homeostasis, the inflammasome complex, which consists of the danger sensor NLRP3, the adaptor apoptosis-associated speck-like protein containing a CARD (ASC; also known as PYCARD), caspase-1 and probably other regulatory proteins, also bears considerable potential for detrimental inflammation, as observed in human conditions such as gout, heart attack, stroke and Alzheimer's disease. Thus, multi-layered regulatory networks are required to ensure the fine balance between rapid responsiveness versus erroneous activation (sufficient and temporally restricted versus excessive and chronic activity) of the inflammasome. These involve multiple activation, secretion and cell death pathways, as well as modulation of the subcellular localization of NLRP3, and its structure and activity, owing to post-translational modification by other cellular proteins. Here, we discuss the exciting progress that has recently been made in deciphering the regulation of the NLRP3 inflammasome. Additionally, we highlight open questions and describe areas of research that warrant further exploration to obtain a more comprehensive molecular and cellular understanding of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Alexander N R Weber
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany .,iFIT - Cluster of Excellence (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University Hospital Tübingen - Internal Medicine VIII, Otfried-Müller-Str. 14, 72076 Tübingen, Germany
| | - Zsófia A Bittner
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Sangeetha Shankar
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Xiao Liu
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Tzu-Hsuan Chang
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Tengchuan Jin
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Ana Tapia-Abellán
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Autotaxin inhibition reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction. J Mol Cell Cardiol 2020; 149:95-114. [PMID: 33017574 DOI: 10.1016/j.yjmcc.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Acute myocardial infarction (AMI) initiates pathological inflammation which aggravates tissue damage and causes heart failure. Lysophosphatidic acid (LPA), produced by autotaxin (ATX), promotes inflammation and the development of atherosclerosis. The role of ATX/LPA signaling nexus in cardiac inflammation and resulting adverse cardiac remodeling is poorly understood. APPROACH AND RESULTS We assessed autotaxin activity and LPA levels in relation to cardiac and systemic inflammation in AMI patients and C57BL/6 (WT) mice. Human and murine peripheral blood and cardiac tissue samples showed elevated levels of ATX activity, LPA, and inflammatory cells following AMI and there was strong correlation between LPA levels and circulating inflammatory cells. In a gain of function model, lipid phosphate phosphatase-3 (LPP3) specific inducible knock out (Mx1-Plpp3Δ) showed higher systemic and cardiac inflammation after AMI compared to littermate controls (Mx1-Plpp3fl/fl); and a corresponding increase in bone marrow progenitor cell count and proliferation. Moreover, in Mx1- Plpp3Δ mice, cardiac functional recovery was reduced with corresponding increases in adverse cardiac remodeling and scar size (as assessed by echocardiography and Masson's Trichrome staining). To examine the effect of ATX/LPA nexus inhibition, we treated WT mice with the specific pharmacological inhibitor, PF8380, twice a day for 7 days post AMI. Inhibition of the ATX/LPA signaling nexus resulted in significant reduction in post-AMI inflammatory response, leading to favorable cardiac functional recovery, reduced scar size and enhanced angiogenesis. CONCLUSION ATX/LPA signaling nexus plays an important role in modulating inflammation after AMI and targeting this mechanism represents a novel therapeutic target for patients presenting with acute myocardial injury.
Collapse
|
4
|
Jin Y, Wu Z, Wang N, Duan S, Wu Y, Wang J, Wu W, Feng F. Association of EGF Receptor and NLRs signaling with Cardiac Inflammation and Fibrosis in Mice Exposed to Fine Particulate Matter. J Biochem Mol Toxicol 2016; 30:429-37. [PMID: 27158778 DOI: 10.1002/jbt.21806] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 11/08/2022]
Abstract
ЄAmbient fine particulate matter (PM2.5 ) could induce cardiovascular diseases (CVD), but the mechanism remains unknown. To investigate the roles of epidermal growth factor receptor (EGFR) and NOD-like receptors (NLRs) in PM2.5 -induced cardiac injury, we set up a BALB/c mice model of PM2.5 -induced cardiac inflammation and fibrosis with intratracheal instillation of PM2.5 suspension (4.0 mg/kg b.w.) for 5 consecutive days (once per day). After exposure, we found that mRNA levels of CXCL1, interleukin (IL)-6, and IL-18 were elevated, but interestingly, mRNA level of NLRP12 was significant decreased in heart tissue from PM2.5 -induced mice compared with those of saline-treated mice using real-time PCR. Protein levels of phospho-EGFR (Tyr1068), phospho-Akt (Thr308), NLRP3, NF-κB-p52/p100, and NF-κB-p65 in heart tissue of PM2.5 -exposed mice were all significantly increased using immunohistochemistry or Western blotting. Therefore, PM2.5 exposure could induce cardiac inflammatory injury in mice, which may be involved with EGFR/Akt signaling, NLRP3, and NLRP12.
Collapse
Affiliation(s)
- Yuefei Jin
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhaoke Wu
- Department of Geriatrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, People's Republic of China
| | - Na Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Shuyin Duan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China.
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|