1
|
Abdulmalek HW, Yazgan-Karataş A. Improvement of Bacilysin Production in Bacillus subtilis by CRISPR/Cas9-Mediated Editing of the 5'-Untranslated Region of the bac Operon. J Microbiol Biotechnol 2023; 33:410-418. [PMID: 36746911 PMCID: PMC10084748 DOI: 10.4014/jmb.2209.09035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 05/31/2025]
Abstract
Bacilysin is a dipeptide antibiotic composed of L-alanine and L-anticapsin produced by certain strains of Bacillus subtilis. Bacilysin is gaining increasing attention in industrial agriculture and pharmaceutical industries due to its potent antagonistic effects on various bacterial, fungal, and algal pathogens. However, its use in industrial applications is hindered by its low production in the native producer. The biosynthesis of bacilysin is mainly based on the bacABCDEF operon. Examination of the sequence surrounding the upstream of the bac operon did not reveal a clear, strong ribosome binding site (RBS). Therefore, in this study, we aimed to investigate the impact of RBS as a potential route to improve bacilysin production. For this, the 5' untranslated region (5'UTR) of the bac operon was edited using the CRISPR/Cas9 approach by introducing a strong ribosome binding sequence carrying the canonical Shine-Dalgarno sequence (TAAGGAGG) with an 8 nt spacing from the AUG start codon. Strong RBS substitution resulted in a 2.87-fold increase in bacilysin production without affecting growth. Strong RBS substitution also improved the mRNA stability of the bac operon. All these data revealed that extensive RBS engineering is a promising key option for enhancing bacilysin production in its native producers.
Collapse
Affiliation(s)
- Hadeel Waleed Abdulmalek
- Dr. Orhan Ocalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Biotechnology Department, Collage of Science, University of Baghdad, Baghdad, Iraq
| | - Ayten Yazgan-Karataş
- Dr. Orhan Ocalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|
2
|
Nannan C, Vu HQ, Gillis A, Caulier S, Nguyen TTT, Mahillon J. Bacilysin within the Bacillus subtilis group: gene prevalence versus antagonistic activity against Gram-negative foodborne pathogens. J Biotechnol 2020; 327:28-35. [PMID: 33387595 DOI: 10.1016/j.jbiotec.2020.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/17/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
The Bacillus subtilis group comprises species known for their ability to produce a wide variety of antimicrobial peptides. This work focuses on bacilysin, a broad-spectrum active dipeptide, and its prevalence in the B. subtilis group. In silico genome analysis of strains from Bacillus amyloliquefaciens, Bacillus velezensis, Bacillus licheniformis, Bacillus pumilus and B. subtilis subspecies inaquosorum, spizizenii and subtilis revealed that the bacilysin gene cluster is present in all species except for B. licheniformis. This observation was corroborated by PCR detection of the bacilysin genetic determinants on a collection of 168 food and environmental strains from the B. subtilis group. Phylogenetic analyses also demonstrated that the bacilysin gene cluster sequence showed more than 80 % identity within each species of the B. subtilis group. An in vitro screening of the strain collection was performed against foodborne pathogens. Twenty-three strains were selected for their ability of their Cell-Free Supernatant to inhibit foodborne pathogens. After an ammonium sulphate precipitation of their supernatant, eight strains, all belonging to B. velezensis, exhibited antimicrobial activity against Gram-negative pathogens. Using Ultra High Performance Liquid Chromatography - Mass Spectrometry, the presence of bacilysin was confirmed in these eight precipitates. These findings provide evidence that bacilysin is a major player in the antagonistic activity of B. velezensis against Gram-negative foodborne pathogens.
Collapse
Affiliation(s)
| | - Huong Quynh Vu
- Laboratory of Food and Environmental Microbiology, Belgium; Faculty of Food Science and Technology, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Belgium
| | - Simon Caulier
- Laboratory of Food and Environmental Microbiology, Belgium; Phytopathology-Applied Microbiology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Thuy Thanh Thi Nguyen
- Faculty of Food Science and Technology, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | | |
Collapse
|
3
|
Zhu M, He Y, Li Y, Ren T, Liu H, Huang J, Jiang D, Hsiang T, Zheng L. Two New Biocontrol Agents Against Clubroot Caused by Plasmodiophora brassicae. Front Microbiol 2020; 10:3099. [PMID: 32038545 PMCID: PMC6986203 DOI: 10.3389/fmicb.2019.03099] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/20/2019] [Indexed: 01/26/2023] Open
Abstract
Clubroot disease caused by Plasmodiophora brassicae can lead to serious yield losses in crucifers such as Brassica napus. In this study, 323 bacterial strains were isolated from the rhizosphere of severely diseased B. napus in Dangyang county, Hubei province, China. Antagonistic strains were first identified based on dual culture inhibition zones with Fusarium oxysporum and Magnaporthe oryzae. These were then further screened in germination inhibition and viability assays of resting spores of P. brassicae. Finally, eight of the antagonistic strains were found to significantly reduce the disease severity of clubroot by more than 40% under greenhouse conditions, and two strains, F85 and T113, were found to have efficacy of more than 80%. Root hair infection experiments showed that F85 and T113 can inhibit early infection of root hairs, reduce the differentiation of primary plasmodia of P. brassicae, and inhibit formation of secondary zoosporangia. Based on sequence analysis of 16S rDNA gene, gyrA gene and 22 housekeeping genes as well as carbon source utilization analysis, the F85 was identified as Bacillus velezensis and T113 as Bacillus amyloliquefaciens. Genome analysis, PCR and RT-PCR detection revealed that both F85 and T113 harbor various antibiotic biosynthesis gene clusters required to form peptides with antimicrobial activity. To our knowledge, this is the first report of B. velezensis as a biocontrol agent against clubroot disease.
Collapse
Affiliation(s)
- Manli Zhu
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Youwei He
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yi Li
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Tirong Ren
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Hao Liu
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Production of Antagonistic Compounds by Bacillus sp. with Antifungal Activity against Heritage Contaminating Fungi. COATINGS 2018. [DOI: 10.3390/coatings8040123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Özcengiz G, Öğülür İ. Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic. N Biotechnol 2015; 32:612-9. [PMID: 25644640 DOI: 10.1016/j.nbt.2015.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/06/2015] [Accepted: 01/19/2015] [Indexed: 11/17/2022]
Abstract
Bacillus subtilis has the capacity to produce more than two dozen bioactive compounds with an amazing variety of chemical structures. Among them, bacilysin is a non-ribosomally synthesized dipeptide antibiotic consisting of l-alanine residue at the N terminus and a non-proteinogenic amino acid, l-anticapsin, at the C terminus. In spite of its simple structure, it is active against a wide range of bacteria and fungi. As a potent antimicrobial agent, we briefly review the biochemistry and genetics as well as the regulation of bacilysin biosynthesis within the frame of peptide pheromones-based control of secondary activities. Biological functions of bacilysin in the producer B. subtilis beyond its antimicrobial activity as well as potential biotechnological use of the biosynthetic enzyme l-amino acid ligase (Lal) are also discussed.
Collapse
Affiliation(s)
- Gülay Özcengiz
- Department of Biological Sciences and Molecular Biology and Genetics, Middle East Technical University, 06800 Ankara, Turkey.
| | - İsmail Öğülür
- Marmara University, Research and Training Hospital, Division of Pediatric Allergy and Immunology, 34899 Istanbul, Turkey
| |
Collapse
|
6
|
|
7
|
The novel gene yvfI in Bacillus subtilis is essential for bacilysin biosynthesis. Antonie van Leeuwenhoek 2008; 94:471-9. [PMID: 18604637 DOI: 10.1007/s10482-008-9265-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
Abstract
Using transposon mutagenesis in Bacillus subtilis PY79, three independent mutants defective in production of bacilysin were isolated. To identify the genes in these mutant loci affecting bacilysin biosynthesis, the inserted transposon and its flanking regions were cloned and sequenced from each mutant. Transposon insertions in these three mutants were found to be in the yvfI gene which encodes an unknown protein similar to GntR family transcriptional regulators. For further confirmation, deletion mutants were constructed in which nucleotides 196-314 of the yvfI gene were removed. All resulting yvfI (Delta196-314)::spc deletion mutants exhibited bacilysin-negative phenotypes, as in the case of the yvfI::Tn10::spc insertional mutants. The lacR gene, encoding a transcriptional regulator, resides immediately downstream from the yvfI gene. Therefore, an insertion mutation was created in the lacR gene to demonstrate that the bacilysin negative phenotype is actually due to the mutation in the yvfI gene and not a polar effect of yvfI mutation on the downstream gene. As expected, all resulting lacR mutant derivatives of PY79 still produced bacilysin.
Collapse
|
8
|
Caldeira A, Feio S, Arteiro J, Coelho A, Roseiro J. Environmental dynamics of Bacillus amyloliquefaciens CCMI 1051 antifungal activity under different nitrogen patterns. J Appl Microbiol 2008; 104:808-16. [DOI: 10.1111/j.1365-2672.2007.03601.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Tabata K, Ikeda H, Hashimoto SI. ywfE in Bacillus subtilis codes for a novel enzyme, L-amino acid ligase. J Bacteriol 2005; 187:5195-202. [PMID: 16030213 PMCID: PMC1196041 DOI: 10.1128/jb.187.15.5195-5202.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATP-dependent carboxylate-amine/thiol ligase superfamily is known to contain enzymes catalyzing the formation of various types of peptide, such as d-alanyl-d-alanine, polyglutamate, and gamma-peptide, but, curiously, no enzyme synthesizing alpha-dipeptides of l-amino acids is known. We attempted to find such an enzyme. By in silico screening based on the consensus sequence of the superfamily followed by an in vitro assay with purified enzyme to avoid the degradation of the peptide(s) synthesized, ywfE of Bacillus subtilis was found to code for the activity forming l-alanyl-l-glutamine from l-alanine and l-glutamine with hydrolysis of ATP to ADP. No AMP was formed, supporting the idea that the enzyme belongs to the superfamily. Surprisingly, the enzyme accepted a wide variety of l-amino acids. Among 231 combinations of l-amino acids tested, reaction products were obtained for 111 combinations and 44 kinds of alpha-dipeptides were confirmed by high-performance liquid chromatography analyses, while no tripeptide or longer peptide was detected and the d-amino acids were inert. From these results, we propose that ywfE encodes a new member of the superfamily, l-amino acid ligase.
Collapse
Affiliation(s)
- Kazuhiko Tabata
- Technical Research Laboratories, Kyowa Hakko Kogyo Co. Ltd., 1-1 Kyowa-cho, Hofu-shi, 747-8522 Yamaguchi, Japan
| | | | | |
Collapse
|
10
|
2-Amino-N-(2-furylmethyl)propanamide as a novel alanylglycine equivalent synthesized by bacilysin synthetase. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00209-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Yazgan Karata° A, Çetin S, Özcengiz G. The effects of insertional mutations in comQ, comP, srfA, spo0H, spo0A and abrB genes on bacilysin biosynthesis in Bacillus subtilis. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-4781(03)00037-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|