1
|
Spannenkrebs JB, Beenfeldt Petersen A, Aachmann FL, Kabisch J. Immobilization of alginate C-5 epimerases using Bacillus subtilis spore display. Appl Environ Microbiol 2025; 91:e0029825. [PMID: 40178254 PMCID: PMC12016494 DOI: 10.1128/aem.00298-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
Alginates are the most abundant polysaccharides found in brown seaweed, composed of (1→4)-linked β-D-mannuronate (M) and its C-5 epimer, α-L-guluronate (G). The G-blocks of alginate possess viscosifying and gelling properties, making alginates valuable industrial polysaccharides. Alginate epimerases are enzymes epimerizing M to G, enhancing the usability and value of alginate. The three alginate epimerases AlgE1, AlgE4, and AlgE6 were immobilized using Bacillus subtilis spores displaying the epimerases fused to the spore crust protein CotY. To our knowledge, this is the first display of immobilized alginate-modifying enzymes. Activity assays of the four AlgE4-displaying spore strains showed that AlgE4 produced MG-blocks from polyM alginate. AlgE4 was tested linked by its N- and C-termini. Two linkers with different flexibility were tested, both containing a TEV protease cleavage site. Immobilizing alginate epimerases on B. subtilis spores resulted in a recyclable system that is easy to isolate and reuse, thus opening possibilities for industrial application. Recyclability was demonstrated by performing five consecutive reactions with the same batch of AlgE4 spores, with the spores retaining 24% of the starting activity after four rounds of reuse. TEV cleavage of spore-displayed enzyme was optimized using spores displaying a green fluorescent protein, and these optimized conditions were used to cleave AlgE4 off the spores. The cleavage of four AlgE4-displaying spores was successful, but cleavage efficiency varied depending on which terminus of AlgE4 was fused to CotY. IMPORTANCE Seaweed is a scalable resource that requires no fresh water, fertilizer, or arable land, making it an important biomass for bioeconomies. Alginates are a major component of brown seaweed and are widely used in food, feed, technical, and pharmacological industries. To tailor the functional properties of alginates, alginate epimerases have shown to be promising for postharvest valorization of alginate. This study investigates an efficient and easy method to produce immobilized alginate epimerases, thus opening new industrial use cases. In this study, the alginate epimerases are immobilized on the surface of Bacillus subtilis spores. The bacterium forms spores in reaction to nutrient starvation, which are highly resistant to external influences and can be repurposed as a stable protein display platform for numerous applications due to its ease of genomic manipulation and cultivation.
Collapse
Affiliation(s)
- Jan Benedict Spannenkrebs
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Agnes Beenfeldt Petersen
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Finn Lillelund Aachmann
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Johannes Kabisch
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Al-Roujayee AS, Hilaj E, Deepak A, Jyothi SR, Hamid JA, Ariffin IA, Saraswat V, Garg A. Alginate-based systems: advancements in drug delivery and wound healing. INT J POLYM MATER PO 2024:1-29. [DOI: 10.1080/00914037.2024.2375343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/28/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Abdulaziz S. Al-Roujayee
- Department of Dermatology and Venereology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Erina Hilaj
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, Tirana, Albania
| | - A. Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu, India
| | - S. Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | | | - I. A. Ariffin
- Management and Science University, Shah Alam, Malaysia
| | - Vivek Saraswat
- Institute of Engineering and Technology, GLA University, Mathura, Uttar Pradesh, India
| | - Avni Garg
- Department of Applied Sciences, Chandigarh Engineering Colleges, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, India
| |
Collapse
|
3
|
Egbeyemi OI, Hatem WA, Kober UA, Lapitsky Y. Transforming the Stability, Encapsulation, and Sustained Release Properties of Calcium Alginate Beads through Gel-Confined Coacervation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11947-11958. [PMID: 38807458 DOI: 10.1021/acs.langmuir.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Calcium alginate (Ca2+/alginate) gel beads find use in diverse applications, ranging from drug delivery and tissue engineering to bioprocessing, food formulation, and agriculture. Unless modified, however, these gels have limited stability in alkaline media (including phosphate buffers), and their high solute permeability limits their ability to efficiently encapsulate and slowly release water-soluble small molecules. Here, we show how these limitations can be addressed by mixing the alginate solutions used in the bead preparation with the nontoxic anionic polymer polyphosphate (PP). Upon complexing Ca2+ ions, PP undergoes complex coacervation (i.e., liquid/liquid phase separation into a Ca2+/PP-rich coacervate phase and a dilute supernatant phase). At lower PP concentrations, the Ca2+/PP coacervate appears to simply remain dispersed within the beads. Though its presence makes the beads more stable in alkaline media (phosphate-buffered saline and seawater), it has little impact on the bead stiffness, morphology, and (at least in the absence of substantial payload/coacervate association) encapsulation and release properties. When the PP concentrations exceed a critical value, however, Ca2+/PP coacervation within the gelling Ca2+/alginate beads collapses the resulting beads into more compact, interpenetrating polymer networks. Besides their enhanced stability to alkaline environments, these hybrid beads exhibit irregular morphologies with wrinkled and dimpled surface structures and macroscopic (closed) internal pores, and their collapse into these polymer-rich networks also makes them significantly stiffer than their PP-free counterparts. Crucially, these beads also exhibit a much lower solute permeability, which enables highly efficient encapsulation and multiday release of water-soluble small molecules (with the beads encapsulating >90% of the added model payload and sustaining its release over 3-5 d). Collectively, these findings provide a mild and simple (single-step) pathway to generating ionically cross-linked alginate beads with significantly enhanced stability, encapsulation efficiency, and sustained release.
Collapse
Affiliation(s)
| | - Wesam A Hatem
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| | - Umberto A Kober
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| | - Yakov Lapitsky
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
4
|
Murugan N, Krishnamoorthy R, Khan JM, Gatasheh MK, Malathi J, Madhavan HNR, Ramalingam G, Jayaramana S. Unveiling the ocular battlefield: Insights into Pseudomonas aeruginosa virulence factors and their implications for multidrug resistance. Int J Biol Macromol 2024; 267:131677. [PMID: 38641280 DOI: 10.1016/j.ijbiomac.2024.131677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The research investigates the virulence factors of Pseudomonas aeruginosa (P. aeruginosa), a pathogen known for its ability to cause human infections by releasing various exoenzymes and virulence factors. Particularly relevant in ocular infections, where tissue degeneration can occur, even after bacterial growth has ceased due to the potential role of secreted proteins/enzymes. Clinical isolates of P. aeruginosa, both ocular (146) and non-ocular (54), were examined to determine the frequency and mechanism of virulence factors. Phenotypic characterization revealed the production of alginate, biofilm, phospholipase C, and alkaline protease, while genotypic testing using internal uniplex PCR identified the presence of Exo U, S, T, Y, and LasB genes. Results showed a significant prevalence of Exo U and Y genes in ocular isolates, a finding unique to Indian studies. Additionally, the study noted that ocular isolates often contained all four secretomes, suggesting a potential link between these factors and ocular infections. These findings contribute to understanding the pathogenesis of P. aeruginosa infections, particularly in ocular contexts, and highlights the importance of comprehensive virulence factor analysis in clinical settings.
Collapse
Affiliation(s)
- Nandagopal Murugan
- Department of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai-6000 06, India; Valluvar Rosalind Diagnostic & Research Lab, Tiruvotriyur, Chennai-600019, India
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jambulingam Malathi
- Department of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai-6000 06, India; Valluvar Rosalind Diagnostic & Research Lab, Tiruvotriyur, Chennai-600019, India
| | - Hajib Narahari Rao Madhavan
- Department of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai-6000 06, India; Valluvar Rosalind Diagnostic & Research Lab, Tiruvotriyur, Chennai-600019, India
| | - Gopinath Ramalingam
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, Tamil Nadu-625512, India
| | - Selvaraj Jayaramana
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai-600077, India.
| |
Collapse
|
5
|
Mannuronate C-5 epimerases and their use in alginate modification. Essays Biochem 2023; 67:615-627. [PMID: 36876890 DOI: 10.1042/ebc20220151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
Alginate is a polysaccharide consisting of β-D-mannuronate (M) and α-L-guluronate (G) produced by brown algae and some bacterial species. Alginate has a wide range of industrial and pharmaceutical applications, owing mainly to its gelling and viscosifying properties. Alginates with high G content are considered more valuable since the G residues can form hydrogels with divalent cations. Alginates are modified by lyases, acetylases, and epimerases. Alginate lyases are produced by alginate-producing organisms and by organisms that use alginate as a carbon source. Acetylation protects alginate from lyases and epimerases. Following biosynthesis, alginate C-5 epimerases convert M to G residues at the polymer level. Alginate epimerases have been found in brown algae and alginate-producing bacteria, predominantly Azotobacter and Pseudomonas species. The best characterised epimerases are the extracellular family of AlgE1-7 from Azotobacter vinelandii (Av). AlgE1-7 all consist of combinations of one or two catalytic A-modules and one to seven regulatory R-modules, but even though they are sequentially and structurally similar, they create different epimerisation patterns. This makes the AlgE enzymes promising for tailoring of alginates to have the desired properties. The present review describes the current state of knowledge regarding alginate-active enzymes with focus on epimerases, characterisation of the epimerase reaction, and how alginate epimerases can be used in alginate production.
Collapse
|
6
|
Funami T, Nakauma M. Cation-responsive food polysaccharides and their usage in food and pharmaceutical products for improved quality of life. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
7
|
Hurtado A, Aljabali AAA, Mishra V, Tambuwala MM, Serrano-Aroca Á. Alginate: Enhancement Strategies for Advanced Applications. Int J Mol Sci 2022; 23:4486. [PMID: 35562876 PMCID: PMC9102972 DOI: 10.3390/ijms23094486] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is an excellent biodegradable and renewable material that is already used for a broad range of industrial applications, including advanced fields, such as biomedicine and bioengineering, due to its excellent biodegradable and biocompatible properties. This biopolymer can be produced from brown algae or a microorganism culture. This review presents the principles, chemical structures, gelation properties, chemical interactions, production, sterilization, purification, types, and alginate-based hydrogels developed so far. We present all of the advanced strategies used to remarkably enhance this biopolymer's physicochemical and biological characteristics in various forms, such as injectable gels, fibers, films, hydrogels, and scaffolds. Thus, we present here all of the material engineering enhancement approaches achieved so far in this biopolymer in terms of mechanical reinforcement, thermal and electrical performance, wettability, water sorption and diffusion, antimicrobial activity, in vivo and in vitro biological behavior, including toxicity, cell adhesion, proliferation, and differentiation, immunological response, biodegradation, porosity, and its use as scaffolds for tissue engineering applications. These improvements to overcome the drawbacks of the alginate biopolymer could exponentially increase the significant number of alginate applications that go from the paper industry to the bioprinting of organs.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
8
|
Zhang C, Li M, Rauf A, Khalil AA, Shan Z, Chen C, Rengasamy KRR, Wan C. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives. Crit Rev Food Sci Nutr 2021; 63:303-329. [PMID: 34254536 DOI: 10.1080/10408398.2021.1946008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alginates are linear polymers comprising 40% of the dry weight of algae possess various applications in food and biomedical industries. Alginate oligosaccharides (AOS), a degradation product of alginate, is now gaining much attention for their beneficial role in food, pharmaceutical and agricultural industries. Hence this review was aimed to compile the information on alginate and AOS (prepared from seaweeds) during 1994-2020. As per our knowledge, this is the first review on the potential use of alginate oligosaccharides in different fields. The alginate derivatives are grouped according to their applications. They are involved in the isolation process and show antimicrobial, antioxidant, anti-inflammatory, antihypertension, anticancer, and immunostimulatory properties. AOS also have significant applications in prebiotics, nutritional supplements, plant growth development and others products.
Collapse
Affiliation(s)
- Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Chuying Chen
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Response surface methodology model to optimize concentration of agar, alginate and carrageenan for the improved properties of biopolymer film. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03797-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Computational characterizations of GDP-mannose 4,6-dehydratase (NoeL) Rhizobial proteins. Curr Genet 2021; 67:769-784. [PMID: 33837815 DOI: 10.1007/s00294-021-01184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
A growing body of evidence suggests that Nod Factors molecules are the critical structural components in nitrogen fixation. These molecules have been implicated in plant-microbe signaling. Many enzymes involved in Nod factors biosynthesis; however, the enzymes that decorate (modify) nod factor main structure play a vital role. Here, the computational analysis of GDP-mannose 4,6-dehydratase (NoeL) proteins with great impact in modification of nod factor structure in four genomes of agriculturally important rhizobia (Bradyrhizobium, Mesorhizobium, Rhizobium, Sinorhizobium) presented. The NoeL number of amino acids was in the range of 147 (M5AMF5) to 372 (A0A023XWX0, Q89TZ1). The molecular weights were around 41 KDa. The results showed that the strain-specific purification strategy should apply as the pI of the sequences varied significantly (in the range of 5.59 to 9.12). The enzyme sequences and eight 3-dimensional structures predicted with homology modeling and machine learning representing the phylogenetic tree revealed the stability of enzymes in different conditions (Instability and Aliphatic index); however, this stability is also strain-specific. Disulphide bonds were observed in some species; however, the pattern was not detected in all members of the same species. Alpha helix was the dominant secondary structure predicted in all cytoplasmic NoeL. All models were homo-tetramer with acceptable sequence identity, GMEAN and coverage (60, - 1.80, 88, respectively). Additionally, Ramachandran maps showed that more than 94% of residues are in favored regions. We also highlight several key characterizations of NoeL from four rhizobia genomes annotation. These findings provide novel insights into the complexity and diversity of NoeL enzymes among important rhizobia and suggest considering a broader framework of biofilm for future research.
Collapse
|
11
|
Chen J, Meng Q, Jiang B, Chen J, Zhang T, Zhou L. Structure characterization and in vitro hypoglycemic effect of partially degraded alginate. Food Chem 2021; 356:129728. [PMID: 33836362 DOI: 10.1016/j.foodchem.2021.129728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022]
Abstract
Alginate is a low-cost polysaccharide found abundantly in seaweeds which consists of mannuronate and guluronate, and it is considered a sustainable gum source for dietary fiber. To solve the high viscosity-related problems while retaining its physiological properties, four partially degraded alginate products (PDA1-4) with molecular weight of 1.05-0.40 × 105 g mol-1 and intrinsic viscosity of 170.9-38.9 mL g-1 were enzymatically prepared and characterized. 1H Nuclear magnetic resonance analysis showed the used alginate lyase had a preference to degrade guluronate-blocks. PDA1 and PDA2 presented random coil conformation, whereas PDA3 and PDA4 displayed compact spherical-coil conformation over random coil conformation in solution. In vitro assays suggested a glucose-adsorption capacity order of PDA1 < PDA2 < alginate < PDA3 < PDA4 and a glucose-diffusion retardation capacity order of PDA3 < PDA1 ≤ alginate < PDA2 < PDA4, indicating that partially degraded alginate reinforced the hypoglycemic effect, especially mannuronate-rich PDA4. Overall, the study may have important implications for development of PDA as dietary fiber with potential hypoglycemic activity.
Collapse
Affiliation(s)
- Jiawei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Licheng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
Ci F, Jiang H, Zhang Z, Mao X. Properties and potential applications of mannuronan C5-epimerase: A biotechnological tool for modifying alginate. Int J Biol Macromol 2021; 168:663-675. [PMID: 33220370 DOI: 10.1016/j.ijbiomac.2020.11.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/23/2022]
Abstract
Given the excellent characteristics of alginate, it is an industrially important polysaccharide. Mannuronan C5-epimerase (MC5E) is an alginate-modifying enzyme that catalyzes the conversion of β-D-mannuronate (M) to its C5 epimer α-L-guluronate (G) in alginate. Both the biological activities and physical properties of alginate are determined by M/G ratios and distribution patterns. Therefore, MC5E is regarded as a biotechnological tool for modifying and processing alginate. Various MC5Es derived from brown algae, Pseudomonas and Azotobacter have been isolated and characterized. With the rapid development of structural biology, the crystal structures and catalytic mechanisms of several MC5Es have been elucidated. It is necessary to comprehensively understand the research status of this alginate-modifying enzyme. In this review, the properties and potential applications of MC5Es isolated from different kinds of organisms are summarized and reviewed. Moreover, future research directions of MC5Es as well as strategies to enhance their properties are elucidated, highlighted, and prospected.
Collapse
Affiliation(s)
- Fangfang Ci
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Zhaohui Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
13
|
A Critical Review on the Synthesis of Natural Sodium Alginate Based Composite Materials: An Innovative Biological Polymer for Biomedical Delivery Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9010137] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sodium alginate (Na-Alg) is water-soluble, neutral, and linear polysaccharide. It is the derivative of alginic acid which comprises 1,4-β-d-mannuronic (M) and α-l-guluronic (G) acids and has the chemical formula (NaC6H7O6). It shows water-soluble, non-toxic, biocompatible, biodegradable, and non-immunogenic properties. It had been used for various biomedical applications, among which the most promising are drug delivery, gene delivery, wound dressing, and wound healing. For different biomedical applications, it is used in different forms with the help of new techniques. That is the reason it had been blended with different polymers. In this review article, we present a comprehensive overview of the combinations of sodium alginate with natural and synthetic polymers and their biomedical applications involving delivery systems. All the scientific/technical issues have been addressed, and we have highlighted the recent advancements.
Collapse
|
14
|
Santos NL, Ragazzo GDO, Cerri BC, Soares MR, Kieckbusch TG, da Silva MA. Physicochemical properties of konjac glucomannan/alginate films enriched with sugarcane vinasse intended for mulching applications. Int J Biol Macromol 2020; 165:1717-1726. [PMID: 33069823 DOI: 10.1016/j.ijbiomac.2020.10.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Biodegradable films are a promising strategy to reduce the environmental impact caused by conventional plastics commonly used in agriculture. This study focused on the production and characterization of Konjac glucomannan (KGM) and alginate (ALG) based films enriched with sugarcane vinasse (VIN), a nutrient-rich wastewater generated in large volumes by the sugar-ethanol producing industries. ALG, KGM and ALG/KGM blended (50:50) films were produced by casting and treated with calcium ions (Ca2+) (ALG films) and a combination of Ca2+, alkali, and ethanol (KGM and ALG/KGM films). Vinasse addition tended to reduce transparency and water resistance of the films and had less effect on their mechanical properties. Crosslinking of ALG films resulted in enhanced mechanical properties and reduced moisture content, water solubility, swelling, water vapor permeability, and flexibility. KGM films were less impacted by crosslinking/deacetylation but showed improved water resistance while maintain a high degree of swelling (290% and 185% for KGM and KGM/VIN films respectively). Blended films exhibited characteristic properties of the two biopolymers and adequate compatibility indicated by Fourier transform infrared spectroscopy (FTIR) and morphologies. Vinasse-added ALG/KGM films represent a novel nutrient-enriched, bio-based material for agricultural applications and could help to face the environmental challenges imposed by vinasse disposal.
Collapse
Affiliation(s)
- Nathalia Leal Santos
- Center of Agricultural Sciences, Federal University of São Carlos, Rodovia Anhanguera, km 174, 13600-970 Araras, SP, Brazil
| | - Gabriel de Oliveira Ragazzo
- Center of Agricultural Sciences, Federal University of São Carlos, Rodovia Anhanguera, km 174, 13600-970 Araras, SP, Brazil
| | - Bianca Carreiro Cerri
- Center of Agricultural Sciences, Federal University of São Carlos, Rodovia Anhanguera, km 174, 13600-970 Araras, SP, Brazil
| | - Marcio Roberto Soares
- Center of Agricultural Sciences, Federal University of São Carlos, Rodovia Anhanguera, km 174, 13600-970 Araras, SP, Brazil
| | - Theo Guenter Kieckbusch
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein 500, 13083-852 Campinas, SP, Brazil
| | - Mariana Altenhofen da Silva
- Center of Agricultural Sciences, Federal University of São Carlos, Rodovia Anhanguera, km 174, 13600-970 Araras, SP, Brazil.
| |
Collapse
|
15
|
Synthesis and characterization of alginate and sterculia gum based hydrogel for brain drug delivery applications. Int J Biol Macromol 2020; 148:248-257. [DOI: 10.1016/j.ijbiomac.2020.01.147] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 01/24/2023]
|
16
|
Espona-Noguera A, Ciriza J, Cañibano-Hernández A, Orive G, Hernández RM, Saenz del Burgo L, Pedraz JL. Review of Advanced Hydrogel-Based Cell Encapsulation Systems for Insulin Delivery in Type 1 Diabetes Mellitus. Pharmaceutics 2019; 11:E597. [PMID: 31726670 PMCID: PMC6920807 DOI: 10.3390/pharmaceutics11110597] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
: Type 1 Diabetes Mellitus (T1DM) is characterized by the autoimmune destruction of β-cells in the pancreatic islets. In this regard, islet transplantation aims for the replacement of the damaged β-cells through minimally invasive surgical procedures, thereby being the most suitable strategy to cure T1DM. Unfortunately, this procedure still has limitations for its widespread clinical application, including the need for long-term immunosuppression, the lack of pancreas donors and the loss of a large percentage of islets after transplantation. To overcome the aforementioned issues, islets can be encapsulated within hydrogel-like biomaterials to diminish the loss of islets, to protect the islets resulting in a reduction or elimination of immunosuppression and to enable the use of other insulin-producing cell sources. This review aims to provide an update on the different hydrogel-based encapsulation strategies of insulin-producing cells, highlighting the advantages and drawbacks for a successful clinical application.
Collapse
Affiliation(s)
- Albert Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Alberto Cañibano-Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01006 Vitoria, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Rosa María Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Laura Saenz del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
17
|
Liu J, Yang S, Li X, Yan Q, Reaney MJT, Jiang Z. Alginate Oligosaccharides: Production, Biological Activities, and Potential Applications. Compr Rev Food Sci Food Saf 2019; 18:1859-1881. [DOI: 10.1111/1541-4337.12494] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/09/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business Univ. Beijing 100048 China
| | - Shaoqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business Univ. Beijing 100048 China
| | - Qiaojuan Yan
- Bioresource Utilization LaboratoryCollege of EngineeringChina Agricultural Univ. Beijing 100083 China
| | - Martin J. T. Reaney
- Dept. of Plant SciencesUniv. of Saskatchewan Saskatoon SK S7N 5A8 Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory (GUSTO)Dept. of Food Science and EngineeringJinan Univ. Guangzhou 510632 China
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
| |
Collapse
|
18
|
Deska M, Kończak B. Immobilized fungal laccase as "green catalyst" for the decolourization process – State of the art. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Yamaguchi T, Narsico J, Kobayashi T, Inoue A, Ojima T. Production of poly(3-hydroyxybutylate) by a novel alginolytic bacterium Hydrogenophaga sp. strain UMI-18 using alginate as a sole carbon source. J Biosci Bioeng 2019; 128:203-208. [DOI: 10.1016/j.jbiosc.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/01/2023]
|
20
|
Use of Anionic Polysaccharides in the Development of 3D Bioprinting Technology. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132596] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three-dimensional (3D) bioprinting technology is now one of the best ways to generate new biomaterial for potential biomedical applications. Significant progress in this field since two decades ago has pointed the way toward use of natural biopolymers such as polysaccharides. Generally, these biopolymers such as alginate possess specific reactive groups such as carboxylate able to be chemically or enzymatically functionalized to generate very interesting hydrogel structures with biomedical applications in cell generation. This present review gives an overview of the main natural anionic polysaccharides and focuses on the description of the 3D bioprinting concept with the recent development of bioprinting processes using alginate as polysaccharide.
Collapse
|
21
|
Barcelos MCS, Vespermann KAC, Pelissari FM, Molina G. Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutr 2019; 60:1475-1495. [PMID: 30740985 DOI: 10.1080/10408398.2019.1575791] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbial exopolysaccharides (EPS) are an abundant and important group of compounds that can be secreted by bacteria, fungi and algae. The biotechnological production of these substances represents a faster alternative when compared to chemical and plant-derived production with the possibility of using industrial wastes as substrates, a feasible strategy after a comprehensive study of factors that may affect the synthesis by the chosen microorganism and desirable final product. Another possible difficulty could be the extraction and purification methods, a crucial part of the production of microbial polysaccharides, since different methods should be adopted. In this sense, this review aims to present the biotechnological production of microbial exopolysaccharides, exploring the production steps, optimization processes and current applications of these relevant bioproducts.
Collapse
Affiliation(s)
- Mayara C S Barcelos
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Kele A C Vespermann
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Franciele M Pelissari
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Gustavo Molina
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| |
Collapse
|
22
|
Bouissil S, Pierre G, Alaoui-Talibi ZE, Michaud P, El Modafar C, Delattre C. Applications of Algal Polysaccharides and Derivatives in Therapeutic and Agricultural Fields. Curr Pharm Des 2019; 25:1187-1199. [PMID: 31465279 DOI: 10.2174/1381612825666190425162729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Recently, researchers have given more and more consideration to natural polysaccharides thanks to their huge properties such as stability, biodegradability and biocompatibility for food and therapeutics applications. METHODS a number of enzymatic and chemical processes were performed to generate bioactive molecules, such as low molecular weight fractions and oligosaccharides derivatives from algal polysaccharides. RESULTS These considerable characteristics allow algal polysaccharides and their derivatives such as low molecular weight polymers and oligosaccharides structures to have great potential to be used in lots of domains, such as pharmaceutics and agriculture etc. Conclusion: The present review describes the mains polysaccharides structures from Algae and focuses on the currents agricultural (fertilizer, bio-elicitor, stimulators, signaling molecules and activators) and pharmaceutical (wound dressing, tissues engineering and drugs delivery) applications by using polysaccharides and/or their oligosaccharides derivatives obtained by chemical, physical and enzymatic processes.
Collapse
Affiliation(s)
- Soukaina Bouissil
- Universite Cadi Ayyad, Laboratoire de Biotechnologie et Bioingenierie Moleculaire, Faculte des Sciences et Techniques, Marrakech, Morocco
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Guillaume Pierre
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Zainab El Alaoui-Talibi
- Universite Cadi Ayyad, Laboratoire de Biotechnologie et Bioingenierie Moleculaire, Faculte des Sciences et Techniques, Marrakech, Morocco
| | - Philippe Michaud
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - C El Modafar
- Universite Cadi Ayyad, Laboratoire de Biotechnologie et Bioingenierie Moleculaire, Faculte des Sciences et Techniques, Marrakech, Morocco
| | - Cedric Delattre
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| |
Collapse
|
23
|
Eslami M, Shahedi M, Fathi M. Development of Hydrogels for Entrapment of Vitamin D3: Physicochemical Characterization and Release Study. FOOD BIOPHYS 2018. [DOI: 10.1007/s11483-018-9534-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Rohani L, Karbalaie K, Vahdati A, Hatami M, Nasr-Esfahani M, Baharvand H. Embryonic Stem Cell Sphere: A Controlled Method for Production of Mouse Embryonic Stem Cell Aggregates for Differentiation. Int J Artif Organs 2018; 31:258-65. [DOI: 10.1177/039139880803100310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives Embryonic stem cells (ESCs) are of significant interest as a renewable source of nonproliferating cells. Differentiation of ESCs is initiated by the formation of embryoid bodies (EBs). Standard methods of EB formation are limited in their production capacity, in any variations in EB size and formation of EBs through frequent passages. Here we have reported the utility of a microencapsulation technique for overcoming these limitations by mass production of mouse ESCs in alginate beads called ESC spheres. Methods The mouse ESCs were encapsulated in 1.2% alginate solution and cocultured on a feeder layer. The cells were evaluated by flow cytometry, in vitro differentiation, immunofluorescence, and reverse transcriptase polymerase chain reaction (RT-PCR). Results Analysis of encapsulated ESC spheres by flow cytometry showed similar percentages of Oct-4 and stage-specific embryonic antigen-1 (SSEA-1) expression in comparison with routine culture of ESCs. Moreover, the ESC spheres maintained a pluripotency potential which was comparable with ESCs cultured on feeder cells directly, as demonstrated by immunofluorescence and RT-PCR. Conclusions The results demonstrated that alginate encapsulation as a simple bioreactor, provides a scalable system for mass undifferentiated ESC sphere production with similar sizes and without the need for frequent passages for differentiation and clinical and pharmaceutical applications.
Collapse
Affiliation(s)
- L. Rohani
- Department of Stem Cells, Cell Science Research Center, Royan Institute, Esfahan Campus, Esfahan - Iran
- Department of Biology, Esfahan University, Esfahan - Iran
| | - K. Karbalaie
- Department of Stem Cells, Cell Science Research Center, Royan Institute, Esfahan Campus, Esfahan - Iran
| | - A. Vahdati
- Department of Biology, Esfahan University, Esfahan - Iran
| | - M. Hatami
- Department of Stem Cells, Cell Science Research Center, Royan Institute, Tehran - Iran
| | - M.H. Nasr-Esfahani
- Department of Stem Cells, Cell Science Research Center, Royan Institute, Esfahan Campus, Esfahan - Iran
| | - H. Baharvand
- Department of Stem Cells, Cell Science Research Center, Royan Institute, Tehran - Iran
- Department of Developmental Biology, University of Science and Culture, Tehran - Iran
| |
Collapse
|
25
|
Extremely fouling resistant zwitterionic copolymer membranes with ~ 1 nm pore size for treating municipal, oily and textile wastewater streams. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Taubner T, Marounek M, Synytsya A. Preparation and characterization of amidated derivatives of alginic acid. Int J Biol Macromol 2017; 103:202-207. [PMID: 28526341 DOI: 10.1016/j.ijbiomac.2017.05.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/12/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Alginic acid is a suitable material for modification to prepare new derivatives because of presence of its carboxyl groups. The high content of carboxyl groups over the entire length of its chain renders it an easily modifiable material with a possibility of achieving a high degree of substitution in the prepared derivatives. The salt of alginic acid (sodium alginate) is readily commercially available and is widely used in many branches of chemistry. Alginic acid was thus selected as the substrate for amidation. The amidation used two-steps: methyl esterification followed by amino-de-alkoxylation. The aim of this study was to prepare highly substituted derivatives with different polysaccharide chain characteristics. As such, the alginic acid was modified by the two-step amidation based on the esterification of the alginic acid carboxyl groups by reaction with methanol and further amino-de-alkoxylation (aminolysis) of the obtained methyl ester with amidation reagents (n-alkylamines, hydrazine and hydroxylamine). The purity and substitution degree of the prepared derivatives were monitored by vibration spectroscopic methods (FTIR and FT Raman) and organic elemental analysis. These analytical methods confirmed the preparation of highly or moderately substituted N-alkylamides, hydrazide and hydroxamic acid of alginic acid.
Collapse
Affiliation(s)
- Tomáš Taubner
- Institute of Animal Science, VÚŽV v.v.i., Přátelství 815, Prague 22 Uhříněves, 104 00, Czech Republic.
| | - Milan Marounek
- Institute of Animal Science, VÚŽV v.v.i., Přátelství 815, Prague 22 Uhříněves, 104 00, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, ICT Prague, Technická 5, Prague 6 Dejvice, 166 28, Czech Republic
| |
Collapse
|
27
|
Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 2017; 57:548-573. [PMID: 28407275 DOI: 10.1002/jobm.201700046] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022]
Abstract
Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
28
|
Gao C, Pollet E, Avérous L. Properties of glycerol-plasticized alginate films obtained by thermo-mechanical mixing. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.09.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Innovative plasticized alginate obtained by thermo-mechanical mixing: Effect of different biobased polyols systems. Carbohydr Polym 2017; 157:669-676. [DOI: 10.1016/j.carbpol.2016.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/13/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
|
30
|
Zhou Q, Liu Y, Yu G, He F, Chen K, Xiao D, Zhao X, Feng Y, Li J. Degradation kinetics of sodium alginate via sono-Fenton, photo-Fenton and sono-photo-Fenton methods in the presence of TiO2 nanoparticles. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2016.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Sodium alginate stabilized silver nanoparticles–silica nanohybrid and their antibacterial characteristics. Int J Biol Macromol 2016; 93:712-723. [DOI: 10.1016/j.ijbiomac.2016.09.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/13/2016] [Accepted: 09/11/2016] [Indexed: 11/30/2022]
|
32
|
Bifunctional carbohydrate biopolymers entrapped lipase as catalyst for the two consecutive conversions of α-pinene to oxy-derivatives. Carbohydr Polym 2016; 152:726-733. [DOI: 10.1016/j.carbpol.2016.07.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 11/17/2022]
|
33
|
Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 2016; 34:1225-1244. [DOI: 10.1016/j.biotechadv.2016.08.004] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/01/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023]
|
34
|
Sand A, Vyas A, Gupta A. Graft copolymer based on (sodium alginate-g-acrylamide): Characterization and study of Water swelling capacity, metal ion sorption, flocculation and resistance to biodegradability. Int J Biol Macromol 2016; 90:37-43. [DOI: 10.1016/j.ijbiomac.2015.11.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 11/04/2015] [Accepted: 11/29/2015] [Indexed: 11/29/2022]
|
35
|
|
36
|
Callegaro S, Minetto D, Pojana G, Bilanicová D, Libralato G, Volpi Ghirardini A, Hassellöv M, Marcomini A. Effects of alginate on stability and ecotoxicity of nano-TiO2 in artificial seawater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 117:107-114. [PMID: 25841066 DOI: 10.1016/j.ecoenv.2015.03.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
The large-scale use of titanium dioxide nanoparticles (nano-TiO₂) in consumer and industrial applications raised environmental health and safety concerns. Potentially impacted ecosystems include estuarine and coastal organisms. Results from ecotoxicological studies with nano-TiO₂ dispersed in salt exposure media are difficult to interpret due to fast flocculation and sedimentation phenomena affecting the dispersion stability. The goal of this study was to investigate the stabilisation effect of alginate on uncoated nano-Ti₂2 in artificial seawater dispersions used in ecotoxicity bioassays. The most effective stabilisation was obtained at alginate concentration of 0.45 g/L after sonicating dispersions for 20 min (100 W). The size distribution remained constant after re-suspension, indicating that no agglomeration occurred after deposition. Ecotoxicity tests on Artemia franciscana and Phaeodactylum tricornutum did not show any adverse effects related to the presence of alginate in the exposure media, and provided evidence on possible reduced bioavailability of nano-TiO₂. The suitable concentration of alginate is recommended to occur on a case-by-case basis.
Collapse
Affiliation(s)
- Sarah Callegaro
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga Santa Marta, 2137/b, I-30121 Venice, Italy
| | - Diego Minetto
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga Santa Marta, 2137/b, I-30121 Venice, Italy
| | - Giulio Pojana
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga Santa Marta, 2137/b, I-30121 Venice, Italy
| | - Dagmar Bilanicová
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga Santa Marta, 2137/b, I-30121 Venice, Italy
| | - Giovanni Libralato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga Santa Marta, 2137/b, I-30121 Venice, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga Santa Marta, 2137/b, I-30121 Venice, Italy
| | - Martin Hassellöv
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 4, 412 96 Gothenburg, Sweden
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga Santa Marta, 2137/b, I-30121 Venice, Italy.
| |
Collapse
|
37
|
The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. BIOMED RESEARCH INTERNATIONAL 2015; 2015:759348. [PMID: 25866808 PMCID: PMC4383298 DOI: 10.1155/2015/759348] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/03/2014] [Accepted: 09/07/2014] [Indexed: 12/16/2022]
Abstract
P. aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections. Beyond its natural resistance to many drugs, its ability to form biofilm, a complex biological system, renders ineffective the clearance by immune defense systems and antibiotherapy. The objective of this report is to provide an overview (i) on P. aeruginosa biofilm lifestyle cycle, (ii) on the main key actors relevant in the regulation of biofilm formation by P. aeruginosa including QS systems, GacS/GacA and RetS/LadS two-component systems and C-di-GMP-dependent polysaccharides biosynthesis, and (iii) finally on reported natural and synthetic products that interfere with control mechanisms of biofilm formation by P. aeruginosa without affecting directly bacterial viability. Concluding remarks focus on perspectives to consider biofilm lifestyle as a target for eradication of resistant infections caused by P. aeruginosa.
Collapse
|
38
|
Gianello P. Macroencapsulated Pig Islets Correct Induced Diabetes in Primates up to 6 Months. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:157-70. [DOI: 10.1007/978-3-319-18603-0_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Jost V, Kobsik K, Schmid M, Noller K. Influence of plasticiser on the barrier, mechanical and grease resistance properties of alginate cast films. Carbohydr Polym 2014; 110:309-19. [DOI: 10.1016/j.carbpol.2014.03.096] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 03/05/2014] [Accepted: 03/31/2014] [Indexed: 11/29/2022]
|
40
|
Sharabi M, Mandelberg Y, Benayahu D, Benayahu Y, Azem A, Haj-Ali R. A new class of bio-composite materials of unique collagen fibers. J Mech Behav Biomed Mater 2014; 36:71-81. [DOI: 10.1016/j.jmbbm.2014.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 12/25/2022]
|
41
|
Houghton D, Wilcox MD, Brownlee IA, Chater P, Seal CJ, Pearson JP. Method for quantifying alginate and determining release from a food vehicle in gastrointestinal digesta. Food Chem 2013; 151:352-7. [PMID: 24423543 DOI: 10.1016/j.foodchem.2013.11.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/23/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
Abstract
To assess the efficacy of alginate as a modifier of enzyme activity, a suitable method to quantify its release must be developed. This paper develops and assesses the ability of the Periodic Acid Schiffs (PAS) assay to quantify alginate, and its release from bread during digestion in a model gut. Control and alginate enriched (4% w/w wet dough) bread were used. A model gut replicating the mouth, stomach and small intestines was used. Standard curves were created for alginate in deionised H2O and model gut solutions using a modified PAS to remove interference. The PAS assay quantified alginate with excellent linearity (R(2)=0.99), and optical density range (0.02-0.5). There was a significant difference in alginate release at 180 min compared to 0 and 60 min. The data indicate the modified PAS assay is a simple method for quantifying alginate release and release rate from alginate enriched products.
Collapse
Affiliation(s)
- David Houghton
- Institute for Cell and Molecular Bioscience, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom. d.houghton.@ncl.ac.uk
| | - Matthew D Wilcox
- Institute for Cell and Molecular Bioscience, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Iain A Brownlee
- Institute for Cell and Molecular Bioscience, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Peter Chater
- Institute for Cell and Molecular Bioscience, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Chris J Seal
- Institute for Cell and Molecular Bioscience, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Jeffrey P Pearson
- Institute for Cell and Molecular Bioscience, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
42
|
Do Ca2+-chelating polysaccharides reduce calcium ion release from gypsum-based biomaterials? Open Life Sci 2013. [DOI: 10.2478/s11535-013-0191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Collapse
|
43
|
Baek G, Goo BG, Ahn BJ, Park JK. Effects of Water-Soluble Polysaccharides from Tott on Lipid Absorption and Animal Body Weight. ACTA ACUST UNITED AC 2013. [DOI: 10.3746/jkfn.2013.42.4.556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
44
|
Galus S, Lenart A. Development and characterization of composite edible films based on sodium alginate and pectin. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2012.03.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Chaurasia V, Bajpai SK. Moisture Uptake Behavior, Antibacterial Property, and Heat of Sorption of Nano Silver-Loaded Calcium Alginate Films. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2011.610062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Abstract
In this review, methods for the most common microalgal immobilization procedures are gathered and described. Passive (due to natural adherence of cells to surfaces) and active immobilization methods should be distinguished. Among active immobilization methods, calcium alginate entrapment is the most widely used method if living cells are intended to be immobilized, due to the chemical, optical, and mechanical characteristics of this substance. Immobilization in synthetic foams, immobilization in agar and carrageenan as well as immobilization in silica-based matrix or filters are also discussed and described. Finally, some considerations on the use of flocculation for microalgae are mentioned.
Collapse
Affiliation(s)
- Ignacio Moreno-Garrido
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalucia (ICMAN-CSIC), Cádiz, Spain
| |
Collapse
|
47
|
Alves A, Sousa RA, Reis RL. In Vitro
Cytotoxicity Assessment of Ulvan, a Polysaccharide Extracted from Green Algae. Phytother Res 2012; 27:1143-8. [DOI: 10.1002/ptr.4843] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 08/10/2012] [Accepted: 08/17/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Anabela Alves
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Associated Laboratory; Portugal
| | - Rui A. Sousa
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Associated Laboratory; Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Associated Laboratory; Portugal
| |
Collapse
|
48
|
Gauri SS, Mandal SM, Pati BR. Impact of Azotobacter exopolysaccharides on sustainable agriculture. Appl Microbiol Biotechnol 2012; 95:331-8. [PMID: 22615056 DOI: 10.1007/s00253-012-4159-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/04/2012] [Accepted: 05/04/2012] [Indexed: 11/25/2022]
Abstract
Recently, increasing attention have lead to search other avenue of biofertilizers with multipurpose activities as a manner of sustainable soil health to improve the plant productivity. Azotobacter have been universally accepted as a major inoculum used in biofertilizer to restore the nitrogen level into cultivated field. Azotobacter is well characterized for their profuse production of exopolysaccharides (EPS). Several reviews on biogenesis and multifunctional role of Azotobacter EPS have been documented with special emphasis on industrial applications. But the impact of Azotobacter EPS in plant growth promotion has not received adequate attention. This review outlines the evidence that demonstrates not only the contribution of Azotobacter EPS in global nutrient cycle but also help to compete successfully in different adverse ecological and edaphic conditions. This also focuses on new insights and concepts of Azotobacter EPS which have positive effects caused by the biofilm formation on overall plant growth promotion with other PGPRs. In addition, their potentials in agricultural improvement are also discussed. Recent data realized that Azotobacter EPS have an immense agro-economical importance including the survivability and maintenance of microbial community in their habitat. This leads us to confirm that the next generation Azotobacter inoculum with high yielding EPS and high nitrogen fixing ability can be utilized to satisfy the future demand of augmented crop production attributed to increase plant growth promoting agents.
Collapse
Affiliation(s)
- Samiran S Gauri
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | | | | |
Collapse
|
49
|
Synthesis and characterization of poly(acrylic acid)-g-sodium alginate hydrogel initiated by gamma irradiation for controlled release of chlortetracycline HCl. MONATSHEFTE FUR CHEMIE 2012. [DOI: 10.1007/s00706-012-0776-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Gökgöz M, Altinok H. Immobilization of laccase on polyacrylamide and polyacrylamide – κ – carragennan-based semi-interpenetrating polymer networks. ACTA ACUST UNITED AC 2012; 40:326-30. [DOI: 10.3109/10731199.2012.658469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|