1
|
Sevim B, Güneş Altuntaş E. Molecular Dynamic Study on the Structure and Thermal Stability of Mutant Pediocin PA-1 Peptides Engineered with Cysteine Substitutions. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10225-3. [PMID: 38424320 DOI: 10.1007/s12602-024-10225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Pediocin and analogous bacteriocins, valued for thermal stability, serve as versatile antimicrobials in the food sector. Improving their resilience at high temperatures and deriving derivatives not only benefit food production but also offer broad-spectrum antimicrobial potential in pharmaceuticals, spanning treatments for peptic ulcers, women's health, and novel anticancer agents. The study aims to create mutant peptides capable of establishing a third disulfide bond or enhanced through cysteine substitutions. This involves introducing additional Cys residues into the inherent structure of pediocin PA-1 to facilitate disulfide bond formation. Five mutants (Mut 1-5) were systematically generated with double Cys substitutions and assessed for thermal stability through MD simulations across temperatures (298-394 K). The most robust mutants (Mut 1, Mut 4-5) underwent extended analysis via MD simulations, comparing their structural stability, secondary structure, and surface accessibility to the reference Pediocin PA-1 molecule. This comprehensive assessment aims to understand how Cys substitutions influence disulfide bonds and the overall thermal stability of the mutant peptides. In silico analysis indicated that Mut 1 and Mut 5, along with the reference structure, lose their helical structure and one natural disulfide bond at high temperatures, and may impacting antimicrobial activity. Conversely, Mut 4 retained its helical structure and exhibited thermal stability similar to Pediocin PA-1. Pending further experimental validation, this study implies Mut 4 may have high stability and exceptional resistance to high temperatures, potentially serving as an effective antimicrobial alternative.
Collapse
Affiliation(s)
- Büşra Sevim
- Ankara University Biotechnology Institute, Ankara, Turkey
| | | |
Collapse
|
2
|
Benabbou R, Subirade M, Desbiens M, Fliss I. Divergicin M35-Chitosan Film: Development and Characterization. Probiotics Antimicrob Proteins 2021; 12:1562-1570. [PMID: 32430585 DOI: 10.1007/s12602-020-09660-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chitosan films loaded with bacteriocin were examined by FTIR spectroscopy, tested for color, puncture strength, water vapor permeability, and as antimicrobials of Listeria innocua HPB13. Divergicin M35, a bacteriocin produced by Carnobacterium divergens, was incorporated into films made with chitosan of molecular mass 2 kDa, 20 kDa, or 100 kDa and de-acetylated either 87% or 95%. Only 100 kDa chitosan yielded films that could be peeled and handled easily. The higher degree of de-acetylation increased the total color factor (ΔE) of bacteriocin-loaded films, their permeability, and puncture strength. Incorporation of divergicin M35 into the films increased amide I peak intensity but otherwise did not induce significant structural change. The FTIR spectra of divergicin M35 shed from the films did not differ from those of the original free bacteriocin, except in overall peak intensity. The release of active divergicin M35 from the film was faster into the buffer than into tryptic soy broth and peaked at 10-12 h in both cases. Chitosan 95% de-acetylated and loaded with divergicin M35 was the most active, producing a six-log drop in Listeria innocua HPB13 viable count within 24 h. These results suggest that the biocompatible and biodegradable films developed here have the potential for application as antimicrobials of Listeria spp. in foods, especially ready-to-eat, minimally processed products.
Collapse
Affiliation(s)
- Rajaa Benabbou
- Department of Food Science, Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, Canada
- Laboratory Engineering Research-OSIL Team Optimization of Industrial and Logistics Systems, University Hassan II, Casablanca, Morocco
| | - Muriel Subirade
- Department of Food Science, Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, Canada
| | - Michel Desbiens
- Centre Technologique des Produits aquatiques, Ministère de l'Agriculture des Pêcheries et de l'Alimentation, Gaspé, Québec, Canada
| | - Ismail Fliss
- Department of Food Science, Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
3
|
Santucci P, Smichi N, Diomandé S, Poncin I, Point V, Gaussier H, Cavalier J, Kremer L, Canaan S. Dissecting the membrane lipid binding properties and lipase activity ofMycobacterium tuberculosisLipY domains. FEBS J 2019; 286:3164-3181. [DOI: 10.1111/febs.14864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/25/2019] [Accepted: 04/25/2019] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM) CNRS UMR9004 Université de Montpellier France
- INSERM IRIM Montpellier France
| | | |
Collapse
|
4
|
Keppler JK, Martin D, Garamus VM, Berton-Carabin C, Nipoti E, Coenye T, Schwarz K. Functionality of whey proteins covalently modified by allyl isothiocyanate. Part 1 physicochemical and antibacterial properties of native and modified whey proteins at pH 2 to 7. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Nicolas GG, LaPointe G, Lavoie MC. Production, purification, sequencing and activity spectra of mutacins D-123.1 and F-59.1. BMC Microbiol 2011; 11:69. [PMID: 21477375 PMCID: PMC3088537 DOI: 10.1186/1471-2180-11-69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 04/10/2011] [Indexed: 12/02/2022] Open
Abstract
Background The increase in bacterial resistance to antibiotics impels the development of new anti-bacterial substances. Mutacins (bacteriocins) are small antibacterial peptides produced by Streptococcus mutans showing activity against bacterial pathogens. The objective of the study was to produce and characterise additional mutacins in order to find new useful antibacterial substances. Results Mutacin F-59.1 was produced in liquid media by S. mutans 59.1 while production of mutacin D-123.1 by S. mutans 123.1 was obtained in semi-solid media. Mutacins were purified by hydrophobic chromatography. The amino acid sequences of the mutacins were obtained by Edman degradation and their molecular mass was determined by mass spectrometry. Mutacin F-59.1 consists of 25 amino acids, containing the YGNGV consensus sequence of pediocin-like bacteriocins with a molecular mass calculated at 2719 Da. Mutacin D-123.1 has an identical molecular mass (2364 Da) with the same first 9 amino acids as mutacin I. Mutacins D-123.1 and F-59.1 have wide activity spectra inhibiting human and food-borne pathogens. The lantibiotic mutacin D-123.1 possesses a broader activity spectrum than mutacin F-59.1 against the bacterial strains tested. Conclusion Mutacin F-59.1 is the first pediocin-like bacteriocin identified and characterised that is produced by Streptococcus mutans. Mutacin D-123.1 appears to be identical to mutacin I previously identified in different strains of S. mutans.
Collapse
Affiliation(s)
- Guillaume G Nicolas
- Département de Biochimie Microbiologie et Bioinformatique, Faculté des Sciences et Génie, Université Laval, Québec (Québec), G1K 7P4, Canada.
| | | | | |
Collapse
|
6
|
Benitez LB, Velho RV, Lisboa MP, da Costa Medina LF, Brandelli A. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J Microbiol 2011; 48:791-7. [DOI: 10.1007/s12275-010-0164-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/23/2010] [Indexed: 10/18/2022]
|
7
|
Lappe R, Cladera-Olivera F, Dominguez APM, Brandelli A. Kinetics and thermodynamics of thermal inactivation of the antimicrobial peptide cerein 8A. J FOOD ENG 2009. [DOI: 10.1016/j.jfoodeng.2008.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
On the antibiotic activity of oxazolomycin. Bioorg Med Chem Lett 2008; 18:4081-6. [PMID: 18558487 DOI: 10.1016/j.bmcl.2008.05.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 05/23/2008] [Accepted: 05/24/2008] [Indexed: 11/24/2022]
Abstract
Structural analysis of oxazolomycin and simpler fragments containing a common 3-hydroxy-2,2-dimethylpropanamide moiety has indicated that a U-shaped conformation is preferred, in some cases stabilised by hydrogen bonding between the N-H and O-H residues, as shown by a combination of molecular modelling, NMR spectroscopic and single crystal X-ray analysis. A direct synthesis of this unit has been established via the opening of beta-lactones by a range of amines, and their antibacterial activity been shown to vary with the hydrophobic character of the substituents.
Collapse
|
9
|
Beaulieu L, Tolkatchev D, Jetté JF, Groleau D, Subirade M. Production of active pediocin PA-1 in Escherichia coli using a thioredoxin gene fusion expression approach: cloning, expression, purification, and characterization. Can J Microbiol 2008; 53:1246-58. [PMID: 18026219 DOI: 10.1139/w07-089] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antimicrobial peptides possess cationic and amphipathic properties that allow for interactions with the membrane of living cells. Bacteriocins from lactic acid bacteria, in particular, are currently being studied for their potential use as food preservatives and for applications in health care. However, bacteriocin exploitation is often limited owing to low production yields. Gene cloning and heterologous protein or peptide production is one way to possibly achieve overexpression of bacteriocins to support biochemical studies. In this work, production of recombinant active pediocin PA-1 (PedA) was accomplished in Escherichia coli using a thioredoxin (trx) gene fusion (trx-pedA) expression approach. Trx-PedA itself did not show any biological activity, but upon cleavage by an enterokinase, biologically active pediocin PA-1 was obtained. Recombinant pediocin PA-1 characteristics (molecular mass, biological activity, physicochemical properties) were very similar to those of native pediocin PA-1. In addition, a 4- to 5-fold increase in production yield was obtained, by comparison with the PA-1 produced naturally by Pediococcus acidilactici PAC 1.0. The new production method, although not optimized, offers great potential for supporting further investigations on pediocin PA-1 and as a first-generation process for the production of pediocin PA-1 for high-value applications.
Collapse
Affiliation(s)
- Lucie Beaulieu
- Biotechnology Research Institute, National Research Council, 6100 Royalmount Avenue, Montréal, QC 4P 2R2, Canada
| | | | | | | | | |
Collapse
|
10
|
Castellano P, Vignolo G, Farías RN, Arrondo JL, Chehín R. Molecular view by fourier transform infrared spectroscopy of the relationship between lactocin 705 and membranes: speculations on antimicrobial mechanism. Appl Environ Microbiol 2006; 73:415-20. [PMID: 17071790 PMCID: PMC1796977 DOI: 10.1128/aem.01293-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactocin 705 is a bacteriocin whose activity depends upon the complementation of two peptides, termed Lac705alpha and Lac705beta. Neither Lac705alpha nor Lac705beta displayed bacteriocin activity by itself when the growth of sensitive cells was monitored. To obtain molecular insights into the lactocin 705 mechanism of action, Fourier transform infrared spectroscopy was used to investigate the interactions of each peptide (Lac705alpha and Lac705beta) with dipalmitoylphosphatidylcholine liposomal membranes. Both peptides show the ability to interact with the zwitterionic membrane but at different bilayer levels. While Lac705alpha interacts with the interfacial region inducing dehydration, Lac705beta peptide interacts with only the hydrophobic core. This paper presents the first experimental evidence that supports the hypothesis that Lac705alpha and Lac705beta peptides could form a transmembrane oligomer. From the obtained results, a mechanism of action of lactocin 705 on membrane systems is proposed. The component Lac705alpha could induce the dehydration of the bilayer interfacial region, and the Lac705beta peptide could insert in the hydrophobic region of the membrane where the peptide has adequate conditions to achieve the oligomerization.
Collapse
Affiliation(s)
- Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA/CONICET), Chacabuco 145 Tucumán, Argentina
| | | | | | | | | |
Collapse
|
11
|
Hartmann WK, Saptharishi N, Yang XY, Mitra G, Soman G. Characterization and analysis of thermal denaturation of antibodies by size exclusion high-performance liquid chromatography with quadruple detection. Anal Biochem 2004; 325:227-39. [PMID: 14751257 DOI: 10.1016/j.ab.2003.10.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Size exclusion chromatography (SEC) coupled with online light scattering, viscometry, refractometry, and UV-visible spectroscopy provides a very powerful tool for studying protein size, shape, and aggregation. This technique can be used to determine the molecular weight of the component peaks independent of the retention times in the SEC column and simultaneously measure the hydrodynamic radius and polydispersity of the protein. We applied this technology by coupling an Agilent Chemstation high-performance liquid chromatography system with a diode array UV-visible detector and a Viscotek 300 EZ Pro triple detector (combination of a light scattering detector, refractometer, and differential pressure viscometer) to characterize and compare the molecular properties of a number of monoclonal antibodies. Our studies reveal that different monoclonal immunoglobulin Gs (IgGs) and chimeric IgGs show slightly different retention times and therefore different molecular weights in gel filtration analysis. However, when they are analyzed by light scattering, refractometry, and viscometry, different IgGs have comparable molecular weight, molecular homogeneity (polydispersity), and size. Gel filtration coupled with UV or refractive index detection suggests that antibodies purified and formulated for preclinical and clinical development are more than 95% monomer with little or no detectable soluble aggregates. Light scattering measurements showed the presence of trace amounts of soluble aggregate in all the IgG preparations. The different IgG molecules showed different susceptibility to heat and pH. One of the murine antibodies was considerably less stable than the others at 55 degrees C. The application of this powerful technology for the characterization of monoclonal antibodies of therapeutic potential is discussed.
Collapse
Affiliation(s)
- Wanda K Hartmann
- Bioanalytical Development Laboratory, Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
12
|
Gaussier H, Lefèvre T, Subirade M. Binding of pediocin PA-1 with anionic lipid induces model membrane destabilization. Appl Environ Microbiol 2003; 69:6777-84. [PMID: 14602640 PMCID: PMC262285 DOI: 10.1128/aem.69.11.6777-6784.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 08/19/2003] [Indexed: 11/20/2022] Open
Abstract
To obtain molecular insights into the action mode of antimicrobial activity of pediocin PA-1, the interactions between this bacteriocin and dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylglycerol (DMPG) model membranes have been investigated in D(2)O at pD 6 by Fourier transform infrared spectroscopy. The interactions were monitored with respect to alteration of the secondary structure of pediocin, as registered by the amide I' band, and phospholipid conformation, as revealed by the methylene nu(s)(CH(2)) and carbonyl nu(C;O) stretching vibrations. The results show that no interaction between pediocin and DMPC occurs. By contrast, pediocin undergoes a structural reorganization in the presence of DMPG. Upon heating, pediocin self-aggregates, which is not observed for this pD in aqueous solution. The gel-to-crystalline phase transition of DMPG shifts to higher temperatures with a concomitant dehydration of the interfacial region. Our results indicate that pediocin is an extrinsic peptide and that its action mechanism may lie in a destabilization of the cell membrane.
Collapse
Affiliation(s)
- Hélène Gaussier
- Centre de recherche en Sciences et Technologie du Lait (STELA), and Institut sur les nutraceutiques et aliments fonctionnels (INAF), Département des sciences des aliments et de nutrition, Université Laval, Pavillon Paul-Comtois, Sainte-Foy, Québec, Canada
| | | | | |
Collapse
|