1
|
Hellweg L, Edenhofer A, Barck L, Huppertz MC, Frei MS, Tarnawski M, Bergner A, Koch B, Johnsson K, Hiblot J. A general method for the development of multicolor biosensors with large dynamic ranges. Nat Chem Biol 2023; 19:1147-1157. [PMID: 37291200 PMCID: PMC10449634 DOI: 10.1038/s41589-023-01350-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
Fluorescent biosensors enable the study of cell physiology with spatiotemporal resolution; yet, most biosensors suffer from relatively low dynamic ranges. Here, we introduce a family of designed Förster resonance energy transfer (FRET) pairs with near-quantitative FRET efficiencies based on the reversible interaction of fluorescent proteins with a fluorescently labeled HaloTag. These FRET pairs enabled the straightforward design of biosensors for calcium, ATP and NAD+ with unprecedented dynamic ranges. The color of each of these biosensors can be readily tuned by changing either the fluorescent protein or the synthetic fluorophore, which enables simultaneous monitoring of free NAD+ in different subcellular compartments following genotoxic stress. Minimal modifications of these biosensors furthermore allow their readout to be switched to fluorescence intensity, fluorescence lifetime or bioluminescence. These FRET pairs thus establish a new concept for the development of highly sensitive and tunable biosensors.
Collapse
Affiliation(s)
- Lars Hellweg
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Anna Edenhofer
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Lucas Barck
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Magnus-Carsten Huppertz
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michelle S Frei
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Miroslaw Tarnawski
- Protein Expression and Characterization Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Andrea Bergner
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Birgit Koch
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
2
|
Hong ST, Kim MS, Kim BR, Lee EJ, Yoon YU, Paik KC, Han MS, Kim ES, Cho BR. Organelle-specific blue-emitting two-photon probes for calcium ions: Combination with green-emitting two-photon probe for simultaneous detection of proton ions. Talanta 2022; 244:123408. [DOI: 10.1016/j.talanta.2022.123408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
3
|
Ogasawara H, Grzybowski M, Hosokawa R, Sato Y, Taki M, Yamaguchi S. A far-red fluorescent probe based on a phospha-fluorescein scaffold for cytosolic calcium imaging. Chem Commun (Camb) 2018; 54:299-302. [PMID: 29239411 DOI: 10.1039/c7cc07344e] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The far-red emissive fluorescent probe CaPF-1 based on a phospha-fluorescein scaffold enables the detection of cytosolic calcium ions in living cells. The probe can be excited in the red region (λabs = 636 nm) and exhibits a sufficiently high fluorescence turn-on response in the far-red region (λem = 663 nm) upon complexation with calcium ions. The hydrophilic and anionic characteristics of this phospha-fluorescein fluorophore allowed the cytosolic localization of CaPF-1. Moreover, it was possible to visualize histamine-induced calcium oscillation in HeLa cells using CaPF-1.
Collapse
Affiliation(s)
- Hiroaki Ogasawara
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Morita M, Nakane A, Fujii Y, Maekawa S, Kudo Y. High Cell Density Upregulates Calcium Oscillation by Increasing Calcium Store Content via Basal Mitogen-Activated Protein Kinase Activity. PLoS One 2015; 10:e0137610. [PMID: 26398212 PMCID: PMC4580325 DOI: 10.1371/journal.pone.0137610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/20/2015] [Indexed: 01/12/2023] Open
Abstract
Calcium releases of non-excitable cells are generally a combination of oscillatory and non-oscillatory patterns, and factors affecting the calcium dynamics are still to be determined. Here we report the influence of cell density on calcium increase patterns of clonal cell lines. The majority of HeLa cells seeded at 1.5 x 104/cm2 showed calcium oscillations in response to histamine and ATP, whereas cells seeded at 0.5 x 104/cm2 largely showed transient and sustained calcium increases. Cell density also affected the response of HEK293 cells to ATP in a similar manner. High cell density increased the basal activity of the mitogen-activated protein (MAP) kinase and calcium store content, and both calcium oscillation and calcium store content were down-regulated by a MAP kinase inhibitor, U0126. Thus, MAP kinase-mediated regulation of calcium store likely underlie the effect of cell density on calcium oscillation. Calcium increase patterns of HeLa cells were conserved at any histamine concentrations tested, whereas the overexpression of histamine H1 receptor, which robustly increased histamine-induced inositol phospholipid hydrolysis, converted calcium oscillations to sustained calcium increases only at high histamine concentrations. Thus, the consequence of modulating inositol phospholipid metabolism was distinct from that of changing cell density, suggesting the effect of cell density is not attributed to inositol phospholipid metabolism. Collectively, our results propose that calcium increase patterns of non-excitable cells reflect calcium store, which is regulated by the basal MAP kinase activity under the influence of cell density.
Collapse
Affiliation(s)
- Mitsuhiro Morita
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
- * E-mail:
| | - Akira Nakane
- Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Yuki Fujii
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| | - Shohei Maekawa
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| | - Yoshihisa Kudo
- Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| |
Collapse
|
5
|
Termination of Ca²+ release for clustered IP₃R channels. PLoS Comput Biol 2012; 8:e1002485. [PMID: 22693433 PMCID: PMC3364945 DOI: 10.1371/journal.pcbi.1002485] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 03/07/2012] [Indexed: 01/17/2023] Open
Abstract
In many cell types, release of calcium ions is controlled by inositol 1,4,5-trisphosphate () receptor channels. Elevations in concentration after intracellular release through receptors (R) can either propagate in the form of waves spreading through the entire cell or produce spatially localized puffs. The appearance of waves and puffs is thought to implicate random initial openings of one or a few channels and subsequent activation of neighboring channels because of an “autocatalytic” feedback. It is much less clear, however, what determines the further time course of release, particularly since the lifetime is very different for waves (several seconds) and puffs (around 100 ms). Here we study the lifetime of signals and their dependence on residual microdomains. Our general idea is that microdomains are dynamical and mediate the effect of other physiological processes. Specifically, we focus on the mechanism by which binding proteins (buffers) alter the lifetime of signals. We use stochastic simulations of channel gating coupled to a coarse-grained description for the concentration. To describe the concentration in a phenomenological way, we here introduce a differential equation, which reflects the buffer characteristics by a few effective parameters. This non-stationary model for microdomains gives deep insight into the dynamical differences between puffs and waves. It provides a novel explanation for the different lifetimes of puffs and waves and suggests that puffs are terminated by inhibition while unbinding is responsible for termination of waves. Thus our analysis hints at an additional role of and shows how cells can make use of the full complexity in R gating behavior to achieve different signals. Calcium signals are important for a host of cellular processes such as neurotransmitter release, cell contraction and gene expression. While the principles of activation and spreading of calcium signals have been largely understood, it is much less clear how their spatio-temporal appearance is shaped. This issue is of high relevance since the spatio-temporal signature is thought to carry the information content. In our paper we study the dynamical mechanisms that determine the time course of calcium release from receptor channels. We use a stochastic channel description combined with a recently developed model for the distribution of released calcium in a microdomain. The simulations uncover a complex control mechanism, which allows for the tuning of release from short frequent puffs to extended and less frequent wave-like release. Unexpectedly, the model predicts that for wave-like release the dissociation of from the receptors leads to termination of the calcium signal. This effect relies on a well-known gating property of R channels, which earlier has been regarded as superfluous in studies for groups of channels. Our results also provide a missing link to understand cellular response to calcium-binding proteins and present a novel mechanism for information processing by R channels.
Collapse
|
6
|
Jaffe LF. Stretch-activated calcium channels relay fast calcium waves propagated by calcium-induced calcium influx. Biol Cell 2012; 99:175-84. [PMID: 17302561 DOI: 10.1042/bc20060031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For nearly 30 years, fast calcium waves have been attributed to a regenerative process propagated by CICR (calcium-induced calcium release) from the endoplasmic reticulum. Here, I propose a model containing a new subclass of fast calcium waves which is propagated by CICI (calcium-induced calcium influx) through the plasma membrane. They are called fast CICI waves. These move at the order of 100 to 1000 microm/s (at 20 degrees C), rather than the order of 3 to 30 microm/s found for CICR. Moreover, in this proposed subclass, the calcium influx which drives calcium waves is relayed by stretch-activated calcium channels. This model is based upon reports from approx. 60 various systems. In seven of these reports, calcium waves were imaged, and, in five of these, evidence was presented that these waves were regenerated by CICI. Much of this model involves waves that move along functioning flagella and cilia. In these systems, waves of local calcium influx are thought to cause waves of local contraction by inducing the sliding of dynein or of kinesin past tubulin microtubules. Other cells which are reported to exhibit waves, which move at speeds in the fast CICI range, include ones from a dozen protozoa, three polychaete worms, three molluscs, a bryozoan, two sea urchins, one arthropod, four insects, Amphioxus, frogs, two fish and a vascular plant (Equisetum), together with numerous healthy, as well as cancerous, mammalian cells, including ones from human. In two of these systems, very gentle local mechanical stimulation is reported to initiate waves. In these non-flagellar systems, the calcium influxes are thought to speed the sliding of actinomyosin filaments past each other. Finally, I propose that this mechanochemical model could be tested by seeing if gentle mechanical stimulation induces waves in more of these systems and, more importantly, by imaging the predicted calcium waves in more of them.
Collapse
Affiliation(s)
- Lionel F Jaffe
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| |
Collapse
|
7
|
Rüdiger S, Nagaiah C, Warnecke G, Shuai JW. Calcium domains around single and clustered IP3 receptors and their modulation by buffers. Biophys J 2010; 99:3-12. [PMID: 20655827 DOI: 10.1016/j.bpj.2010.02.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 02/12/2010] [Accepted: 02/26/2010] [Indexed: 02/04/2023] Open
Abstract
We study Ca(2+) release through single and clustered IP(3) receptor channels on the ER membrane under presence of buffer proteins. Our computational scheme couples reaction-diffusion equations and a Markovian channel model and allows our investigating the effects of buffer proteins on local calcium concentrations and channel gating. We find transient and stationary elevations of calcium concentrations around active channels and show how they determine release amplitude. Transient calcium domains occur after closing of isolated channels and constitute an important part of the channel's feedback. They cause repeated openings (bursts) and mediate increased release due to Ca(2+) buffering by immobile proteins. Stationary domains occur during prolonged activity of clustered channels, where the spatial proximity of IP(3)Rs produces a distinct [Ca(2+)] scale (0.5-10 microM), which is smaller than channel pore concentrations (>100 microM) but larger than transient levels. While immobile buffer affects transient levels only, mobile buffers in general reduce both transient and stationary domains, giving rise to Ca(2+) evacuation and biphasic modulation of release amplitude. Our findings explain recent experiments in oocytes and provide a general framework for the understanding of calcium signals.
Collapse
Affiliation(s)
- S Rüdiger
- Institute of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
8
|
Cohen R, Torres A, Ma HT, Holowka D, Baird B. Ca2+ waves initiate antigen-stimulated Ca2+ responses in mast cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:6478-88. [PMID: 19864608 DOI: 10.4049/jimmunol.0901615] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ca(2+) mobilization is central to many cellular processes, including stimulated exocytosis and cytokine production in mast cells. Using single cell stimulation by IgE-specific Ag and high-speed imaging of conventional or genetically encoded Ca(2+) sensors in rat basophilic leukemia and bone marrow-derived rat mast cells, we observe Ca(2+) waves that originate most frequently from the tips of extended cell protrusions, as well as Ca(2+) oscillations throughout the cell that usually follow the initiating Ca(2+) wave. In contrast, Ag conjugated to the tip of a micropipette stimulates local, repetitive Ca(2+) puffs at the region of cell contact. Initiating Ca(2+) waves are observed in most rat basophilic leukemia cells stimulated with soluble Ag and are sensitive to inhibitors of Ca(2+) release from endoplasmic reticulum stores and to extracellular Ca(2+), but they do not depend on store-operated Ca(2+) entry. Knockdown of transient receptor potential channel (TRPC)1 and TRPC3 channel proteins by short hairpin RNA reduces the sensitivity of these cells to Ag and shifts the wave initiation site from protrusions to the cell body. Our results reveal spatially encoded Ca(2+) signaling in response to immunoreceptor activation that utilizes TRPC channels to specify the initiation site of the Ca(2+) response.
Collapse
Affiliation(s)
- Roy Cohen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Calcium signals mediate diverse cellular functions in immunological cells. Early studies with mast cells, then a preeminent model for studying Ca2+-dependent exocytosis, revealed several basic features of calcium signaling in non-electrically excitable cells. Subsequent studies in these and other cells further defined the basic processes such as inositol 1,4,5-trisphosphate-mediated release of Ca2+ from Ca2+ stores in the endoplasmic reticulum (ER); coupling of ER store depletion to influx of external Ca2+ through a calcium-release activated calcium (CRAC) channel now attributed to the interaction of the ER Ca2+ sensor, stromal interacting molecule-1 (STIM1), with a unique Ca2+-channel protein, Orai1/CRACM1, and subsequent uptake of excess Ca2+ into ER and mitochondria through ATP-dependent Ca2+ pumps. In addition, transient receptor potential channels and ion exchangers also contribute to the generation of calcium signals that may be global or have dynamic (e.g., waves and oscillations) and spatial resolution for specific functional readouts. This review discusses past and recent developments in this field of research, the pharmacologic agents that have assisted in these endeavors, and the mast cell as an exemplar for sorting out how calcium signals may regulate multiple outputs in a single cell.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
10
|
Tazmini G, Beaulieu N, Woo A, Zahedi B, Goulding RE, Kay RJ. Membrane localization of RasGRP1 is controlled by an EF-hand, and by the GEF domain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:447-61. [PMID: 19168098 DOI: 10.1016/j.bbamcr.2008.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 11/14/2008] [Accepted: 12/19/2008] [Indexed: 12/18/2022]
Abstract
RasGRP1 is an exchange factor for membrane-localized Ras GTPases. Activation of RasGRP1 requires its translocation to membranes, which can be directly mediated by either its PT or C1 domains. RasGRP1 also has a pair of EF-hands which have been proposed to regulate RasGRP1 by sensing receptor-induced calcium fluxes. We determined that one of these EF-hands, EF1, is required for receptor-induced translocation of RasGRP1 to the plasma membrane in B cell lines. EF1 enables plasma membrane targeting of RasGRP1 by counteracting the SuPT domain, a negative regulator of the PT domain. Contrary to expectations, EF1-mediated translocation of RasGRP1 does not involve antigen receptor-induced intracellular calcium flux. Instead, alternative splicing affecting EF1 serves to modulate RasGRP1 localization. Excision of an exon encoding part of EF1 selectively disables PT domain-mediated plasma membrane targeting of RasGRP1, without affecting C1 domain-mediated localization to endomembranes. While EF1 specifically controls PT-mediated plasma membrane targeting, the Ras binding site in the catalytic GEF domain of RasGRP1 is required for both PT-mediated plasma membrane targeting and C1-mediated localization to endomembranes. Positive feedback between its GEF domain and membrane-binding domains could be important for full activation of RasGRP1, with occupation of the Ras binding sites in the GEF domain resulting in functional liberation of the PT and C1 domains, and membrane binding by these domains serving to maintain the Ras-GEF interaction.
Collapse
Affiliation(s)
- Ghazaleh Tazmini
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver BC, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Sehring IM, Klotz C, Beisson J, Plattner H. Rapid downregulation of the Ca2+-signal after exocytosis stimulation in Paramecium cells: essential role of a centrin-rich filamentous cortical network, the infraciliary lattice. Cell Calcium 2008; 45:89-97. [PMID: 18653233 DOI: 10.1016/j.ceca.2008.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/15/2008] [Accepted: 06/17/2008] [Indexed: 01/18/2023]
Abstract
We analysed in Paramecium tetraurelia cells the role of the infraciliary lattice, a cytoskeletal network containing numerous centrin isoforms tightly bound to large binding proteins, in the re-establishment of Ca2+ homeostasis following exocytosis stimulation. The wild type strain d4-2 has been compared with the mutant cell line Delta-PtCenBP1 which is devoid of the infraciliary lattice ("Delta-PtCenBP1" cells). Exocytosis is known to involve the mobilization of cortical Ca2+-stores and a superimposed Ca2+-influx and was analysed using Fura Red ratio imaging. No difference in the initial signal generation was found between wild type and Delta-PtCenBP1 cells. In contrast, decay time was greatly increased in Delta-PtCenBP1 cells particularly when stimulated, e.g., in presence of 1mM extracellular Ca2+, [Ca2+]o. Apparent halftimes of f/f0 decrease were 8.5 s in wild type and approximately 125 s in Delta-PtCenBP1 cells, requiring approximately 30 s and approximately 180 s, respectively, to re-establish intracellular [Ca2+] homeostasis. Lowering [Ca2+]o to 0.1 and 0.01 mM caused an acceleration of intracellular [Ca2+] decay to t(1/2)=33 s and 28 s, respectively, in Delta-PtCenBP1 cells as compared to 8.1 and 5.6, respectively, for wild type cells. We conclude that, in Paramecium cells, the infraciliary lattice is the most efficient endogenous Ca2+ buffering system allowing the rapid downregulation of Ca2+ signals after exocytosis stimulation.
Collapse
Affiliation(s)
- Ivonne M Sehring
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
12
|
Yu J, Lloyd-Burton S, Irvine R, Schell M. Regulation of the localization and activity of inositol 1,4,5-trisphosphate 3-kinase B in intact cells by proteolysis. Biochem J 2006; 392:435-41. [PMID: 16173920 PMCID: PMC1316281 DOI: 10.1042/bj20050829] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
IP3K (inositol 1,4,5-trisphosphate 3-kinase) catalyses the Ca2+-regulated phosphorylation of the second messenger Ins(1,4,5)P3, thereby inactivating the signal to release Ca2+ and generating Ins(1,3,4,5)P4. Here we have investigated the localization and activity of IP3KB and its modulation by proteolysis. We found that the N- and C-termini (either side of residue 262) of IP3KB localized predominantly to the actin cytoskeleton and ER (endoplasmic reticulum) respectively, both in COS-7 cells and in primary astrocytes. The functional relevance of this was demonstrated by showing that full-length (actin-localized) IP3KB abolished the histamine-induced Ca2+ response in HeLa cells more effectively than truncated constructs localized to the ER or cytosol. The superior efficacy of full-length IP3KB was also attenuated by disruption of the actin cytoskeleton. By transfecting COS-7 cells with double-tagged IP3KB, we show that the translocation from actin to ER may be a physiologically regulated process caused by Ca2+-modulated constitutive proteolysis in intact cells.
Collapse
Affiliation(s)
- Jowie C. H. Yu
- *Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | | | - Robin F. Irvine
- *Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
- To whom correspondence should be sent (email )
| | - Michael J. Schell
- †Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, U.S.A
| |
Collapse
|
13
|
Vanoevelen J, Raeymaekers L, Dode L, Parys JB, De Smedt H, Callewaert G, Wuytack F, Missiaen L. Cytosolic Ca2+ signals depending on the functional state of the Golgi in HeLa cells. Cell Calcium 2005; 38:489-95. [PMID: 16122795 DOI: 10.1016/j.ceca.2005.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 05/30/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
The Golgi apparatus is, like the endoplasmic reticulum, an inositol-1,4,5-trisphosphate-sensitive Ca2+ store, but its role in setting up Ca2+ signals is not well understood. We have now measured histamine-induced Ca2+ signals in HeLa cells pretreated with brefeldin A, a fungal metabolite that leads to the fragmentation and subsequent disappearance of the Golgi apparatus by its reabsorption within the endoplasmic reticulum. Ca2+ responses in which the free cytoplasmic Ca2+ concentration returned to resting levels during the histamine stimulation (mainly baseline Ca2+ oscillations or a single Ca2+ peak) occurred more often in brefeldin A pretreated cells, resulting in a lower Ca2+ plateau in population measurements. The latencies before the onset of the Ca2+ signals were longer after brefeldin A pretreatment. These results suggest that the integrity of the Golgi apparatus contributes to the shaping of intracellular Ca2+ signals.
Collapse
Affiliation(s)
- J Vanoevelen
- Afdeling Fysiologie, K.U. Leuven Campus Gasthuisberg O/N-802, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Estevez AY, Strange K. Calcium feedback mechanisms regulate oscillatory activity of a TRP-like Ca2+ conductance in C. elegans intestinal cells. J Physiol 2005; 567:239-51. [PMID: 15961418 PMCID: PMC1474156 DOI: 10.1113/jphysiol.2005.091900] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Inositol-1,4,5-trisphosphate (IP3)-dependent Ca2+ oscillations in Caenorhabditis elegans intestinal epithelial cells regulate the nematode defecation cycle. The role of plasma membrane ion channels in intestinal cell oscillatory Ca2+ signalling is unknown. We have shown previously that cultured intestinal cells express a Ca2+-selective conductance, I(ORCa), that is biophysically similar to TRPM7 currents. I(ORCa) activates slowly and stabilizes when cells are patch clamped with pipette solutions containing 10 mm BAPTA and free Ca2+ concentrations of approximately 17 nm. However, when BAPTA concentration is lowered to 1 mm, I(ORCa) oscillates. Oscillations in channel activity induced simultaneous oscillations in cytoplasmic Ca2+ levels. Removal of extracellular Ca2+ inhibited I(ORCa) oscillations, whereas readdition of Ca2+ to the bath caused a rapid and transient reactivation of the current. Experimental manoeuvres that elevated intracellular Ca2+ blocked current oscillations. Elevation of intracellular Ca2+ in the presence of 10 mm BAPTA to block I(ORCa) oscillations led to a dose-dependent increase in the rate of current activation. At intracellular Ca2+ concentrations of 250 nm, current activation was transient. Patch pipette solutions buffered with 1-4 mm of either BAPTA or EGTA gave rise to similar patterns of I(ORCa) oscillations. We conclude that changes in Ca2+ concentration close to the intracellular opening of the channel pore regulate channel activity. Low concentrations of Ca2+ activate the channel. As Ca2+ enters and accumulates near the pore mouth, channel activity is inhibited. Oscillating plasma membrane Ca2+ entry may play a role in generating intracellular Ca2+ oscillations that regulate the C. elegans defecation rhythm.
Collapse
Affiliation(s)
- Ana Y Estevez
- Vanderbilt University Medical Center, T-4202 Medical Center North, Nashville, TN 37232-2520, USA
| | | |
Collapse
|
15
|
Shlykov SG, Sanborn BM. Stimulation of intracellular Ca2+ oscillations by diacylglycerol in human myometrial cells. Cell Calcium 2004; 36:157-64. [PMID: 15193863 DOI: 10.1016/j.ceca.2004.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 02/05/2004] [Indexed: 11/22/2022]
Abstract
Stimulation of G-protein coupled membrane receptors linked to phospholipase C results in production of the second messengers diacylglycerol and inositol-1,4,5-trisphosphate (IP3). IP3 releases Ca2+ from the endoplasmic reticulum, which triggers increased Ca2+ influx across the plasma membrane, so-called capacitative calcium entry. DAG can also activate plasma membrane calcium-permeable channels but the mechanism is still not fully understood. In the pregnant human myometrial cell line PHM1 and in primary myometrial cells, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeant analogue of diacylglycerol, induced variable oscillatory patterns of intracellular free Ca2+. Similar behavior was seen with Sr2+ entry. The Ca2+ oscillations were not blocked by a broad spectrum of protein kinase C inhibitors, including chelerytrine, bisindolylmaleimide I and calphostin C, and were enhanced and prolonged by RHC-80267, an inhibitor of diacylglycerol lipase. The OAG-induced oscillatory response was not dependent on Ca2+ release from the endoplasmic reticulum but required extracellular Ca2+. Our results indicate that diacylglycerol directly activates cation channels in PHM1 and primary myometrial cells and promotes intracellular Ca2+ oscillations by actions independent of intracellular Ca2+ -ATPase activity and protein kinase C involvement.
Collapse
Affiliation(s)
- Sergiy G Shlykov
- Department of Biomedical Sciences, Colorado State University, Fort Collins 80523-1680, USA
| | | |
Collapse
|