1
|
Kazi TA, Mukhopadhyay BC, Mandal S, Biswas SR. Molecular characterization of five novel plasmids from Enterococcus italicus SD1 isolated from fermented milk: An insight into understanding plasmid incompatibility. Gene 2023; 856:147154. [PMID: 36574936 DOI: 10.1016/j.gene.2022.147154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Enterococcal plasmids have attracted considerable interest because of their indispensable role in the pathogenesis and dissemination of multidrug-resistance. In this work, five novel plasmids pSRB2, pSRB3, pSRB4, pSRB5 and pSRB7 have been identified and characterised, coexisting in Eneterococcus italicus SD1 from fermented milk. The plasmids pSRB2, pSRB3 and pSRB5 were found to replicate via theta mode of replication while pSRB4 and pSRB7 were rolling-circle plasmids. Comparative analysis of SD1-plasmids dictated that the plasmids are mosaic with novel architecture. Plasmids pSRB2 and pSRB5 are comprised of a typical iteron-based class-A theta type origin of replication, whereas pSRB3 has a Class-D theta type replication origin like pAMβ1. The plasmids pSRB4 and pSRB7 shared similar ori as in pWV01. The SD1 class-A theta type plasmids shared significant homology between their replication proteins with differences in their DNA-binding domain and comprises of distinct iterons. The differences in their iterons and replication proteins restricts the "handcuff" formation for inhibition of plasmid replication, rendering to their compatibility to coexist. Similarly, for SD1 rolling circle plasmids the differences in the replication protein binding site in the origin and the replication protein supports their coexistence by inhibiting the crosstalk between the origins and replication proteins. The phylogenetic tree of their replication proteins revealed their distant kinship. The results indicate that the identified plasmids are unique to E. italicus SD1, providing further opportunities to study their utility in designing multiple gene expression systems for the simultaneous production of proteins in enterococci with the renewed concept of plasmid incompatibility.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | | | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India.
| |
Collapse
|
2
|
Hua M, Guo J, Li M, Chen C, Zhang Y, Song C, Jiang D, Du P, Zeng H. A Dual-Replicon Shuttle Vector System for Heterologous Gene Expression in a Broad Range of Gram-Positive and Gram-Negative Bacteria. Curr Microbiol 2018; 75:1391-1400. [PMID: 29987521 DOI: 10.1007/s00284-018-1535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/26/2018] [Indexed: 11/27/2022]
Abstract
Origin of replication (ori in theta-replicating plasmids or dso in rolling circle replicating plasmids) initiates plasmid replication in a broad range of bacteria. These two kinds of plasmids were both identified in Streptococcus, a genus composed of both human commensal bacteria and pathogens with the ability to cause severe community-acquired infections, including meningitides, septicemia, and respiratory tract diseases. Given the important roles of Streptococcus in the exchange of genetic elements with other symbiotic microbes, the genotypes and phenotypes of both Streptococcus spp. and other symbiotic species could be changed during colonization of the host. Therefore, an improved plasmid system is required to study the functional, complicated, and changeable genomes of Streptococcus. In this study, a dual-replicon shuttle vector system named pDRE was constructed to achieve heterologous gene expression. The vector system contained theta replicon for Escherichia coli. The origin of rolling circle replicon was synthesized according to pMV158 in Gram-positive bacteria. By measuring the products of inserted genes at multiple cloning sites, the ability of this vector system in the replication and expression of heterologous genes was assessed in four Streptococcus and three other Gram-positive bacteria: Bacillus subtilis, Lactococcus lactis, and Staphylococcus aureus. The results showed that the newly constructed vector could simultaneously replicate and express heterologous genes in a broad range of Gram-positive and Gram-negative bacteria, thus providing a potentially powerful genetic tool for further functional analysis.
Collapse
Affiliation(s)
- Mingxi Hua
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundongjie, Beijing, 100015, China
| | - Jingjing Guo
- Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Min Li
- Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Chen Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundongjie, Beijing, 100015, China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundongjie, Beijing, 100015, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundongjie, Beijing, 100015, China
| | - Dong Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundongjie, Beijing, 100015, China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundongjie, Beijing, 100015, China.
| | - Hui Zeng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshundongjie, Beijing, 100015, China.
| |
Collapse
|
3
|
Characterization of a Cryptic Rolling-Circle Replication Plasmid pMK8 from Enterococcus durans 1-8. Curr Microbiol 2018; 75:1198-1205. [PMID: 29777339 DOI: 10.1007/s00284-018-1509-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/12/2018] [Indexed: 10/16/2022]
Abstract
A novel cryptic plasmid from Enterococcus durans 1-8, designated as pMK8, was sequenced and analyzed in this study. It consists of 3337 bp with a G + C content of 33.11%. Sequence analysis of pMK8 revealed three putative open reading frames (ORFs). Based on homology, two of them were identified as genes encoding replication initiation (RepC) and mobilization (Mob) protein, respectively. Sequence analysis revealed a pT181 family double-strand origin (dso) and a putative single-strand origin (sso) located upstream of the repC gene. Sequence homology analysis indicated that the sso belongs to the ssoW family. Southern hybridization confirmed the presence of single-strand DNA (ssDNA) intermediates, suggesting that pMK8 replicates via the RCR mechanism. Furthermore, the relative copy number of pMK8 was estimated by real-time PCR to be 175 ± 14 copies in each cell.
Collapse
|
4
|
Characterization of a Rolling-Circle Replication Plasmid pM411 from Lactobacillus plantarum 1-3. Curr Microbiol 2016; 73:820-826. [PMID: 27592105 DOI: 10.1007/s00284-016-1124-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
Abstract
A cryptic plasmid pM411 isolated from Lactobacillus plantarum 1-3 consisted of a 2303-bp circular molecule with a G + C content 32.96 %. Sequence analysis of pM411 revealed four putative open reading frames (ORFs). ORF1 shared 99 and 94 % similarities, respectively, with the Rep proteins of plasmids pLC2 and pYC2, which belong to the rolling-circle replication pMV158 family. A typical pMV158 family double-strand origin (dso) and a putative single-strand origin (sso) located upstream of the rep gene. Southern hybridization confirmed the presence of single-strand DNA (ssDNA) intermediates, suggesting that pM411 belongs to the RCR pMV158 family. Sequence homology analysis indicated that the sso belongs to the ssoW family. Furthermore, the relative copy number of pM411 was about 88 copies in each cell by real-time PCR.
Collapse
|
5
|
Cui Y, Hu T, Qu X, Zhang L, Ding Z, Dong A. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments. Int J Mol Sci 2015; 16:13172-202. [PMID: 26068451 PMCID: PMC4490491 DOI: 10.3390/ijms160613172] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/09/2015] [Accepted: 05/22/2015] [Indexed: 12/24/2022] Open
Abstract
Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research.
Collapse
Affiliation(s)
- Yanhua Cui
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Tong Hu
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China.
| | - Lanwei Zhang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhongqing Ding
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Aijun Dong
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Barbosa TM, Phelan RW, Leong D, Morrissey JP, Adams C, Dobson ADW, O’Gara F. A novel erythromycin resistance plasmid from Bacillus sp. strain HS24, isolated from the marine sponge Haliclona simulans. PLoS One 2014; 9:e115583. [PMID: 25548909 PMCID: PMC4280177 DOI: 10.1371/journal.pone.0115583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/01/2014] [Indexed: 11/19/2022] Open
Abstract
A better understanding of the origin and natural reservoirs of resistance determinants is fundamental to efficiently tackle antibiotic resistance. This paper reports the identification of a novel 5.8 kb erythromycin resistance plasmid, from Bacillus sp. HS24 isolated from the marine sponge Haliclona simulans. pBHS24B has a mosaic structure and carries the erythromycin resistance gene erm(T). This is the first report of an erythromycin resistance plasmid from a sponge associated bacteria and of the Erm(T) determinant in the genus Bacillus.
Collapse
Affiliation(s)
| | - Robert W. Phelan
- Department of Microbiology, University College Cork, Cork, Ireland
- Biomerit Research Centre, University College Cork, Cork, Ireland
| | - Dara Leong
- Department of Microbiology, University College Cork, Cork, Ireland
| | - John P. Morrissey
- Department of Microbiology, University College Cork, Cork, Ireland
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Claire Adams
- Department of Microbiology, University College Cork, Cork, Ireland
- Biomerit Research Centre, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- Department of Microbiology, University College Cork, Cork, Ireland
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Fergal O’Gara
- Department of Microbiology, University College Cork, Cork, Ireland
- Biomerit Research Centre, University College Cork, Cork, Ireland
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
- Curtin University, School of Biomedical Sciences, Perth WA 6845, Australia
| |
Collapse
|
7
|
Mobilizable Rolling-Circle Replicating Plasmids from Gram-Positive Bacteria: A Low-Cost Conjugative Transfer. Microbiol Spectr 2014; 2:8. [PMID: 25606350 DOI: 10.1128/microbiolspec.plas-0008-2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Conjugation is a key mechanism for horizontal gene transfer in bacteria. Some plasmids are not self-transmissible but can be mobilized by functions encoded in trans provided by other auxiliary conjugative elements. Although the transfer efficiency of mobilizable plasmids is usually lower than that of conjugative elements, mobilizable plasmidsare more frequently found in nature. In this sense, replication and mobilization can be considered as important mechanisms influencing plasmid promiscuity. Here we review the present available information on two families of small mobilizable plasmids from Gram-positive bacteria that replicate via the rolling-circle mechanism. One of these families, represented by the streptococcal plasmid pMV158, is an interesting model since it contains a specific mobilization module (MOBV) that is widely distributed among mobilizable plasmids. We discuss a mechanism in which the promiscuity of the pMV158 replicon is based on the presence of two origins of lagging strand synthesis. The current strategies to assess plasmid transfer efficiency as well as to inhibit conjugative plasmid transfer are presented. Some applications of these plasmids as biotechnological tools are also reviewed.
Collapse
|
8
|
Shareck J, Choi Y, Lee B, Miguez CB. Cloning Vectors Based on Cryptic Plasmids Isolated from Lactic Acid Bacteria:Their Characteristics and Potential Applications in Biotechnology. Crit Rev Biotechnol 2010; 24:155-208. [PMID: 15707158 DOI: 10.1080/07388550490904288] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lactic acid bacteria (LAB) are Gram positive bacteria, widely distributed in nature, and industrially important as they are used in a variety of industrial food fermentations. The use of genetic engineering techniques is an effective means of enhancing the industrial applicability of LAB. However, when using genetic engineering technology, safety becomes an essential factor for the application of improved LAB to the food industry. Cloning and expression systems should be derived preferably from LAB cryptic plasmids that generally encode genes for which functions can be proposed, but no phenotypes can be observed. However, some plasmid-encoded functions have been discovered in cryptic plasmids originating from Lactobacillus, Streptococcus thermophilus, and Pediococcus spp. and can be used as selective marker systems in vector construction. This article presents information concerning LAB cryptic plasmids, and their structures, functions, and applications. A total of 134 cryptic plasmids collated are discussed.
Collapse
Affiliation(s)
- Julie Shareck
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | | | | | | |
Collapse
|
9
|
Characterization of a small erythromycin resistance plasmid pLFE1 from the food-isolate Lactobacillus plantarum M345. Plasmid 2009; 61:159-70. [DOI: 10.1016/j.plasmid.2009.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Nomoto K, Kiwaki M, Tsuji H. Genetic Modification of Probiotic Microorganisms. HANDBOOK OF PROBIOTICS AND PREBIOTICS 2008:189-255. [DOI: 10.1002/9780470432624.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Analysis of pYC2, a cryptic plasmid in Lactobacillus sakei BM5 isolated from kimchi. Biotechnol Lett 2008; 31:123-30. [DOI: 10.1007/s10529-008-9842-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 08/21/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
|
12
|
Improved cloning vectors for bifidobacteria, based on the Bifidobacterium catenulatum pBC1 replicon. Appl Environ Microbiol 2008; 74:4656-65. [PMID: 18539807 DOI: 10.1128/aem.00074-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study reports the development of several cloning vectors for bifidobacteria based on the replicon of pBC1, a cryptic plasmid from Bifidobacterium catenulatum L48 thought to replicate via the theta mode. These vectors, in which antibiotic resistance genes encoding either erythromycin or tetracycline resistance acted as selection markers, were able to replicate in a series of eight Bifidobacterium species at frequencies ranging from 4.0 x 10(1) to 1.0 x 10(5) transformants microg(-1) but not in Lactococcus lactis or Lactobacillus casei. They showed a relative copy number of around 30 molecules per chromosome equivalent and a good segregational stability, with more than 95% of the cells retaining the vectors after 80 to 100 generations in the absence of selection. Vectors contain multiple cloning sites of different lengths, and the lacZalpha peptide gene was introduced into one of the molecules, thus allowing the easy selection of colonies harboring recombinant plasmids in Escherichia coli. The functionality of the vectors for engineering Bifidobacterium strains was assessed by cloning and examining the expression of an alpha-l-arabinofuranosidase gene belonging to Bifidobacterium longum. E. coli and Bifidobacterium pseudocatenulatum recombinant clones were stable and showed an increase in alpha-arabinofuranosidase activity of over 100-fold compared to that of the untransformed hosts.
Collapse
|
13
|
Alvarez-Martín P, O'Connell-Motherway M, van Sinderen D, Mayo B. Functional analysis of the pBC1 replicon from Bifidobacterium catenulatum L48. Appl Microbiol Biotechnol 2007; 76:1395-402. [PMID: 17704917 DOI: 10.1007/s00253-007-1115-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/06/2007] [Accepted: 07/07/2007] [Indexed: 10/22/2022]
Abstract
To determine the minimal replicon of pBC1 (a 2.5-kb cryptic plasmid of Bifidobacterium catenulatum L48) and to check the functionality of its identified open reading frames (ORFs) and surrounding sequences, different segments of pBC1 were amplified by polymerase chain reaction (PCR) and cloned into pBif, a replication probe vector for bifidobacteria. The largest fragment tested in this manner encompassed most of the pBC1 sequence, while the shortest just included the repB gene and its immediate upstream sequences. Derivatives were all shown to allow replication in bifidobacteria. Surprisingly, both the transformation frequency and segregational stability in the absence of antibiotic selection decreased with reducing plasmid length. The relative copy number of the constructs (ranging from around 3 to 23 copies per chromosome equivalent, as compared to 30 copies for the original pBC1) was shown to be strain dependent and to decrease with reducing plasmid length. These results suggest that, although not essential, the copG-like and orfX-like genes of pBC1 play important roles in pBC1 replication. Interruption of repB produced a construct incapable of replicating in bifidobacteria. The analysis of pBC1 will allow its use in the construction of general and specific cloning vectors.
Collapse
Affiliation(s)
- Pablo Alvarez-Martín
- Departamento de Microbiología y Bioquímica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (CSIC), Carretera de Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | | | | | | |
Collapse
|
14
|
Raha AR, Hooi WY, Mariana NS, Radu S, Varma NRS, Yusoff K. DNA sequence analysis of a small cryptic plasmid from Lactococcus lactis subsp. lactis M14. Plasmid 2006; 56:53-61. [PMID: 16675013 DOI: 10.1016/j.plasmid.2006.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 03/16/2006] [Accepted: 03/21/2006] [Indexed: 11/20/2022]
Abstract
A small plasmid designated pAR141 was isolated from Lactococcus lactis subsp. lactis M14 and its complete 1,594 base pair nucleotide sequence was determined. Analysis of the sequence indicated that this plasmid does not carry any industrially important determinants besides the elements involved in plasmid replication and control. The transcriptional repressor CopG and replication initiation protein RepB appeared as a single operon. A small countertranscribed RNA (ctRNA) coding region was found between the copG and repB genes. The double strand origin (dso) and single strand origin (sso) of rolling circle replicating (RCR) plasmids were also identified in pAR141, suggesting that this plasmid replicates by rolling circle (RC) mode. This observation was supported by S1 nuclease and Southern hybridization analyses.
Collapse
Affiliation(s)
- A R Raha
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | | | | | | | | | | |
Collapse
|
15
|
Mills S, McAuliffe OE, Coffey A, Fitzgerald GF, Ross RP. Plasmids of lactococci – genetic accessories or genetic necessities? FEMS Microbiol Rev 2006; 30:243-73. [PMID: 16472306 DOI: 10.1111/j.1574-6976.2005.00011.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Lactococci are one of the most exploited microorganisms used in the manufacture of food. These intensively used cultures are generally characterized by having a rich plasmid complement. It could be argued that it is the plasmid complement of commercially utilized cultures that gives them their technical superiority and individuality. Consequently, it is timely to reflect on the desirable characteristics encoded on lactococcal plasmids. It is argued that plasmids play a key role in the evolution of modern starter strains and are a lot more than just selfish replicosomes but more essential necessities of intensively used commercial starters. Moreover, the study of plasmid biology provides a genetic blueprint that has proved essential for the generation of molecular tools for the genetic improvement of Lactococcus lactis.
Collapse
Affiliation(s)
- Susan Mills
- Teagasc, Dairy Products Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | | | | | |
Collapse
|
16
|
Kim SW, Jeong EJ, Kang HS, Tak JI, Bang WY, Heo JB, Jeong JY, Yoon GM, Kang HY, Bahk JD. Role of RepB in the replication of plasmid pJB01 isolated from Enterococcus faecium JC1. Plasmid 2005; 55:99-113. [PMID: 16188315 DOI: 10.1016/j.plasmid.2005.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/30/2005] [Accepted: 08/08/2005] [Indexed: 11/24/2022]
Abstract
The plasmid pJB01 (GenBank Accession No. AY425961) isolated from the pathogenic bacterium, Enterococcus faecium JC1, is 2235 base pairs in length and consists of a putative double-strand origin (dso), a single-strand origin, a counter-transcribed RNA, and three open reading frames. A comparison of a few replication factors and motifs, bind and nic regions, for replication initiation on the nucleotide sequence level revealed that it belongs to the pMV158 family among RC-replicating plasmids. A runoff DNA synthesis assay demonstrated that nicking occurred between G525 and A526, which is located on the internal loop of a putative secondary structure in the dso. Unlike all the other plasmids of the pMV158 family having two or three direct repeats, pJB01 has three non-tandem direct repeats of 5'-CAACAAA-3' separated by four nucleotides, as the RepB-binding site in the dso. Moreover, the nick site on the internal loop is located at 77 nucleotides upstream from the RepB-binding region. Irrespective of the structural difference of direct repeats from other members of the pMV158 family, we think, it is still a new member of this plasmid family. The introduction of mutations in conserved regions of RepB confirmed that RepB N-moiety is important for nicking/nick-closing activity. Within N-moiety, especially all of the motif R-III, the Y100 in R-IV and Y116 in R-V residues, played particularly critical roles in this activity, however, for its binding, both of the N- and C-moieties of RepB were needed.
Collapse
Affiliation(s)
- Sam Woong Kim
- Division of Applied Life Sciences, Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sánchez C, Mayo B. General and specialized vectors derived from pBM02, a new rolling circle replicating plasmid of Lactococcus lactis. Plasmid 2004; 51:265-71. [PMID: 15109833 DOI: 10.1016/j.plasmid.2003.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 12/23/2003] [Indexed: 10/26/2022]
Abstract
This paper reports the construction of several general cloning vectors and a specialized depurative vector based on a new lactococcal plasmid that replicates by the rolling circle mechanism [pBM02; Plasmid 49 (2003) 118]. Most vectors are shuttle vectors for Escherichia coli-Lactococcus lactis and carry replicons of both ColE1 and pBM02 plasmids (ColE1 is used even though the pBM02 replicon is fully active in both Gram-positive and Gram-negative organisms). Segregational and structural studies indicated that the new vectors were stable enough for the majority of applications. Further, since the basic replicon is compatible with plasmid derivatives of pWV01 and pSH71, they can be maintained in the same cell with members of the two largest vector series for L. lactis and other lactic acid bacteria, the pGK, and the pNZ series.
Collapse
Affiliation(s)
- Claudia Sánchez
- Instituto de Productos Lácteos de Asturias (CSIC), Carretera de Infiesto s/n, Villaviciosa, 33300, Spain
| | | |
Collapse
|