1
|
Kazi TA, Acharya A, Mukhopadhyay BC, Mandal S, Arukha AP, Nayak S, Biswas SR. Plasmid-Based Gene Expression Systems for Lactic Acid Bacteria: A Review. Microorganisms 2022; 10:1132. [PMID: 35744650 PMCID: PMC9229153 DOI: 10.3390/microorganisms10061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023] Open
Abstract
Lactic acid bacteria (LAB) play a very vital role in food production, preservation, and as probiotic agents. Some of these species can colonize and survive longer in the gastrointestinal tract (GIT), where their presence is crucially helpful to promote human health. LAB has also been used as a safe and efficient incubator to produce proteins of interest. With the advent of genetic engineering, recombinant LAB have been effectively employed as vectors for delivering therapeutic molecules to mucosal tissues of the oral, nasal, and vaginal tracks and for shuttling therapeutics for diabetes, cancer, viral infections, and several gastrointestinal infections. The most important tool needed to develop genetically engineered LABs to produce proteins of interest is a plasmid-based gene expression system. To date, a handful of constitutive and inducible vectors for LAB have been developed, but their limited availability, host specificity, instability, and low carrying capacity have narrowed their spectrum of applications. The current review discusses the plasmid-based vectors that have been developed so far for LAB; their functionality, potency, and constraints; and further highlights the need for a new, more stable, and effective gene expression platform for LAB.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Aparupa Acharya
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Bidhan Chandra Mukhopadhyay
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India;
| | - Ananta Prasad Arukha
- Researcher 5 Department of Neurosurgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Subhendu Nayak
- Sr. Scientist, Clorox, Better Health VMS, Durham, NC 27701, USA;
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| |
Collapse
|
2
|
Tedim AP, Lanza VF, Rodríguez CM, Freitas AR, Novais C, Peixe L, Baquero F, Coque TM. Fitness cost of vancomycin-resistant Enterococcus faecium plasmids associated with hospital infection outbreaks. J Antimicrob Chemother 2021; 76:2757-2764. [PMID: 34450635 DOI: 10.1093/jac/dkab249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/14/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Vancomycin resistance is mostly associated with Enterococcus faecium due to Tn1546-vanA located on narrow- and broad-host plasmids of various families. This study's aim was to analyse the effects of acquiring Tn1546-carrying plasmids with proven epidemicity in different bacterial host backgrounds. METHODS Widespread Tn1546-carrying plasmids of different families RepA_N (n = 5), Inc18 (n = 4) and/or pHTβ (n = 1), and prototype plasmids RepA_N (pRUM) and Inc18 (pRE25, pIP501) were analysed. Plasmid transferability and fitness cost were assessed using E. faecium (GE1, 64/3) and Enterococcus faecalis (JH2-2/FA202/UV202) recipient strains. Growth curves (Bioscreen C) and Relative Growth Rates were obtained in the presence/absence of vancomycin. Plasmid stability was analysed (300 generations). WGS (Illumina-MiSeq) of non-evolved and evolved strains (GE1/64/3 transconjugants, n = 49) was performed. SNP calling (Breseq software) of non-evolved strains was used for comparison. RESULTS All plasmids were successfully transferred to different E. faecium clonal backgrounds. Most Tn1546-carrying plasmids and Inc18 and RepA_N prototypes reduced host fitness (-2% to 18%) while the cost of Tn1546 expression varied according to the Tn1546-variant and the recipient strain (9%-49%). Stability of Tn1546-carrying plasmids was documented in all cases, often with loss of phenotypic resistance and/or partial plasmid deletions. SNPs and/or indels associated with essential bacterial functions were observed on the chromosome of evolved strains, some of them linked to increased fitness. CONCLUSIONS The stability of E. faecium Tn1546-carrying plasmids in the absence of selective pressure and the high intra-species conjugation rates might explain the persistence of vancomycin resistance in E. faecium populations despite the significant burden they might impose on bacterial host strains.
Collapse
Affiliation(s)
- Ana P Tedim
- Department of Microbiology, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Val F Lanza
- Unit of Bioinformatics, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | | | - Ana R Freitas
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Fernando Baquero
- Department of Microbiology, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain.,Centres for Biomedical Research in the Epidemiology and Public Health Network (CIBER-ESP), Madrid, Spain
| | - Teresa M Coque
- Department of Microbiology, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| |
Collapse
|
3
|
Llop P, Latorre A, Moya A. Experimental Epidemiology of Antibiotic Resistance: Looking for an Appropriate Animal Model System. Microbiol Spectr 2018; 6:10.1128/microbiolspec.mtbp-0007-2016. [PMID: 29637886 PMCID: PMC11633557 DOI: 10.1128/microbiolspec.mtbp-0007-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Antibiotic resistance is recognized as one of the major challenges in public health. The global spread of antibiotic resistance is the consequence of a constant flow of information across multi-hierarchical interactions, involving cellular (clones), subcellular (resistance genes located in plasmids, transposons, and integrons), and supracellular (clonal complexes, genetic exchange communities, and microbiotic ensembles) levels. In order to study such multilevel complexity, we propose to establish an experimental epidemiology model for the transmission of antibiotic resistance with the cockroach Blatella germanica. This paper reports the results of five types of preliminary experiments with B. germanica populations that allow us to conclude that this animal is an appropriate model for experimental epidemiology: (i) the composition, transmission, and acquisition of gut microbiota and endosymbionts; (ii) the effect of different diets on gut microbiota; (iii) the effect of antibiotics on host fitness; (iv) the evaluation of the presence of antibiotic resistance genes in natural- and lab-reared populations; and (v) the preparation of plasmids harboring specific antibiotic resistance genes. The basic idea is to have populations with higher and lower antibiotic exposure, simulating the hospital and the community, respectively, and with a certain migration rate of insects between populations. In parallel, we present a computational model based on P-membrane computing that will mimic the experimental system of antibiotic resistance transmission. The proposal serves as a proof of concept for the development of more-complex population dynamics of antibiotic resistance transmission that are of interest in public health, which can help us evaluate procedures and design appropriate interventions in epidemiology.
Collapse
Affiliation(s)
- Pablo Llop
- Foundation for the Promotion of Sanitary and Biomedical Research in the Valencian Region (FISABIO), València, Spain
| | - Amparo Latorre
- Foundation for the Promotion of Sanitary and Biomedical Research in the Valencian Region (FISABIO), València, Spain
- Integrative Systems Biology Institute, Universitat de València, València, Spain
- Network Research Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Foundation for the Promotion of Sanitary and Biomedical Research in the Valencian Region (FISABIO), València, Spain
- Integrative Systems Biology Institute, Universitat de València, València, Spain
- Network Research Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
4
|
The Plasmidome of Firmicutes: Impact on the Emergence and the Spread of Resistance to Antimicrobials. Microbiol Spectr 2016; 3:PLAS-0039-2014. [PMID: 26104702 DOI: 10.1128/microbiolspec.plas-0039-2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Firmicutes is one of the most abundant groups of prokaryotes in the microbiota of humans and animals and includes genera of outstanding relevance in biomedicine, health care, and industry. Antimicrobial drug resistance is now considered a global health security challenge of the 21st century, and this heterogeneous group of microorganisms represents a significant part of this public health issue.The presence of the same resistant genes in unrelated bacterial genera indicates a complex history of genetic interactions. Plasmids have largely contributed to the spread of resistance genes among Staphylococcus, Enterococcus, and Streptococcus species, also influencing the selection and ecological variation of specific populations. However, this information is fragmented and often omits species outside these genera. To date, the antimicrobial resistance problem has been analyzed under a "single centric" perspective ("gene tracking" or "vehicle centric" in "single host-single pathogen" systems) that has greatly delayed the understanding of gene and plasmid dynamics and their role in the evolution of bacterial communities.This work analyzes the dynamics of antimicrobial resistance genes using gene exchange networks; the role of plasmids in the emergence, dissemination, and maintenance of genes encoding resistance to antimicrobials (antibiotics, heavy metals, and biocides); and their influence on the genomic diversity of the main Gram-positive opportunistic pathogens under the light of evolutionary ecology. A revision of the approaches to categorize plasmids in this group of microorganisms is given using the 1,326 fully sequenced plasmids of Gram-positive bacteria available in the GenBank database at the time the article was written.
Collapse
|
5
|
Werner G, Freitas AR, Coque TM, Sollid JE, Lester C, Hammerum AM, Garcia-Migura L, Jensen LB, Francia MV, Witte W, Willems RJ, Sundsfjord A. Host range of enterococcal vanA plasmids among Gram-positive intestinal bacteria. J Antimicrob Chemother 2010; 66:273-82. [PMID: 21131318 DOI: 10.1093/jac/dkq455] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES The most prevalent type of acquired glycopeptide resistance is encoded by the vanA transposon Tn1546 located mainly on transferable plasmids in Enterococcus faecium. The limited occurrence in other species could be due to the lack of inter-species transferability and/or stability of Tn1546-containing plasmids in other species. We investigated the in vitro transferability of 14 pre-characterized vanA-containing plasmids hosted by E. faecium (n = 9), Enterococcus faecalis (n = 4) and Enterococcus raffinosus (n = 1) into several enterococcal, lactobacterial, lactococcal and bifidobacterial recipients. METHODS A filter-mating protocol was harmonized using procedures of seven partner laboratories. Donor strains were mated with three E. faecium recipients, three E. faecalis recipients, a Lactobacillus acidophilus recipient, a Lactococcus lactis recipient and two Bifidobacterium recipients. Transfer rates were calculated per donor and recipient. Transconjugants were confirmed by determining their phenotypic and genotypic properties. Stability of plasmids in the new host was assessed in long-term growth experiments. RESULTS In total, 282 enterococcal matings and 73 inter-genus matings were performed and evaluated. In summary, intra-species transfer was far more frequent than inter-species transfer, if that was detectable at all. All recipients of the same species behaved similarly. Inter-genus transfer was shown for broad host range control plasmids (pIP501/pAMβ1) only. Acquired resistance plasmids remained stable in the new host. CONCLUSIONS Intra-species transfer of enterococcal vanA plasmids was far more frequent than transfer across species or genus barriers and may thus explain the preferred prevalence of vanA-containing plasmids among E. faecium. A reservoir of vanA plasmids in non-enterococcal intestinal colonizers does not seem to be reasonable.
Collapse
|
6
|
Palmer KL, Kos VN, Gilmore MS. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr Opin Microbiol 2010; 13:632-9. [PMID: 20837397 DOI: 10.1016/j.mib.2010.08.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
Enterococci are Gram-positive bacteria that normally colonize gastrointestinal tracts of humans and animals. They are of growing concern because of their ability to cause antibiotic resistant hospital infections. Antibiotic resistance has been acquired, and has disseminated throughout enterococci, via horizontal transfer of mobile genetic elements. This transmission has been mediated mainly by conjugative plasmids of the pheromone-responsive and broad host range incompatibility group 18 type. Genome sequencing is revealing the extent of diversity of these and other mobile elements in enterococci, as well as the extent of recombination and rearrangement resulting in new phenotypes. Pheromone-responsive plasmids were recently shown to promote genome plasticity in antibiotic resistant Enterococcus faecalis, and their involvement has been implicated in E. faecium as well. Further, incompatibility group 18 plasmids have recently played an important role in mediating transfer of vancomycin resistance from enterococci to methicillin-resistant strains of S. aureus.
Collapse
Affiliation(s)
- Kelli L Palmer
- Departments of Ophthalmology, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
7
|
Rosvoll TC, Pedersen T, Sletvold H, Johnsen PJ, Sollid JE, Simonsen GS, Jensen LB, Nielsen KM, Sundsfjord A. PCR-based plasmid typing inEnterococcus faeciumstrains reveals widely distributed pRE25-, pRUM-, pIP501- and pHTβ-related replicons associated with glycopeptide resistance and stabilizing toxin–antitoxin systems. ACTA ACUST UNITED AC 2010; 58:254-68. [DOI: 10.1111/j.1574-695x.2009.00633.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Evaluation of risk factors for coinfection or cocolonization with vancomycin-resistant enterococcus and methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2009; 48:628-30. [PMID: 20007403 DOI: 10.1128/jcm.02381-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We retrospectively evaluated 410 patients with coinfection or cocolonization due to vancomycin-resistant (VR) enterococcus (VRE) and methicillin-resistant Staphylococcus aureus (MRSA). The prevalence rate was 19.8%. Risk factors included isolation of VR Enterococcus faecalis and use of linezolid or clindamycin. Inc18-like vanA plasmids were found in 7% of VR E. faecalis isolates and none of the VR E. faecium isolates.
Collapse
|
9
|
Vancomycin-resistant Staphylococcus aureus isolates associated with Inc18-like vanA plasmids in Michigan. Antimicrob Agents Chemother 2007; 52:452-7. [PMID: 18056272 DOI: 10.1128/aac.00908-07] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five of the seven cases of vancomycin-resistant Staphylococcus aureus (VRSA) infection identified to date have occurred in southeastern Michigan. VRSA isolates from the four most recent cases (all from Michigan) were characterized. The vanA gene was localized to a single plasmid in each VRSA isolate. The pulsed-field gel electrophoresis patterns of chromosomal DNA and the restriction profile of the plasmid demonstrated that the four isolates were unique and differed from the first three VRSA isolates. Vancomycin-resistant Enterococcus (VRE) isolates, all of which were Enterococcus faecalis, were recovered from case patients 4 to 6. Each VRE isolate transferred vancomycin resistance to E. faecalis JH2-2 by conjugation. PCRs for vanA and the Inc18-like plasmid genes traA and repR confirmed the presence of an Inc18-like vanA plasmid in all VRE isolates and transconjugants. An Inc18-like vanA plasmid was identified in the VRSA isolate from case patient 7. These findings suggest a role of Inc18-like plasmids as vanA donors.
Collapse
|
10
|
Del Grosso M, Northwood JGE, Farrell DJ, Pantosti A. The macrolide resistance genes erm(B) and mef(E) are carried by Tn2010 in dual-gene Streptococcus pneumoniae isolates belonging to clonal complex CC271. Antimicrob Agents Chemother 2007; 51:4184-6. [PMID: 17709465 PMCID: PMC2151421 DOI: 10.1128/aac.00598-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic elements carrying macrolide resistance genes in Streptococcus pneumoniae isolates belonging to CC271 were investigated. The international clone Taiwan(19F)-14 was found to carry Tn2009, a Tn916-like transposon containing tet(M) and mef(E). The dual erm(B) mef(E) isolates carried Tn2010, which is similar to Tn2009 with the addition of a putative new transposon, the erm(B) genetic element.
Collapse
Affiliation(s)
- Maria Del Grosso
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | |
Collapse
|
11
|
Ruiz-Barba JL, Floriano B, Maldonado-Barragán A, Jiménez-Díaz R. Molecular analysis of the 21-kb bacteriocin-encoding plasmid pEF1 from Enterococcus faecium 6T1a. Plasmid 2006; 57:175-81. [PMID: 16893567 DOI: 10.1016/j.plasmid.2006.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 11/16/2022]
Abstract
The complete 21,344-bp DNA sequence of the bacteriocin-encoding plasmid pEF1 from Enterococcus faecium 6T1a was determined. Thirty-four putative open reading frames which could code for proteins longer than 42 amino acids were found. Those included the structural genes encoding for the previously described bacteriocins enterocin I and J (also named as enterocins L50A and L50B). After comparison to sequences in public databases, analysis of the gene organization of pEF1 suggests a modular structure with three different functional domains: the replication region, the bacteriocin region and the mobilization plus UV-resistance region. This genetic mosaic structure most probably evolved through recombination events promoted by transposable elements. The hypothesis that the bacteriocin cluster on pEF1 could act as a functional plasmid stabilization module in E. faecium 6T1a is discussed.
Collapse
Affiliation(s)
- José Luis Ruiz-Barba
- Departamento de Biotecnología de Alimentos, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Avda. Padre Garcia Tejero, 4; Aptdo.1078, 41012 Sevilla, Spain.
| | | | | | | |
Collapse
|
12
|
Van der Auwera GA, Andrup L, Mahillon J. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. BMC Genomics 2005; 6:103. [PMID: 16042811 PMCID: PMC1196294 DOI: 10.1186/1471-2164-6-103] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 07/26/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis belong to the genetically close-knit Bacillus cereus sensu lato group, a family of rod-shaped Gram-positive bacteria. pAW63 is the first conjugative plasmid from the B. cereus group to be completely sequenced. RESULTS The 71,777 bp nucleotide sequence of pAW63 reveals a modular structure, including a 42 kb tra region encoding homologs of the Type IV secretion systems components VirB11, VirB4 and VirD4, as well as homologs of Gram-positive conjugation genes from Enterococcus, Lactococcus, Listeria, Streptococcus and Staphylococcus species. It also firmly establishes the existence of a common backbone between pAW63, pXO2 from Bacillus anthracis and pBT9727 from the pathogenic Bacillus thuringiensis serovar konkukian strain 97-27. The alignment of these three plasmids highlights the presence of well conserved segments, in contrast to distinct regions of high sequence plasticity. The study of their specific differences has provided a three-point reference framework that can be exploited to formulate solid hypotheses concerning the functionalities and the molecular evolution of these three closely related plasmids. This has provided insight into the chronology of their divergence, and led to the discovery of two Type II introns on pAW63, matching copies of the mobile element IS231L in different loci of pXO2 and pBT9727, and the identification on pXO2 of a 37 kb pathogenicity island (PAI) containing the anthrax capsule genes. CONCLUSION The complete sequence determination of pAW63 has led to a functional map of the plasmid yielding insights into its conjugative apparatus, which includes T4SS-like components, as well as its resemblance to other large plasmids of Gram-positive bacteria. Of particular interest is the extensive homology shared between pAW63 and pXO2, the second virulence plasmid of B. anthracis, as well as pBT9727 from the pathogenic strain B. thuringiensis serovar konkukian strain 97-27.
Collapse
Affiliation(s)
- Géraldine A Van der Auwera
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium
| | - Lars Andrup
- National Institute of Occupational Health, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Beltramo C, Oraby M, Bourel GÃ, Garmyn D, Guzzo J. A new vector, pGID052, for genetic transfer inOenococcus oeni. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09626.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|