1
|
Mosneag IE, Flaherty SM, Wykes RC, Allan SM. Stroke and Translational Research - Review of Experimental Models with a Focus on Awake Ischaemic Induction and Anaesthesia. Neuroscience 2024; 550:89-101. [PMID: 38065289 DOI: 10.1016/j.neuroscience.2023.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Animal models are an indispensable tool in the study of ischaemic stroke with hundreds of drugs emerging from the preclinical pipeline. However, all of these drugs have failed to translate into successful treatments in the clinic. This has brought into focus the need to enhance preclinical studies to improve translation. The confounding effects of anaesthesia on preclinical stroke modelling has been raised as an important consideration. Various volatile and injectable anaesthetics are used in preclinical models during stroke induction and for outcome measurements such as imaging or electrophysiology. However, anaesthetics modulate several pathways essential in the pathophysiology of stroke in a dose and drug dependent manner. Most notably, anaesthesia has significant modulatory effects on cerebral blood flow, metabolism, spreading depolarizations, and neurovascular coupling. To minimise anaesthetic complications and improve translational relevance, awake stroke induction has been attempted in limited models. This review outlines anaesthetic strategies employed in preclinical ischaemic rodent models and their reported cerebral effects. Stroke related complications are also addressed with a focus on infarct volume, neurological deficits, and thrombolysis efficacy. We also summarise routinely used focal ischaemic stroke rodent models and discuss the attempts to induce some of these models in awake rodents.
Collapse
Affiliation(s)
- Ioana-Emilia Mosneag
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom.
| | - Samuel M Flaherty
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| | - Robert C Wykes
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Magnetic resonance imaging detection of multiple ischemic injury produced in an adult rat model of minor stroke followed by mild transient cerebral ischemia. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:175-188. [PMID: 27815649 PMCID: PMC5364243 DOI: 10.1007/s10334-016-0597-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To determine whether cumulative brain damage produced adjacent to a minor stroke that is followed by a mild transient ischemia is detectable with MRI and histology, and whether acute or chronic recovery between insults influences this damage. MATERIALS AND METHODS A minor photothrombotic (PT) stroke was followed acutely (1-2 days) or chronically (7 days) by a mild transient middle cerebral artery occlusion (tMCAO). MRI was performed after each insult, followed by final histology. RESULTS The initial PT produced small hyperintense T2 and DW infarct lesions and peri-lesion regions of scattered necrosis and modestly increased T2. Following tMCAO, in a slice and a region adjacent to the PT, a region of T2 augmentation was observed when recovery between insults was acute but not chronic. Within the PT slice, a modest region of exacerbated T2 change proximate to the PT was also observed in the chronic group. Corresponding histological changes within regions of augmented T2 included increased vacuolation and cell death. CONCLUSION Within regions adjacent to an experimental minor stroke, a recurrence of a mild transient cerebral ischemia augmented T2 above increases produced by tMCAO alone, reflecting increased damage in this region. Exacerbation appeared broader with acute versus chronic recovery between insults.
Collapse
|
3
|
Tuor UI, Deng Q, Rushforth D, Foniok T, Qiao M. Model of minor stroke with mild peri-infarct ischemic injury. J Neurosci Methods 2016; 268:56-65. [DOI: 10.1016/j.jneumeth.2016.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/04/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
|
4
|
Revel A, Oréa V, Chapuis B, Barrès C, Julien C. Role of the sympathetic nervous system in cerebrovascular responses to air-jet stress in rats. Stress 2012; 15:115-20. [PMID: 21790485 DOI: 10.3109/10253890.2011.597901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study examined the role of sympathetic nerves in the control of cerebral hemodynamics during air-jet stress. In adult male Sprague-Dawley rats, blood flow velocity (pulsed Doppler) was measured in both internal carotid arteries 1 week after excision of one superior cervical ganglion. Blood pressure (BP) and carotid blood flows (CBFs) were simultaneously recorded during exposure to air-jet stress. In 5 out of 13 rats, stress was applied after β(2)-adrenoceptor blockade with ICI 118551 (0.4 mg/kg, then 0.2 mg/kg/h, i.v). Stress evoked an immediate rise in BP, CBFs, and vascular conductances. Vasodilatation was much larger on the denervated side than on the intact side (mean ± SEM: 78 ± 7 versus 19 ± 4%; P < 0.02) and lasted about 10 s. Thereafter, blood flows returned to or near normal and showed parallel variations while BP remained elevated. There was, therefore, a net vasoconstriction on both sides. In ICI 118551-treated rats, the initial vasodilatation was not significantly reduced on the denervated side (64 ± 4%), but the subsequent vasoconstriction was enhanced (P < 0.05) on both sides. In conclusion, air-jet stress evokes an immediate, short-lasting vasodilatation through a mechanism unrelated to β(2)-adrenoceptor stimulation. Sympathetic nerves powerfully limit this phenomenon, and thus contribute to protect the cerebral circulation from stress-induced BP surges.
Collapse
Affiliation(s)
- Aurélia Revel
- Unité de Neurocardiologie, Faculté de Pharmacie, Université Lyon 1, F-69008 Lyon, France
| | | | | | | | | |
Collapse
|
5
|
Gu W, Gu C, Jiang W, Wester P. Neurotransmitter synthesis in poststroke cortical neurogenesis in adult rats. Stem Cell Res 2009; 4:148-54. [PMID: 20089468 DOI: 10.1016/j.scr.2009.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022] Open
Abstract
Neurogenesis occurs in the cerebral cortex of adult rats after focal cerebral ischemia. Whether or not the newborn neurons could synthesize neurotransmitters is unknown. To elucidate such a possibility, a photothrombotic ring stroke model with spontaneous reperfusion was induced in adult male Wistar rats. The DNA duplication marker BrdU was repeatedly injected, and the rats were sacrificed at various times after stroke. To detect BrdU nuclear incorporation and various neurotransmitters, brain sections were processed for single/double immunocytochemistry and single/double/triple immunofluorescence. Stereological cell counting was performed to assess the final cell populations. At 48 h, 5 days, 7 days, 30 days, 60 days and 90 days after stroke, numerous cells were BrdU-immunolabeled in the penumbral cortex. Some of these were doubly immunopositive to the cholinergic neuron-specific marker ChAT or GABAergic neuron-specific marker GAD. As analyzed by 3-D confocal microscopy, the neurotransmitters acetylcholine and GABA were colocalized with BrdU in the same cortical cells. In addition, GABA was colocalized with the neuron-specific marker Neu N in the BrdU triple-immunolabeled cortical cells. This study suggests that the newborn neurons are capable of synthesizing the neurotransmitters acetylcholine and GABA in the penumbral cortex, which is one of the fundamental requisites for these neurons to function in the poststroke recovery.
Collapse
Affiliation(s)
- Weigang Gu
- Umeå Stroke Center, Department of Public Health and Clinical Medicine, Medicine, University of Umeå, Umeå, Sweden.
| | | | | | | |
Collapse
|
6
|
Gu W, Brännström T, Rosqvist R, Wester P. Cell division in the cerebral cortex of adult rats after photothrombotic ring stroke. Stem Cell Res 2009; 2:68-77. [DOI: 10.1016/j.scr.2008.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/06/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022] Open
|
7
|
Wauschkuhn CA, Witte K, Gorbey S, Lemmer B, Schilling L. Circadian periodicity of cerebral blood flow revealed by laser-Doppler flowmetry in awake rats: relation to blood pressure and activity. Am J Physiol Heart Circ Physiol 2005; 289:H1662-8. [PMID: 15894567 DOI: 10.1152/ajpheart.01242.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular parameters such as arterial blood pressure (ABP) and heart rate display pronounced circadian variation. The present study was performed to detect whether there is a circadian periodicity in the regulation of cerebral perfusion. Normotensive Sprague-Dawley rats (SDR, approximately 15 wk old) and hypertensive (mREN2)27 transgenic rats (TGR, approximately 12 wk old) were instrumented in the abdominal aorta with a blood pressure sensor coupled to a telemetry system for continuous recording of ABP, heart rate, and locomotor activity. After 5-12 days, a laser-Doppler flow (LDF) probe was attached to the skull by means of a guiding device to measure changes in brain cortical blood flow (CBF). After the animals recovered from anesthesia, measurements were taken for 3-4 days. The time series were analyzed with respect to the midline estimating statistic of rhythm (i.e., mean value of a periodic event after fit to a cosine function), amplitude, and acrophase (i.e., phase angle that corresponds to the peak of a given period) of the 24-h period. The LDF signal displayed a significant circadian rhythm, with the peak occurring at around midnight in SDR and TGR, despite inverse periodicity of ABP in TGR. This finding suggests independence of LDF periodicity from ABP regulation. Furthermore, the acrophase of the LDF was consistently found before the acrophase of the activity. From the present data, it is concluded that there is a circadian periodicity in the regulation of cerebral perfusion that is independent of circadian changes in ABP and probably is also independent of locomotor activity. The presence of a circadian periodicity in CBF may have implications for the occurrence of diurnal alterations in cerebrovascular events in humans.
Collapse
Affiliation(s)
- C A Wauschkuhn
- Division of Neurosurgical Research, Department of Neurosurgery, Faculty of Clinical Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | |
Collapse
|
8
|
Hilger T, Blunk JA, Hoehn M, Mies G, Wester P. Characterization of a novel chronic photothrombotic ring stroke model in rats by magnetic resonance imaging, biochemical imaging, and histology. J Cereb Blood Flow Metab 2004; 24:789-97. [PMID: 15241187 DOI: 10.1097/01.wcb.0000123905.17746.db] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A novel photothrombotic ring stroke model was characterized by multiparametric magnetic resonance imaging, imaging of cerebral blood flow (CBF), adenosine triphosphate (ATP), pH, and histology. Ischemia was initiated by transosseous irradiation of a predefined brain area intravenously perfused by the photosensitive dye erythrosin B in male Wistar rats. In the region of the primary ring-lesion, the phototoxic reaction caused necrosis reflected by low relative ATP levels (28 +/- 15%), alkalosis (pH: 7.35 +/- 0.50), and histologic evidence at 14 days after lesion induction. In the ring-encircled interior region (region-at-risk), spontaneous tissue reperfusion (relative CBF: 93 +/- 3%) enabled partial tissue preservation. This was demonstrated by a less impaired energy metabolism (ATP: 65 +/- 23%), normal pH (7.01 +/- 0.50), and still normal cellular structures shown by histologic staining. Analysis of the temporal characteristics within the region-at-risk revealed a slow continuous increase of the apparent diffusion coefficient of water (ADC) to 144 +/- 16% of control (14d) and an early vasogenic edema, reflected by an increase of the T2 relaxation time to 143 +/- 17% of control (2d). Both final ADC and T2 correlated well with the tissue pH within the region-at-risk, thus emphasizing the usefulness of this multiparametric noninvasive imaging approach.
Collapse
Affiliation(s)
- Thomas Hilger
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany.
| | | | | | | | | |
Collapse
|
9
|
Goode TL, Klein HJ. Miniaturization: an overview of biotechnologies for monitoring the physiology and pathophysiology of rodent animal models. ILAR J 2003; 43:136-46. [PMID: 12105381 DOI: 10.1093/ilar.43.3.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent advances in bioengineering technologies have made it possible to collect high-quality reproducible data quantitatively in a wide range of laboratory animal species, including rodents. Several of these technologies are incorporated into a plan called Miniaturization, which aims to design, develop, and maintain rodent animal models to study the pathophysiology and therapy of human diseases. Laser Doppler flowmetry, digital sonomicrometry, bioelectrical impedance, and microdialysis are some of the most widely used methods under the plan because they cause minimal pain and distress, reduce the number of animals used in biomedical research, and allow chronic, nonterminal assessment of physiological parameters in rodents. An overview of each of these technologies and their major applications in rodents used for biomedical research is provided.
Collapse
Affiliation(s)
- Tamara L Goode
- Department of Laboratory Animal Resources, Merck Research Laboratories, West Point, PA, USA
| | | |
Collapse
|
10
|
Gu W, Jiang W, Wester P. Real-time cortical cerebral blood flow follow-up in conscious, freely moving rats by laser Doppler flowmetry. Methods 2003; 30:172-7. [PMID: 12725784 DOI: 10.1016/s1046-2023(03)00078-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This article describes a laser Doppler flowmetry (LDF) system that enables repeated measurements and thereby long-term followup of cortical cerebral blood flow (CBF) in awake and freely moving rats. The system consists of a specially designed flow probe adapter, a flow probe connector, and a LDF flow probe, which may thereby rotate through its own axis. During the experiment, the flow adapter is permanently mounted onto the rat's skull bone. A thin layer of skull bone is left intact at the site for cortical CBF measurements. The probe connector and the flow probe may be repeatedly detached and remounted to the adapter, which allows for cortical cerebral blood flow recording from exactly the same anatomical location. The laser Doppler flowmetry system enables stable cortical CBF recordings in the conscious rat while it moves freely in a bowl cage.
Collapse
Affiliation(s)
- Weigang Gu
- Umeå Stroke Center UKBF 5B, Department of Public Health and Clinical Medicine, University of Umeå, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
11
|
Stover JF, Sakowitz OW, Beyer TF, Dohse NK, Kroppenstedt SN, Thomale UW, Schaser KD, Unterberg AW. Effects of LY379268, a selective group II metabotropic glutamate receptor agonist on EEG activity, cortical perfusion, tissue damage, and cortical glutamate, glucose, and lactate levels in brain-injured rats. J Neurotrauma 2003; 20:315-26. [PMID: 12866811 DOI: 10.1089/089771503765172273] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Activating presynaptic group II metabotropic glutamate (mGlu II) receptors reduces synaptic glutamate release. Attenuating glutamatergic transmission without blocking ionotropic glutamate receptors, thus avoiding unfavorable psychomimetic side effects, makes mGlu II receptor agonists a promising target in treating brain-injured patients. Neuroprotective effects of LY379268 were investigated in rats following controlled cortical impact injury (CCI). At 30 min after CCI, rats received a single intraperitoneal injection of LY379268 (10 mg/kg/body weight) or NaCl. Changes in EEG activity and pericontusional cortical perfusion were determined before trauma, at 4, 24, and 48 h, and 7 days after CCI. Brain edema and contusion volume were determined at 24 h and 7 days after CCI, respectively. Before brain removal pericontusional cortical glutamate, glucose, and lactate were measured via microdialysis. During the early period following CCI, EEG activity and cortical perfusion were significantly reduced in rats receiving LY379268. At 7 days, cortical perfusion was significantly increased in rats treated with LY379268, while EEG activity was depressed as in control rats. While brain edema remained unchanged at 24 h, cortical contusion was significantly decreased by 56% at 7 days after CCI. Cortical glutamate, glucose, and lactate were not influenced. Significant reductions in EEG activity and contusion volume by LY379268 do not appear mediated by attenuated excitotoxicity and energetic impairment. Overall, an additional decrease in cortical perfusion seems to interfere with the anti-edematous potential of LY379268 during the early period following CCI, while an increase in perfusion in LY379268-treated rats at 7 days might contribute to tissue protection.
Collapse
Affiliation(s)
- John F Stover
- Department of Neurosurgery, Charité-Virchow Medical Center, Humboldt-University Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Riyamongkol P, Zhao W, Liu Y, Belayev L, Busto R, Ginsberg MD. Automated registration of laser Doppler perfusion images by an adaptive correlation approach: application to focal cerebral ischemia in the rat. J Neurosci Methods 2002; 122:79-90. [PMID: 12535767 DOI: 10.1016/s0165-0270(02)00294-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hemodynamic changes are extremely important in analyzing responses from a brain subjected to a stimulus or treatment. The Laser Doppler technique has emerged as an important tool in neuroscience research. This non-invasive method scans a low-power laser beam in a raster pattern over a tissue surface to generate the time course of images in unit of relative flux changes. Laser Doppler imager (LDI) records cerebral perfusion not only in the temporal but also in the spatial domain. The traditional analysis of LD images has been focused on the region-of-interest (ROI) approach, in which the analytical accuracy in an experiment that necessitates a relative repositioning between the LDI and the scanned tissue area will be weakened due to the operator's subjective decision in data collecting. This report describes a robust image registration method designed to obviate this problem, which is based on the adaptive correlation approach. The assumption in mapping corresponding pixels in two images is to correlate the regions in which these pixels are centered. Based on this assumption, correlation coefficients are calculated between two regions by a method in which one region is moved around over the other in all possible combinations. To avoid ambiguity in distinguishing maximum correlation coefficients, an adaptive algorithm is adopted. Correspondences are then used to estimate the transformation by linear regression. We used a pair of phantom LD images to test this algorithm. A reliability test was also performed on each of the 15 sequential LD images derived from an actual experiment by imposing rotation and translation. The result shows that the calculated transformation parameters (rotation: theta =7.7+/-0.5 degrees; translation: Delta x =2.8+/-0.3, Deltaŷ=4.7+/-0.4) are very close to the prior-set parameters (rotation: theta=8 degrees; translation: Delta x=3, Delta y=5). This result indicates that this approach is a valuable adjunct to LD perfusion monitoring. An original sequence of LD images that recorded cerebral perfusion through a cranial window before, during and after middle cerebral artery occlusion (MCAo) is presented, together with the registered image sequence. Cerebral perfusion data acquired in a pixel-based manner from different anatomic locations of the registered LD image sequence are also presented over the whole time-course of the experiment.
Collapse
Affiliation(s)
- Panomkhawn Riyamongkol
- Department of Electrical and Computer Engineering, University of Miami College of Engineering, PO Box 248294, Coral Gables, FL 33124-0640, USA
| | | | | | | | | | | |
Collapse
|
13
|
Hu X, Wester P, Brännström T, Watson BD, Gu W. Progressive and reproducible focal cortical ischemia with or without late spontaneous reperfusion generated by a ring-shaped, laser-driven photothrombotic lesion in rats. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2001; 7:76-85. [PMID: 11275527 DOI: 10.1016/s1385-299x(01)00046-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clinical stroke is mostly of thromboembolic origin, in which the magnitude of brain damage resulting from arterial occlusions depends on the degree and duration of the concomitant ischemia. To facilitate more controllable and reproducible study of stroke-related pathophysiological mechanisms, a photothrombotic ring stroke model was initially developed in adult rats. The ring interior zone comprises an anatomically well confined cortical region-at-risk which is gradually encroached by progressive hypoperfusion, thus mimicking the situation (albeit in inverse fashion) of an ischemic penumbra or stroke-in-evolution. Modification of this model using a thinner ring irradiation beam resulted in late spontaneous reperfusion in the cortical region-at-risk and a remarkable morphological tissue recovery in this ostensibly critically injured region. On the other hand, doubling the thin irradiating beam intensity facilitates a complementary situation in which lack of reperfusion in the region-at-risk after stroke induction leads to tissue pannecrosis. The dual photothrombotic ring stroke model, effectuated either with or without reperfusion and thereby tissue recovery or pannecrosis, may be well suited for the study of events related to postischemic survival or cell death in the penumbra region. To popularize the photothrombotic ring stroke model, we present a detailed protocol of how this model is induced in either version as well as protocols for transcardial carbon black perfusion and laser-Doppler flowmetry experiments.
Collapse
Affiliation(s)
- X Hu
- Umeå Stroke Center, Research Laboratory UKBF 5B, Department of Public Health, University of Umeå, S-901 87, Umeå, Sweden
| | | | | | | | | |
Collapse
|
14
|
Abstract
Neurogenesis occurs throughout life in the dentate gyrus of hippocampus and subventricular zone, but this phenomenon has rarely been observed in other brain regions of adult mammals. The aim of the current study was to investigate the cell proliferation process in the ischemically challenged region-at-risk after focal cerebral ischemia in the adult rat brain. A reversible photothrombotic ring stroke model was used, which features sustained hypoperfusion followed by late spontaneous reperfusion and a remarkable morphologic tissue recovery in the anatomically well defined somatosensory cortical region-at-risk. Twelve-week-old male Wistar rats received repeated intraperitoneal injections of the cell proliferation specific marker 5-bromodeoxyuridine (BrdU) after stroke induction. Immunocytochemistry of coronal brain sections revealed that the majority of BrdU-positive cells were of glial, macrophage, and endothelial origin, whereas 3% to 6% of the BrdU-positive cells were double-labeled by BrdU and the neuronspecific marker Map-2 at 7 and 100 days after stroke onset in the region-at-risk. They were distributed randomly in cortical layers II-VI. Three-dimensional confocal analyses of BrdU and the neuronal-specific marker Neu N by double immunofluorescence confirmed their colocalization within the same cells at 72 hours and 30 days after stroke induction. This study suggests that, as a potential pathway for brain repair, new neurons can be generated in the cerebral cortex of adult rats after sublethal focal cerebral ischemia.
Collapse
Affiliation(s)
- W Gu
- Department of Medicine, Umeå Stroke Center, University of Umeå, Sweden
| | | | | |
Collapse
|
15
|
Hu X, Brännström T, Gu W, Wester P. A photothrombotic ring stroke model in rats with or without late spontaneous reperfusion in the region at risk. Brain Res 1999; 849:175-86. [PMID: 10592300 DOI: 10.1016/s0006-8993(99)02152-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study aimed at developing a dual setup of the photothrombotic ring stroke model with or without late spontaneous reperfusion in the region at risk and to explore the morphological consequences. The exposed crania of adult male Wistar rats were subjected to a ring-shaped laser-irradiation beam (o.d. 5.0 mm, 0.35 mm thick) for 2 min simultaneously with intravenous erythrosin B (17 mg/kg) infusion. Transcardial carbon-black perfusion revealed that a laser intensity of 0.90 W/cm(2) resulted in late, that is, starting at 72 h, spontaneous reperfusion, whereas the lowest laser intensity that produced lack of reperfusion at 7 days post-irradiation was 1.84 W/cm(2). Laser-Doppler flowmetry showed prompt cortical cerebral blood flow (cCBF) reduction both in the ring lesion and region at risk (12% and 25% of control values) after high-intensity irradiation; these reduced flow values were more rapid and pronounced than in the low-intensity irradiation setup as previously shown. The high- compared with low-intensity irradiation setup produced more frequent occurrence of thrombi in the ring-lesion region and a larger ischemic cortical lesion with a more rapid pace of ischemic cellular changes in the ring-lesion region and the region at risk. The region at risk transformed into pannecrosis in the high-intensity, but recovered morphologically in the low-intensity irradiation setup. This dual photothrombotic setup with or without spontaneous reperfusion enables the study of events related to ischemic cell survival or death in an anatomically predefined region at risk.
Collapse
Affiliation(s)
- X Hu
- Department of Medicine, Umeâ Stroke Center, Research Laboratory UKBF 5B, University of Umeâ, S-901 87, Umeâ, Sweden
| | | | | | | |
Collapse
|