1
|
Rubio L, Galipienso L, Ferriol I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:1092. [PMID: 32765569 PMCID: PMC7380168 DOI: 10.3389/fpls.2020.01092] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
Plant viruses cause considerable economic losses and are a threat for sustainable agriculture. The frequent emergence of new viral diseases is mainly due to international trade, climate change, and the ability of viruses for rapid evolution. Disease control is based on two strategies: i) immunization (genetic resistance obtained by plant breeding, plant transformation, cross-protection, or others), and ii) prophylaxis to restrain virus dispersion (using quarantine, certification, removal of infected plants, control of natural vectors, or other procedures). Disease management relies strongly on a fast and accurate identification of the causal agent. For known viruses, diagnosis consists in assigning a virus infecting a plant sample to a group of viruses sharing common characteristics, which is usually referred to as species. However, the specificity of diagnosis can also reach higher taxonomic levels, as genus or family, or lower levels, as strain or variant. Diagnostic procedures must be optimized for accuracy by detecting the maximum number of members within the group (sensitivity as the true positive rate) and distinguishing them from outgroup viruses (specificity as the true negative rate). This requires information on the genetic relationships within-group and with members of other groups. The influence of the genetic diversity of virus populations in diagnosis and disease management is well documented, but information on how to integrate the genetic diversity in the detection methods is still scarce. Here we review the techniques used for plant virus diagnosis and disease control, including characteristics such as accuracy, detection level, multiplexing, quantification, portability, and designability. The effect of genetic diversity and evolution of plant viruses in the design and performance of some detection and disease control techniques are also discussed. High-throughput or next-generation sequencing provides broad-spectrum and accurate identification of viruses enabling multiplex detection, quantification, and the discovery of new viruses. Likely, this technique will be the future standard in diagnostics as its cost will be dropping and becoming more affordable.
Collapse
Affiliation(s)
- Luis Rubio
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
- *Correspondence: Luis Rubio,
| | - Luis Galipienso
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Inmaculada Ferriol
- Plant Responses to Stress Programme, Centre for Research in Agricultural Genomics (CRAG-CSIC_UAB-UB) Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
2
|
Complete genome sequence of a strain of Actinidia virus X detected in Ribes nigrum cv. Baldwin showing unusual symptoms. Arch Virol 2015; 161:507-11. [PMID: 26586329 DOI: 10.1007/s00705-015-2678-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
A Ribes-infecting strain of the potexvirus Actinidia virus X (AVX-RV3124) was isolated from black currant plants (Ribes nigrum cv. Baldwin, accession 3124-03D1) showing symptoms of leaf chlorosis and deformity. This is the first description of the complete genome sequence of an isolate of this virus and the first detection of a potexvirus in Ribes. The genome of AVX-RV3124 consists of 6,888 nucleotides (nt) excluding the poly(A) tail at the 3' terminus. When AVX-RV3124 was compared to the available sequence of the AVX isolate in GenBank (accession no. KC568202), two large indel events (72 nt and 33 nt) were identified in the replicase coding region of RV3124. Evidence of recombination was detected upstream of the 3' terminus of the replicase gene of both virus isolates, providing further evidence of a common origin.
Collapse
|
3
|
James D, Varga A, Lye D. Analysis of the complete genome of a virus associated with twisted leaf disease of cherry reveals evidence of a close relationship to unassigned viruses in the family Betaflexiviridae. Arch Virol 2014; 159:2463-8. [PMID: 24737006 DOI: 10.1007/s00705-014-2075-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/28/2014] [Indexed: 12/01/2022]
Abstract
The genome of a virus associated with cherry twisted leaf disease (CTLaV, isolate ZH) was sequenced and consists of 8431 nucleotides, excluding a poly(A) tail at the 3' end. Genome analysis shows that CTLaV-ZH represents a new and distinct species and has a genome organization similar to those of unassigned viruses in the family Betaflexiviridae. The CTLaV-ZH genome has five open reading frames (ORFs), with putative ORFs within ORF2 and ORF5, identified as ORF2a and ORF5a, respectively. The AUG start codons of ORF2a and ORF5a are in contexts suitable for efficient translation, with appropriate stop codons in frame.
Collapse
Affiliation(s)
- Delano James
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, BC, V8L 1H3, Canada,
| | | | | |
Collapse
|
4
|
James D, Varga A, Jesperson GD, Navratil M, Safarova D, Constable F, Horner M, Eastwell K, Jelkmann W. Identification and complete genome analysis of a virus variant or putative new foveavirus associated with apple green crinkle disease. Arch Virol 2013; 158:1877-87. [PMID: 23553453 DOI: 10.1007/s00705-013-1678-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/13/2013] [Indexed: 11/30/2022]
Abstract
A virus identified as "apple green crinkle associated virus" (AGCaV) was isolated from Aurora Golden Gala apple showing severe symptoms of green crinkle disease. Evidence was obtained of a potential causal relationship to the disease. The viral genome consists of 9266 nucleotides, excluding the poly(A) tail at the 3'-terminus. It has a genome organization similar to that of members of the species Apple stem pitting virus (ASPV), the type species of the genus Foveavirus, family Betaflexiviridae. ORF1 of AGCaV encodes a replicase-complex polyprotein with a molecular mass of 247 kDa; the proteins of ORFs 2, 3, and 4 (TGB proteins) are estimated to be 25.1 kDa, 12.8 kDa, and 7.4 kDa, respectively; and ORF5 encodes the CP, with an estimated molecular mass of 43.3 kDa. Interestingly, AGCaV utilizes different stop codons for ORF1, ORF3, and ORF5 compared to the ASPV type isolate PA66, and between the two viruses, six distinct indel events were observed within ORF5. AGCaV has four non-coding regions (NCRs), including a 5'-NCR (60 nt), a 3'-NCR (134 nt), and two intergenic (IG) NCRs: IG-NCR1 (69 nt) and IG-NCR2 (91 nt). A conserved stable hairpin structure was identified in the variable 5'-NCR of members of the genus Foveavirus. AGCaV may be a variant or strain of ASPV with unique biological properties, but there is evidence that it may be a distinct putative foveavirus.
Collapse
Affiliation(s)
- D James
- Centre for Plant Health-Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Road, Sidney, BC, V8L 1H3, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pallas V, Sanchez-Navarro J, Varga A, Aparicio F, James D. Multiplex polymerase chain reaction (PCR) and real-time multiplex PCR for the simultaneous detection of plant viruses. Methods Mol Biol 2009; 508:193-208. [PMID: 19301757 DOI: 10.1007/978-1-59745-062-1_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Multiplex Polymerase Chain Reaction (PCR) can be used for the simultaneous detection of plant viruses. Multiple primer pairs or polyvalent primer pairs can be used to detect and identify several viruses in a single PCR.
Collapse
Affiliation(s)
- V Pallas
- IBMCP, Universidad Politecnica de Valencia-Consejo Superior de Investigaciones Cientificas, CPI, Valencia, Spain
| | | | | | | | | |
Collapse
|
6
|
Matic S, Minafra A, Sánchez-Navarro JA, Pallás V, Myrta A, Martelli GP. 'Kwanzan Stunting' syndrome: detection and molecular characterization of an Italian isolate of Little cherry virus 1. Virus Res 2009; 143:61-7. [PMID: 19463722 DOI: 10.1016/j.virusres.2009.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/02/2009] [Accepted: 03/09/2009] [Indexed: 11/26/2022]
Abstract
Evident stunting was observed for the first time on Prunus serrulata 'Kwanzan' indicator trees in Southern Italy during the indexing of two sour cherry accessions from cultivars 'Marasca di Verona' and 'Spanska'. Bud break and shooting were delayed and the developing leaves remained small. During the third year many Kwanzan plants died, regardless of the indexed cultivar. Electrophoretic analysis showed the presence of dsRNA pattern in extracts of stunted Kwanzan with a similar size to that of viruses of the family Closteroviridae. An identical pattern of more abundant dsRNA bands was obtained from GF305 seedlings grafted with the same sour cherry accessions. Observations by electron microscopy revealed the presence of long flexuous virus particles in both indicators (Kwanzan and GF305), characteristic of closteroviruses. Subsequent cloning work, starting from the dsRNA extracts of cultivar Marasca di Verona grafted on GF305 indicator, yielded 7 different clones, all showing high identity to the Little cherry virus 1 genome. Full sequencing of this virus isolate (ITMAR) was then done resulting in a complete genome composed of 16,936nt. Primers designed on the obtained sequences for RT-PCR detection confirmed the presence of Little cherry virus 1 in Kwanzan and GF305 trees, inoculated with both sour cherry cultivars. Phylogenetic analysis of the minor coat protein grouped virus isolates into two clusters: one including Italian isolates of sweet cherry, Japanese plum, peach and almond, together with German sweet cherry UW1 isolate, and a second one containing the Italian isolates of sour cherry (ITMAR and ITSPA), that were found associated with strong symptoms of 'Kwanzan Stunting'.
Collapse
Affiliation(s)
- Slavica Matic
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
James D, Varga A, Croft H. Analysis of the complete genome of peach chlorotic mottle virus: identification of non-AUG start codons, in vitro coat protein expression, and elucidation of serological cross-reactions. Arch Virol 2007; 152:2207-15. [PMID: 17891331 DOI: 10.1007/s00705-007-1050-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 07/23/2007] [Indexed: 11/28/2022]
Abstract
The entire genome of peach chlorotic mottle virus (PCMV), originally identified as Prunus persica cv. Agua virus (4N6), was sequenced and analysed. PCMV cross-reacts with antisera to diverse viruses, such as plum pox virus (PPV), genus Potyvirus, family Potyviridae; and apple stem pitting virus (ASPV), genus Foveavirus, family Flexiviridae. The PCMV genome consists of 9005 nucleotides (nts), excluding a poly(A) tail at the 3' end of the genome. Five open reading frames (ORFs) were identified with four untranslated regions (UTR) including a 5', a 3', and two intergenic UTRs. The genome organisation of PCMV is similar to that of ASPV and the two genomes share a nucleotide (nt) sequence identity of 58%. PCMV ORF1 encodes the replication-associated protein complex (Mr 241,503), ORF2-ORF4 code for the triple gene block proteins (TGBp; Mr 24,802, 12,370, and 7320, respectively), and ORF5 encodes the coat protein (CP) (Mr 42,505). Two non-AUG start codons participate in the initiation of translation: 35AUC and 7676AUA initiate translation of ORF1 and ORF5. In vitro expression with subsequent Western blot analysis confirmed ORF5 as the CP-encoding gene and confirmed that the codon AUA is able to initiate translation of the CP. Expression of a truncated CP fragment (Mr 39, 689) was demonstrated, and both proteins are expressed in vivo, since both were observed in Western blot analysis of PCMV-infected peach and Nicotiana occidentalis. The expressed proteins cross-reacted with an antiserum against ASPV. The amino acid sequences of the CPs of PCMV and ASPV CP share only 37% identity, but there are 11 shared peptides 4-8 aa residues long. These may constitute linear epitopes responsible for ASPV antiserum cross reactions. No significant common linear epitopes were associated with PPV. Extensive phylogenetic analysis indicates that PCMV is closely related to ASPV and is a new and distinct member of the genus Foveavirus.
Collapse
Affiliation(s)
- D James
- Centre for Plant Health, Research Section, Sidney Laboratory, Canadian Food Inspection Agency, Sidney, British Columbia, Canada.
| | | | | |
Collapse
|
8
|
James D, Glasa M. Causal agent of sharka disease: new and emerging events associated with Plum pox virus characterization. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1365-2338.2006.00981.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
James D, Varga A, Croft H, Rast H, Thompson D, Hayes S. Molecular Characterization, Phylogenetic Relationships, and Specific Detection of Peach mosaic virus. PHYTOPATHOLOGY 2006; 96:137-144. [PMID: 18943916 DOI: 10.1094/phyto-96-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Peach mosaic virus (PcMV) and Cherry mottle leaf virus (CMLV) are serologically related viruses that cause distinct diseases, have a different host range, and are vectored by different eriophyid mites. Sequence analysis of the genome of PcMV indicates that it is closely related genetically to CMLV but distinct, with similar genome organization and a member of the genus Trichovirus. The genome of PcMV consists of 7,988 nucleotides, excluding a poly(A) tail at the 3' end of the genome. Four putative open reading frames (ORF1 to 4) were identified coding for proteins of 216.3, 47.2, 21.7, and 15.7 kDa, respectively. Also, three noncoding regions were identified, including an intergenic region separating ORF3 and ORF4. The complete nucleotide sequence of PcMV shares 73% identity with CMLV. The CP amino acid sequence identity between isolates of PcMV ranged from 97 to 99% versus 83% identity when compared with the CP of CMLV. In vitro expression and subsequent western blot analysis confirmed ORF3 as encoding the CP gene of PcMV. Phylogenetic analysis supports classification of PcMV and CMLV as members of the genus Trichovirus. They are unique members of this genus with an extra ORF (ORF4). PcMV ORF4 appears to code for a putative nucleic acid-binding (NB) protein which has identity with the NB protein of CMLV and members of the genera Allexivirus, Carlavirus, and Vitivirus. PcMV and CMLV appear to be the products of recombination between members of the genus Trichovirus and a virus group containing the putative NB protein. Alternatively, PcMV and CMLV may represent the intact genome, with a deletion event producing members that lack ORF4. A reverse transcription-polymerase chain reaction procedure was developed for reliable and specific detection of PcMV. This will be an asset for stone fruit virus certification.
Collapse
|
10
|
Singh RP, Nie X, Singh M, Coffin R, Duplessis P. Sodium sulphite inhibition of potato and cherry polyphenolics in nucleic acid extraction for virus detection by RT-PCR. J Virol Methods 2002; 99:123-31. [PMID: 11684310 DOI: 10.1016/s0166-0934(01)00391-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phenolic compounds from plant tissues inhibit reverse transcription-polymerase chain reaction (RT-PCR). Multiple-step protocols using several additives to inhibit polyphenolic compounds during nucleic acid extraction are common, but time consuming and laborious. The current research highlights that the inclusion of 0.65 to 0.70% of sodium sulphite in the extraction buffer minimizes the pigmentation of nucleic acid extracts and improves the RT-PCR detection of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in potato (Solanum tuberosum) tubers and Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV) in leaves and bark in the sweet cherry (Prunus avium) tree. Substituting sodium sulphite in the nucleic acid extraction buffer eliminated the use of proteinase K during extraction. Reagents phosphate buffered saline (PBS)-Tween 20 and polyvinylpyrrolidone (PVP) were also no longer required during RT or PCR phase. The resultant nucleic acid extracts were suitable for both duplex and multiplex RT-PCR. This simple and less expensive nucleic acid extraction protocol has proved very effective for potato cv. Russet Norkotah, which contains a high amount of polyphenolics. Comparing commercially available RNA extraction kits (Catrimox and RNeasy), the sodium sulphite based extraction protocol yielded two to three times higher amounts of RNA, while maintaining comparable virus detection by RT-PCR. The sodium sulphite based extraction protocol was equally effective in potato tubers, and in leaves and bark from the cherry tree.
Collapse
Affiliation(s)
- R P Singh
- Potato Research Centre, Agriculture and Agri-Food Canada, PO Box 20280, NB, E3B 4Z7, Fredericton, Canada.
| | | | | | | | | |
Collapse
|
11
|
James D, Howell WE, Mink GI. Molecular Evidence of the Relationship Between a Virus Associated with Flat Apple Disease and Cherry rasp leaf virus as Determined by RT-PCR. PLANT DISEASE 2001; 85:47-52. [PMID: 30832070 DOI: 10.1094/pdis.2001.85.1.47] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Flat apple disease-associated virus (FAV) was mechanically transmitted to the propagation host Chenopodium quinoa and double-stranded (ds)RNA recovered using CFII chromatography. Purified dsRNA was used to generate cDNA clones which were sequenced and the information used to design oligonucleotide primers for reverse transcription-polymerase chain reaction (RT-PCR) and tube capture (TC)/RT-PCR analyses. Oligonucleotide primers for RT-PCR analysis and dot blot hybridization using digoxigenin-labeled cDNA clones were used for the detection of FAV and Cherry rasp leaf virus (CRLV) in C. quinoa, in leaf and bud wood tissue of apple, or both. Primers JQ3D33FF/FR amplified a virus-specific 429-bp fragment and reliably detected all isolates of FAV and CRLV tested by RT-PCR and TC/RT-PCR. Primers JQ2C1FF/FR amplified a 370-bp fragment and detected FAV and some isolates of CRLV. Comparison of amino acid residues derived from the 429-bp fragments of FAV and CRLV gave 95% identity. The RT-PCR assays provided strong evidence of a relationship between FAV and CRLV. These assays were also used to confirm virus elimination in apple plants after heat therapy. Western blot analysis of FAV revealed capsid protein subunits of approximately 22 and 24 kDa. Our data support biological and serological evidence that FAV and CRLV are isolates of the same virus. Searches of the database produced sequence matches only with RNA2 of Apple latent spherical virus (ALSV), a new member of the family Comoviridae. This suggests that both primer pairs presumably target regions on RNA2 of FAV/CRLV and that these viruses may be more closely related to ALSV than to other members of this family.
Collapse
Affiliation(s)
- D James
- Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Road, Sidney, B.C., Canada, V8L 1H3
| | - W E Howell
- Washington State University, NRSP5/IR2, 24106 Bunn Rd., Prosser 99350
| | - G I Mink
- Washington State University, NRSP5/IR2, 24106 Bunn Rd., Prosser 99350
| |
Collapse
|
12
|
Martin RR, James D, Lévesque CA. Impacts of Molecular Diagnostic Technologies on Plant Disease Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2000; 38:207-239. [PMID: 11701842 DOI: 10.1146/annurev.phyto.38.1.207] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Detection and diagnosis of plant viruses has included serological laboratory tests since the 1960s. Relatively little work was done on serological detection of plant pathogenic bacteria and fungi prior to the development of ELISA and monoclonal antibody technologies. Most applications for laboratory-based tests were directed at virus detection with relatively little emphasis on fungal and bacterial pathogens, though there was some good work done with other groups of plant pathogens. With the advent of molecular biology and the ability to compare regions of genomic DNA representing conserved sequences, the development of laboratory tests increased at an amazing rate for all groups of plant pathogens. Comparison of ITS regions of bacteria, fungi, and nematodes has proven useful for taxonomic purposes. Sequencing of conserved genes has been used to develop PCR-based detection with varying levels of specificity for viruses, fungi, and bacteria. Combinations of ELISA and PCR technologies are used to improve sensitivity of detection and to avoid problems with inhibitors or PCR often found in plants. The application of these technologies in plant pathology has greatly improved our ability to detect plant pathogens and is increasing our understanding of, their ecology and epidemiology.
Collapse
Affiliation(s)
- Robert R Martin
- USDA-ARS Horticulture Crops Research Laboratory, 3420 NW Orchard Avenue, Corvallis, Oregon 97330; e-mail:
| | - Delano James
- Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Road, Sidney, British Columbia V8l 1H3, Canada; e-mail:
| | - C André Lévesque
- Eastern Cereal and Oilseed Research Center (ECORC), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada; e-mail:
| |
Collapse
|