1
|
Plastira I, Bernhart E, Joshi L, Koyani CN, Strohmaier H, Reicher H, Malle E, Sattler W. MAPK signaling determines lysophosphatidic acid (LPA)-induced inflammation in microglia. J Neuroinflammation 2020; 17:127. [PMID: 32326963 PMCID: PMC7178949 DOI: 10.1186/s12974-020-01809-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background In the extracellular environment, lysophosphatidic acid (LPA) species are generated via autotaxin (ATX)-mediated hydrolysis of lysophospholipid precursors. Members of the LPA family are potent lipid mediators transmitting signals via six different G protein-coupled LPA receptors (LPAR1-6). The LPA signaling axis is indispensable for brain development and function of the nervous system; however, during damage of the central nervous system, LPA levels can increase and aberrant signaling events counteract brain function. Here, we investigated regulation of the ATX/LPA/LPAR axis in response to lipopolysaccharide-induced systemic inflammation in mice and potential neurotoxic polarization programs in LPA-activated primary murine microglia. Methods In vivo, LPAR1-6 expression was established by qPCR in whole murine brain homogenates and in FACS-sorted microglia. ELISAs were used to quantitate LPA concentrations in the brain and cyto-/chemokine secretion from primary microglia in vitro. Transcription factor phosphorylation was analyzed by immunoblotting, and plasma membrane markers were analyzed by flow cytometry. We used MAPK inhibitors to study signal integration by the JNK, p38, and ERK1/2 branches in response to LPA-mediated activation of primary microglia. Results Under acute and chronic inflammatory conditions, we observed a significant increase in LPA concentrations and differential regulation of LPAR, ATX (encoded by ENPP2), and cytosolic phospholipase A2 (encoded by PLA2G4A) gene expression in the brain and FACS-sorted microglia. During pathway analyses in vitro, the use of specific MAPK antagonists (SP600125, SB203580, and PD98059) revealed that JNK and p38 inhibition most efficiently attenuated LPA-induced phosphorylation of proinflammatory transcription factors (STAT1 and -3, p65, and c-Jun) and secretion of IL-6 and TNFα. All three inhibitors decreased LPA-mediated secretion of IL-1β, CXCL10, CXCL2, and CCL5. The plasma membrane marker CD40 was solely inhibited by SP600125 while all three inhibitors affected expression of CD86 and CD206. All MAPK antagonists reduced intracellular COX-2 and Arg1 as well as ROS and NO formation, and neurotoxicity of microglia-conditioned media. Conclusion In the present study, we show that systemic inflammation induces aberrant ATX/LPA/LPAR homeostasis in the murine brain. LPA-mediated polarization of primary microglia via MAPK-dependent pathways induces features reminiscent of a neurotoxic phenotype.
Collapse
Affiliation(s)
- Ioanna Plastira
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Eva Bernhart
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Lisha Joshi
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Chintan N Koyani
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria.,Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Heimo Strohmaier
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Helga Reicher
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Wolfgang Sattler
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria. .,Center for Explorative Lipidomics, BioTechMed, Graz, Austria.
| |
Collapse
|
2
|
Lin CC, Hsieh HL, Liu SW, Tseng HC, Hsiao LD, Yang CM. BK Induces cPLA2 Expression via an Autocrine Loop Involving COX-2-Derived PGE2 in Rat Brain Astrocytes. Mol Neurobiol 2014; 51:1103-15. [DOI: 10.1007/s12035-014-8777-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/01/2014] [Indexed: 01/26/2023]
|
3
|
Wang YP, Li G, Ma LL, Zheng Y, Zhang SD, Zhang HX, Qiu M, Ma X. Penehyclidine hydrochloride ameliorates renal ischemia–reperfusion injury in rats. J Surg Res 2014; 186:390-7. [DOI: 10.1016/j.jss.2013.07.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/07/2013] [Accepted: 07/19/2013] [Indexed: 12/17/2022]
|
4
|
Role of redox signaling in neuroinflammation and neurodegenerative diseases. BIOMED RESEARCH INTERNATIONAL 2013; 2013:484613. [PMID: 24455696 PMCID: PMC3884773 DOI: 10.1155/2013/484613] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/30/2013] [Accepted: 11/21/2013] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species (ROS), a redox signal, are produced by various enzymatic reactions and chemical processes, which are essential for many physiological functions and act as second messengers. However, accumulating evidence has implicated the pathogenesis of several human diseases including neurodegenerative disorders related to increased oxidative stress. Under pathological conditions, increasing ROS production can regulate the expression of diverse inflammatory mediators during brain injury. Elevated levels of several proinflammatory factors including cytokines, peptides, pathogenic structures, and peroxidants in the central nervous system (CNS) have been detected in patients with neurodegenerative diseases such as Alzheimer's disease (AD). These proinflammatory factors act as potent stimuli in brain inflammation through upregulation of diverse inflammatory genes, including matrix metalloproteinases (MMPs), cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and adhesion molecules. To date, the intracellular signaling mechanisms underlying the expression of target proteins regulated by these factors are elusive. In this review, we discuss the mechanisms underlying the intracellular signaling pathways, especially ROS, involved in the expression of several inflammatory proteins induced by proinflammatory factors in brain resident cells. Understanding redox signaling transduction mechanisms involved in the expression of target proteins and genes may provide useful therapeutic strategies for brain injury, inflammation, and neurodegenerative diseases.
Collapse
|
5
|
Lanzafame AA, Christopoulos A, Mitchelson F. Cellular Signaling Mechanisms for Muscarinic Acetylcholine Receptors. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308263] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University, 975 W. Walnut St., IB355A, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
7
|
Farooqui AA, Ong WY, Horrocks LA. Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 2006; 58:591-620. [PMID: 16968951 DOI: 10.1124/pr.58.3.7] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phospholipase A(2) family includes secretory phospholipase A(2), cytosolic phospholipase A(2), plasmalogen-selective phospholipase A(2), and calcium-independent phospholipase A(2). It is generally thought that the release of arachidonic acid by cytosolic phospholipase A(2) is the rate-limiting step in the generation of eicosanoids and platelet activating factor. These lipid mediators play critical roles in the initiation and modulation of inflammation and oxidative stress. Neurological disorders, such as ischemia, spinal cord injury, Alzheimer's disease, multiple sclerosis, prion diseases, and epilepsy are characterized by inflammatory reactions, oxidative stress, altered phospholipid metabolism, accumulation of lipid peroxides, and increased phospholipase A(2) activity. Increased activities of phospholipases A(2) and generation of lipid mediators may be involved in oxidative stress and neuroinflammation associated with the above neurological disorders. Several phospholipase A(2) inhibitors have been recently discovered and used for the treatment of ischemia and other neurological diseases in cell culture and animal models. At this time very little is known about in vivo neurochemical effects, mechanism of action, or toxicity of phospholipase A(2) inhibitors in human or animal models of neurological disorders. In kainic acid-mediated neurotoxicity, the activities of phospholipase A(2) isoforms and their immunoreactivities are markedly increased and phospholipase A(2) inhibitors, quinacrine and chloroquine, arachidonyl trifluoromethyl ketone, bromoenol lactone, cytidine 5-diphosphoamines, and vitamin E, not only inhibit phospholipase A(2) activity and immunoreactivity but also prevent neurodegeneration, suggesting that phospholipase A(2) is involved in the neurodegenerative process. This also suggests that phospholipase A(2) inhibitors can be used as neuroprotectants and anti-inflammatory agents against neurodegenerative processes in neurodegenerative diseases.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Avenue, Columbus, OH 43210-1218, USA
| | | | | |
Collapse
|
8
|
Hsieh HL, Wu CY, Hwang TL, Yen MH, Parker P, Yang CM. BK-induced cytosolic phospholipase A2 expression via sequential PKC-delta, p42/p44 MAPK, and NF-kappaB activation in rat brain astrocytes. J Cell Physiol 2006; 206:246-54. [PMID: 15991247 DOI: 10.1002/jcp.20457] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bradykinin (BK), an inflammatory mediator, has been shown to induce cytosolic phospholipase A2 (cPLA2) expression implicating in inflammatory responses in various cell types. However, the detailed mechanisms underlying BK-induced cPLA2 expression in astrocytes remain unclear. RT-PCR and Western blotting analysis showed that BK induced the expression of cPLA2 mRNA and protein, which was inhibited by Hoe140, suggesting the involvement of B2 BK receptors, confirmed by immunofluorescence staining using anti-B2 BK receptor antibody. BK-induced cPLA2 expression and phosphorylation of p42/p44 MAPK was attenuated by PD98059, indicating the involvement of MEK1/2-p42/p44 MAPK in these responses. BK-induced cPLA2 expression might be due to the translocation of NF-kappaB into nucleus which was inhibited by Hoe140, helenalin, and PD98059, implying the involvement of NF-kappaB. Moreover, BK-induced cPLA2 expression was attenuated by rottlerin, suggesting that PKC-delta might be involved in these responses. This hypothesis was supported by the transfection with a dominant negative plasmid of PKC-delta significantly attenuated BK-induced response. In addition, BK-stimulated translocation of PKC-delta from cytosol to membrane fraction was inhibited by rottlerin but not by PD98059, indicating that PKC-delta might be an upstream component of p42/p44 MAPK. Accordingly, BK-induced phosphorylation of p42/p44 MAPK was attenuated by rottlerin but not by helenalin. These results suggest that in RBA-1 cells, BK-induced cPLA2 expression was sequentially mediated through activation of PKC-delta, p42/p44 MAPK, and NF-kappaB. Understanding the regulation of cPLA2 expression induced by BK in astrocytes might provide a new therapeutic strategy of brain injury and inflammatory diseases.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Physiology and Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Farooqui AA, Horrocks LA. Brain phospholipases A2: a perspective on the history. Prostaglandins Leukot Essent Fatty Acids 2004; 71:161-9. [PMID: 15253885 DOI: 10.1016/j.plefa.2004.03.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Indexed: 10/26/2022]
Abstract
The phospholipases A2 (PLA2) belong to a large family of enzymes involved in the generation of several second messengers that play an important role in signal transduction processes associated with normal brain function. The phospholipase A2 family includes secretory phospholipase A2, cytosolic phospholipase A2, calcium-independent phospholipase A2, plasmalogen-selective phospholipase A2 and many other enzymes with phospholipase A2 activity that have not been classified. Few attempts have been made purify and characterize the multiple forms of PLA2 and none have been fully characterized and cloned from brain tissue. A tight regulation of phospholipase A2 isozymes is necessary for maintaining physiological levels of free fatty acids including arachidonic acid and its metabolites in the various types of neural cells. Under normal conditions, phospholipase A2 isozymes may be involved in neurotransmitter release, long-term potentiation, growth and differentiation, and membrane repair. Under pathological conditions, high levels of lipid metabolites generated by phospholipase A2 are involved in neuroinflammation, oxidative stress, and neural cell injury.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Avenue, 465 Hamilton Hall, Columbus, OH 43210-1218, USA
| | | |
Collapse
|
10
|
Farooqui AA, Antony P, Ong WY, Horrocks LA, Freysz L. Retinoic acid-mediated phospholipase A2 signaling in the nucleus. ACTA ACUST UNITED AC 2004; 45:179-95. [PMID: 15210303 DOI: 10.1016/j.brainresrev.2004.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
Retinoic acid modulates a wide variety of biological processes including proliferation, differentiation, and apoptosis. It interacts with specific receptors in the nucleus, the retinoic acid receptors (RARs). The molecular mechanism by which retinoic acid mediates cellular differentiation and growth suppression in neural cells remains unknown. However, retinoic acid-induced release of arachidonic acid and its metabolites may play an important role in cell proliferation, differentiation, and apoptosis. In brain tissue, arachidonic acid is mainly released by the action of phospholipase A2 (PLA2) and phospholipase C (PLC)/diacylglycerol lipase pathways. We have used the model of differentiation in LA-N-1 cells induced by retinoic acid. The treatment of LA-N-1 cells with retinoic acid produces an increase in phospholipase A2 activity in the nuclear fraction. The pan retinoic acid receptor antagonist, BMS493, can prevent this increase in phospholipase A2 activity. This suggests that retinoic acid-induced stimulation of phospholipase A2 activity is a retinoic acid receptor-mediated process. LA-N-1 cell nuclei also have phospholipase C and phospholipase D (PLD) activities that are stimulated by retinoic acid. Selective phospholipase C and phospholipase D inhibitors block the stimulation of phospholipase C and phospholipase D activities. Thus, both direct and indirect mechanisms of arachidonic acid release exist in LA-N-1 cell nuclei. Arachidonic acid and its metabolites markedly affect the neurite outgrowth and neurotransmitter release in cells of neuronal and glial origin. We propose that retinoic acid receptors coupled with phospholipases A2, C and D in the nuclear membrane play an important role in the redistribution of arachidonic acid in neuronal and non-nuclear neuronal membranes during differentiation and growth suppression. Abnormal retinoid metabolism may be involved in the downstream transcriptional regulation of phospholipase A2-mediated signal transduction in schizophrenia and Alzheimer disease (AD). The development of new retinoid analogs with diminished toxicity that can cross the blood-brain barrier without harm and can normalize phospholipase A2-mediated signaling will be important in developing pharmacological interventions for these neurological disorders.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Ave, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
11
|
Calcium, Calmodulin, and Phospholipids. Mol Endocrinol 2004. [DOI: 10.1016/b978-012111232-5/50010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Wang H, Reiser G. Signal transduction by serine proteinases in astrocytes: Regulation of proliferation, morphologic changes, and survival via proteinase-activated receptors. Drug Dev Res 2003. [DOI: 10.1002/ddr.10319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Abstract
Signaling by the protease thrombin has started to be appreciated in cell biology, especially since the gene for protease-activated receptor-1 (PAR-1) has been cloned. Apart from the central role of thrombin in blood coagulation and wound healing, thrombin also regulates cellular functions in a large variety of cells through PAR-1, PAR-3 and PAR-4. Receptors are activated by a proteolytic cleavage mechanism via G protein-coupled signaling pathways. Accumulating evidence shows that thrombin changes the morphology of neurons and astrocytes, induces glial cell proliferation, and even exerts, depending on the concentration applied, either cytoprotective or cytotoxic effects on neural cells. These effects may be mediated, through either distinct or overlapping signal transduction cascades, by activation of PARs. This review focuses on the underlying signaling events initiated by thrombin in neuronal and glial cells, to summarize our understanding of the intracellular signaling machinery linking thrombin receptors to their potential physiological and pathological functions in the CNS.
Collapse
Affiliation(s)
- Hong Wang
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | | |
Collapse
|
14
|
Balboa MA, Varela-Nieto I, Killermann Lucas K, Dennis EA. Expression and function of phospholipase A(2) in brain. FEBS Lett 2002; 531:12-7. [PMID: 12401195 DOI: 10.1016/s0014-5793(02)03481-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase A(2) (PLA(2)) appears to play a fundamental role in cell injury in the central nervous system. We have investigated PLA(2) expression in the astrocytoma cell line 1231N1, and found that GIVA, GIVB, GIVC and GVI PLA(2) messages are expressed. PLA(2) activity is increased by inflammatory/injury stimuli such as interleukin-1beta and lipopolysaccharide in these cells but with very different time courses. The arachidonic acid liberated is converted to prostaglandin E(2), possibly by cyclooxygenase-2, which is induced by inflammatory stimuli. This cell system emerges as a model to study injury/inflammation-related activation of the new PLA(2) forms GIVB and GIVC.
Collapse
Affiliation(s)
- María A Balboa
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | | | | | | |
Collapse
|
15
|
Fuentes L, Hernández M, Nieto ML, Sánchez Crespo M. Biological effects of group IIA secreted phosholipase A(2). FEBS Lett 2002; 531:7-11. [PMID: 12401194 DOI: 10.1016/s0014-5793(02)03401-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Group IIA secreted phospholipase A(2) (sPLA(2)-IIA) is the most abundant element in human tissues of a large family of low molecular weight phospholipases A(2), which shows properties different from those displayed by the cytosolic phospholipase A(2) involved in the release of arachidonic acid. sPLA(2)-IIA behaves as a ligand for a group of receptors inside the C-type multilectin mannose receptor family and also interacts with heparan sulfate proteoglycans such as glypican, the dermatan/chondroitin sulfate-rich decorin, and the chondroitin sulfate-rich versican, thus being able to internalize to specific compartments within the cell and producing biological responses. This review provides a short summary of the biological actions of sPLA(2)-IIA on intracellular signaling pathways.
Collapse
Affiliation(s)
- Lucía Fuentes
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Facultad de Medicina, 47005, Valladolid, Spain
| | | | | | | |
Collapse
|
16
|
Abstract
Phospholipase A(2) (PLA(2)) constitutes a growing superfamily of lipolytic enzymes, and to date, at least 19 distinct enzymes have been found in mammals. This class of enzymes has attracted considerable interest as a pharmacological target in view of its role in lipid signaling and its involvement in a variety of inflammatory conditions. PLA(2)s hydrolyze the sn-2 ester bond of cellular phospholipids, producing a free fatty acid and a lysophospholipid, both of which are lipid signaling molecules. The free fatty acid produced is frequently arachidonic acid (AA, 5,8,11,14-eicosatetraenoic acid), the precursor of the eicosanoid family of potent inflammatory mediators that includes prostaglandins, thromboxanes, leukotrienes and lipoxins. Multiple PLA(2) enzymes are active within and surrounding the cell and these enzymes have distinct, but interconnected roles in AA release.
Collapse
Affiliation(s)
- Jesús Balsinde
- Institute of Molecular Biology and Genetics, Spanish Council for Scientific Research, University of Valladolid School of Medicine, 47005, Valladolid, Spain
| | | | | |
Collapse
|
17
|
Fernández N, Renedo M, Sánchez Crespo M. FcgammaR receptors activate MAP kinase and up-regulate the cyclooxygenase pathway without increasing arachidonic acid release in monocytic cells. Eur J Immunol 2002; 32:383-92. [PMID: 11813157 DOI: 10.1002/1521-4141(200202)32:2<383::aid-immu383>3.0.co;2-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
THP-1 monocytic cells were stimulated with IgG-ovalbumin equivalence immune complexes (IC) and mAb reacting with both FcgammaRI and FcgammaRIIA. All of these stimuli were capable of activating the cells; however, different patterns of response were observed as regards activation of the p42-MAP/ERK kinase, triggering of the NF-kappaB/Rel system, production of chemotactic cytokines, and induction of the expression of cyclooxygenase-2 (COX-2). Activation of p42-MAP/ERK kinase was a constant finding, which occurred regardless of the type of stimulus applied, for instance, homotypic stimulation of a single type of receptor by cross-linking with specific mAb or heterotypic stimulation with both types of antibodies and IC. However, the activation of the MAP/ERK kinase cascade was not connected to the triggering of cytosolic phospholipase A(2) (cPLA(2)) and arachidonic acid (AA) release. The heterotypic stimulation of FcgammaR induced the expression of COX-2 in a time and dose-dependent manner and activated the NF-kappaB system as judged from the degradation of IkappaB-alpha protein. In summary, the present data indicate that activation of the p42-MAP/ERK pathway occurs after cross-linking FcgammaRI and FcgammaRIIA receptors in monocytic cells; however, this is not coupled to the cPLA(2) route, which leads to the release of AA. Noteworthy,heterotypic activation involving combined cross-linking of both FcgammaRI and FcgammaRIIA has a robust effect on the oxidative metabolism of AA by a mechanism involving kappaB-dependent trans-activation of COX-2.
Collapse
Affiliation(s)
- Nieves Fernández
- Instituto de Biología y Genética Molecular, Facultad de Medecina, Consejo Superior de Investigaciones Científicas, 47005 Valladolid, Spain
| | | | | |
Collapse
|
18
|
Fiorio Pla A, Munaron L. Calcium influx, arachidonic acid,and control of endothelial cell proliferation. Cell Calcium 2001; 30:235-44. [PMID: 11587547 DOI: 10.1054/ceca.2001.0234] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent evidences suggest a role for arachidonic acid (AA) in the triggering of store-independent, ornon-capacitative, calcium entry in different cell types. Here, using patch clamp and fluorimetric single-cell calcium measurements, we provide evidence for AA-activated calcium influx in bovine aortic endothelial cells (BAEC). AA-activated calcium entry is independent from intracellular calcium stores depletion at low doses of the fatty acid (< 5 microM) and insensitive to a decrease of pH to 6.7. Single-channel analysis in inside-out configuration reveals the presence of a family of AA-activated calcium-permeable channels, with different conductances and reversal potentials. Treatment with AA or ETYA induces a proliferative effect, significantly affected by external EGTA application during the early period (up to 2h) of stimulation with the agonists. We conclude that low concentrations of arachidonic acid are able to evoke a store-independent calcium influx, exerting a mitogenic role in BAECs.
Collapse
Affiliation(s)
- A Fiorio Pla
- Department of Animal and Human Biology, University of Torino, Torino, Italy
| | | |
Collapse
|
19
|
Hertz L, Hansson E, Rönnbäck L. Signaling and gene expression in the neuron-glia unit during brain function and dysfunction: Holger Hydén in memoriam. Neurochem Int 2001; 39:227-52. [PMID: 11434981 DOI: 10.1016/s0197-0186(01)00017-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Holger Hydén demonstrated almost 40 years ago that learning changes the base composition of nuclear RNA, i.e. induces an alteration in gene expression. An equally revolutionary observation at that time was that a base change occurred in both neurons and glia. From these findings, Holger Hydén concluded that establishment of memory is correlated with protein synthesis, and he demonstrated de novo synthesis of several high-molecular protein species after learning. Moreover, the protein, S-100, which is mainly found in glial cells, was increased during learning, and antibodies towards this protein inhibited memory consolidation. S-100 belongs to a family of Ca(2+)-binding proteins, and Holger Hydén at an early point realized the huge importance of Ca(2+) in brain function. He established that glial cells show more marked and earlier changes in RNA composition in Parkinson's disease than neurons. Holger Hydén also had the vision and courage to suggest that "mental diseases could as well be thought to depend upon a disturbance of processes in glia cells as in the nerve cells", and he showed that antidepressant drugs cause profound changes in glial RNA. The importance of Holger Hydén's findings and visions can only now be fully appreciated. His visionary concepts of the involvement of glia in neurological and mental illness, of learning being associated with changes in gene expression, and of the functional importance of Ca(2+)-binding proteins and Ca(2+) are presently being confirmed and expanded by others. This review briefly summarizes highlights of Holger Hydén's work in these areas, followed by a discussion of recent research, confirming his findings and expanding his visions. This includes strong evidence that glial dysfunction is involved in the development of Parkinson's disease, that drugs effective in mood disorders alter gene expression and exert profound effects on astrocytes, and that neuronal-astrocytic interactions in glutamate signaling, NO synthesis, Ca(2+) signaling, beta-adrenergic activity, second messenger production, protein kinase activities, and transcription factor phosphorylation control the highly programmed events that carry the memory trace through the initial, signal-mediated short-term and intermediate memory stages to protein synthesis-dependent long-term memory.
Collapse
Affiliation(s)
- L Hertz
- Hong Kong DNA Chips Ltd., Kowloon, Hong Kong, People's Republic of China
| | | | | |
Collapse
|